Approach /	Locus/gene/	Function/orthologs	Modifiers/regulators	Affected yield components	References		
locus	protein class						
Transcription factors and other regulators – spikelet development, inflorescence architecture and growth – grain number							
Mutant	Vrs1 (SIX-ROWED	Cell division and	Vrs1.b – wild type allele, $VRS1$ – loss	<i>VRS1</i> – six-row spikes,	(Komatsuda et		
	SPIKE 1); a	development in the lateral	of function mutant; modifiers – <i>INT</i>	reduction in the number	al. 2007;		
	homeodomain-	spikelets; no orthologs	alleles (see below)	of tillers	Lundqvist et		
	leucine zipper I-			<i>Vrs1.b</i> – two-rowed	al. 1997;		
	class (HD-Zip I)			spikes	Ramsay et al.		
	type transcription				2011)		
	factor						
Mutant	INT	Modifier of lateral spikelet	<i>INT-C</i> alleles – quantitative	Variations in male	(Lundqvist et		
	(INTERMEDIUM);	fertility; orthologs: maize	variation; vrs1.a in six-rowed (loss of	fertility and grain	al. 1997;		
	HD-ZIP I-class	TEOSINTE BRANCHED 1	function allele) is complemented by	development from two-	Lundqvist and		
	homeobox	(TB1) and barley	<i>Int-c.a</i> allele and in two-rowed	rowed to six-rowed	Lundqvist		
	transcription factor	Photoperiod-1 (Ppd-H1)	<i>Vrs1.b</i> is complemented by <i>int-c.b</i>		1988; Ramsay		
					et al. 2011)		
Mutant,	Ppd-H1	The major determinant of	ppd-H1 mutant, reduced photoperiod	Induction of flowering,	(Turner et al.		
positional	(Photoperiod-1), a	photoperiod response;	responsiveness altered circadian	highly advantageous in	2005)		
cloning	member of pseudo-	ortholog in wheat	expression of the photoperiod	spring-sown varieties			
	response regulator		pathway gene CONSTANS and				
	(PPR) family genes		reduced expression of its downstream				
			target, FT				
Natural	com2 (compositum	Branch repression pathway;	COM2 expression is regulated by	Spikelets are	(Poursarebani		
mutation,	2); AP2/ERF	orthologs in tetraploid and	Six-rowed spike 4 influencing branch	replaced by lateral	et al. 2015;		
positional	transcription factors	hexaploid wheat	repression; <i>HvIDS1</i> is a putative	secondary spikes;	Sharman		
cloning, gene			down-stream target of COM2	significantly more grains	1994)		
isolation				per spike, higher spike			
				yield			

Table S1. Main genes of barley (Hordeum vulgare) determining yield components.

Mapping MLOC_4383 0	<i>HvAP2 (APETALA</i> 2); transcription factor two, AP2 DNA-binding domain and miR172-binding site in its last exon	Perturbed interaction between miR172 and its corresponding binding site in the mRNA of <i>AP2</i> like transcription factor; orthologs in rice, wheat and maize	Mutant alleles – internode elongation is reduced in both the culm and the spike	A key controller of barley spike density	(Houston et al. 2013)
DatabasesM LOC_65101 .1	<i>HvNAC005</i> ; NAC-a6 transcription factor	Positive regulator of senescence	Over-expression – delayed development combined with precocious senescence; up regulation of genes involved in secondary metabolism, hormone metabolism, stress, signaling, development and transport	Nutrient remobilization related to senescence process	(Christiansen et al. 2016; 2011)
Mutant, mapping and cloning by sequencing	Blade-On-Petiole 1 (BOP1) and BOP2; putative transcriptional coactivator in A. thaliana	Developmental growth of vegetative and reproductive organs; partially conserved function between <i>Arabidopsis</i> and barley	<i>BOP1</i> /2 controls internode length and causes pleiotropic changes in spike development; haplotype diversity	Internode length, spike development	(Jost et al. 2016)
Natural mutations, mapping	dsp (dense spike)	Controlling the barley spike and spikelet characteristics	28 alleles	A reduction in length of rachis internodes, shorter culms, compact spikes, smaller volume of dew (reduced risk of fungal infections and pre-harvest sprouting)	(Shahinnia et al. 2012)
Spontaneous mutation	ert-a (erectoides-a)	A second dense spike locus	43 alleles, <i>ert-a.6</i> shorter plants and kernels, reduced grain yield	Resistance to lodging, semi-compact spikes with dense basis, reduced culm length, improved culm strength, susceptibility to powdery mildew, virus and nematode diseases	(Druka et al. 2011; Franckowiak and Lundqvist 2012) (mapping)

Induced mutations, mapping	ert-k.32 (erectoides-k.32)	Controlling culm length and spike architecture	<i>ert-k.32</i> – induced, approved as a cultivar; eight allelic <i>ert-k</i> mutants	Resistance to lodging; alternative to pleiotropic GR alleles of the <i>Sdw1</i> and <i>Uzu1</i>	(Franckowiak and Lundqvist 2012; Kristensen et al. 2016)	
		Genes of cytokinin metab	- oolism – plant architecture – grain nu	ımber		
RNAi	<i>HvCKX1</i> cytokinin dehydrogenase enzyme HvCKX1	CKX enzymes irreversibly degrade cytokinins, temporal and spatial control of cytokinin level; orthologs in wheat and other species	Multigene family Decreased expression of the <i>HvCKX1</i> gene by RNAi silencing and CKX enzyme in the developing spikes	Higher number of seeds and spikes	(Zalewski et al. 2010)	
RNAi	<i>HvCKX9</i> cytokinin dehydrogenase enzyme HvCKX9	As above	One of multigene family Decreased expression of the <i>HvCKX9</i> gene by RNAi silencing and CKX enzyme in the developing spikes	Higher number of seeds and spikes	(Zalewski et al. 2014; Zalewski et al. 2012)	
Gibberellin signaling and metabolism – plant architecture – culm (stem) robustness/hardiness						
Natural or induced mutations	Sdw (semidwarf); Sdw1/Denso locus	GR gene, GA-insensitive, GA signaling?	53 mutants; numerous different mother cultivars Sdw1/Denso locus – first reported allele sdw1.c; second allele – sdw1.a; third sdw1.d the most important – main allele in modern European; fourth sdw1.e	Semi-dwarf, reduction of culm and rachis internode length and increased lodging resistance, reduced grain size	(Druka et al. 2011; Franckowiak and Lundqvist 2012)	
Mutant Hv287 Map based cloning	sdw3 (semidwarf 3) former gai	GA-insensitive, GA signaling	Monogenic recessive trait; lack of gene identity (unidentified)	Mild semi-dwarf, lodging- resistant	(Börner et al. 1999; Vu et al. 2010)	
Mutant	sdw4 (semidwarf 4)	GA-insensitive, GA signaling	<i>sdw4.ba</i> – recessive, short-culm mutant with enlarged flag leaves	semi-dwarf, enhanced lodging-resistant; enlarged flag leaf	(Franckowiak and Lundqvist 2012)	
Natural mutants	HvSln1 (Slender1) – mutation in DELLA proteins	GA-insensitive, GA signaling; ortholog of <i>Rht1</i> in wheat and <i>GAI</i> in	<i>sln1b</i> allele – single amino acid substitution in DELLA domain, recessive loss of function alleles	Pleiotropic effects: semi- dwarf, slender-type plant architecture	(Chandler et al. 2002; Wen et al. 2013)	

		Arabidopsis	(translational stop codon)		
Mutants	Grd5 (GIBBERELLIN- RESPONSIVE DWARF), CYPSSA – cytochrome P450 ent-kaurenoic acid oxidase	Involved in GA metabolism, the enzyme catalyzes the first step of the gibberellin biosynthetic pathway from <i>ent</i> - kaurenoic acid to GA12; ortholog in maize	<i>grd5</i> – gibberellin-responsive, three independent mutants contain mutations in a gene encoding a member of the CYP88A subfamily of cytochrome P450 enzymes,	Dwarfing	(Helliwell et al. 2001)
	Bra	ssinosteroid (BR) signaling a	nd metabolism – plant architecture -	- culm length	·
Natural mutation	Uzul (MLOC_5176; UZU DWARF) brassinosteroid hormone receptor BRASSINOSTER OID- INSENSITIVE HvBRI1	GR gene, BR insensitive, deficient in brassinosteroid biosynthesis; ortholog of the rice <i>D61</i>	Mutation in the brassinosteroid receptor causing an His-857 to Arg exchange in the kinase domain of the receptor <i>uzu1.a</i> allele – monogenic recessive mutation	Short-culm in six-rowed barley in East Asia, highly resistant to lodging, upright plant architecture, low leaf angles (high photosynthetic efficiency; facilitates dense crop planting, heat sensitive)	(Chono et al. 2003; Dockter et al. 2014)
Mutants	brh (brachytic)	Deficient in brassinosteroid biosynthesis	A group of mutants (27 semidwarf mutants in 18 independent genetic loci, e.g. <i>brh1</i> , <i>bhr4</i> .j, <i>bhr8.ad</i>)	Reduced culm length, shorter kernels with lower weight but with an increased number of kernels per inflorescence, upright plant architecture	(Dahleen et al. 2005; Franckowiak and Lundqvist 2012)
		Other – plant archite	cture (culm and awn length), grain si	ze	·
Mutants	ari (breviaristatum) ari-e GP (erectoides in cv. Golden Promise)	Semi dwarfing mutant	32 <i>ari</i> mutant alleles in Bowman near-isogenic lines, several hundred at the Nordic Genetic Resource Centre <i>ari-e</i> recessive mutant – Golden Promise (Liu et al. 2014)	Reduced awn length, a number of mutants have shortened culm, and upright arch	(Druka et al. 2011; Franckowiak and Lundqvist 2012)
Homologs	PcG Polycomb group protein complexes (PcG)	Involved in seed development and in response to external ABA, ultimately leading to	Four homologs: <i>HvFIE</i> , <i>HvE(Z)</i> , <i>HvSu(z)12a</i> , and <i>HvSu(z)12b</i> . Gene expression is responsive to abscisic acid (ABA).	Seed size	(Kapazoglou et al. 2010)

chromatin compaction and		
gene silencing		