Approach /	Gene/protein class	Function/Orthologs	Alleles/Modifiers/Regulators	Affected yield components	References	
Transcription regulators (floral) – inflorescence architecture – grain number						
QTL, mutant analyses FT FLOWERIN G LOCUS	<i>Ppd-D1a</i> (<i>Photoperiod-1</i>) a member of the pseudo-response regulator gene family (PPR)	Controls photoperiod- dependent floral induction; regulates inflorescence architecture and paired spikelet development by modulating the strength of the floral promoting signal (<i>FT</i>); ortholog in barley	Ppd-1 – major inhibitory effect on paired spikelet formation by regulating the expression of FT Ppd-D1a loss of function allele – photoperiod-insensitive, promotes constitutive LD response	Temperate cereals – allelic variation in $Ppd-1$ influences sensitivity to long-day conditions. Modulated expression of Ppd-1 and FT can be used to form a wheat inflorescence with a better arrangement and increased number of grains in spikelets	(Beales et al. 2007; Boden et al. 2015; Li et al. 2011; Shaw et al. 2013; Shaw et al. 2012; Turner et al. 2005)	
Natural mutants	<i>FRIZZY PANICLE</i> (<i>WFZP</i> ; <i>T</i> . <i>aestivum</i>), <i>branched head</i> ^t (<i>bh</i> ^t <i>T. turgidum</i>) APETALA2/ Ethylene Response Factor	A key player in spikelet development during the floret meristem transition phase; non-canonical spike- branching; orthologs in barley, rice, maize	Three FZP homologous genes $WFZP$ – recessive, coding mutations of WFZP-D – cause the SS phenotype, the most severe in $FZP-D$ lesions + FZP-A frameshift mutants	Multirow spike (MRS) in hexaploid wheat and tetraploid 'Miracle-Wheat', significantly more grains per spike, higher spike yield	(Dobrovolskay a et al. 2015; Poursarebani et al. 2015)	
Haplotypes, NILs, gene isolation, overexpressi on in <i>A.</i> <i>thaliana</i>	<i>TaTEF-7A</i> ; TaTEF- 7A transcript elongation factor	<i>OsTEF1</i> regulates the tillering process by inducing expression of cytochrome P450	<i>TaTEF-7A</i> allele – the highest expression in young spikes and developing seeds; overexpression in <i>A. thaliana</i>	Increased grain number, enhance grain length, silique number and silique length	(Paul et al. 2012; Zheng et al. 2014)	
Genome identificatio n, gene cloning, phylogenetic	<i>NFYAs</i> , <i>NFYBs</i> , <i>NFYCs</i> Nuclear Factor Y (NF-Y): subunits NF-YA, NF-YB, NF-YC	Essential role in root development and nitrogen and phosphorus usage; orthologs in maize (<i>ZmNF</i> - <i>YB2</i>) and other species	Each of the NF-Y subunits is encoded by multiple genes (18 <i>NFYAs</i> , 34 <i>NFYBs</i> , 28 <i>NFYCs</i>). <i>TaNFYA-B1</i> is a low nitrogen and low phosphorus-inducible gene –	Increased grain yield and root development under control, low N and low P conditions, high yield with less fertilizer input	(Qu et al. 2015; Yadav et al. 2015)	

Table S2. Main genes of wheat (*Triticum aestivum* L.) determining yield components.

analysis,	that bind to the		increase in nitrogen and phosphorus	Overexpression stimulates			
transgenic	CCAAT box, a		uptake, upregulation of the	lateral branching.			
overexpressi	ubiquitous		expression of both nitrate and	Transgenics increased grain			
on of <i>TaNF</i> -	eukaryotic		phosphate transporters in roots +	yield by 20–30%.			
YB4	promoter element		down-regulation of miR169				
QTL	NAM-B1	<i>NAC</i> family genes regulate	NAC accelerates senescence and	Grain size	(Uauy et al.		
Gpc-B1,	NAC	NAC protein level and	improves grain protein, zinc and		2006 a.b: rev.		
cloning,	transcription	localization and participate	iron content: RNA reduction		function		
RNAi	factor	in transcription complex	delayed senescence		Olsen et al		
	idetoi	including microRNA:	delayed senescence		2005		
		specific to plants			2003)		
Gene	TaNAC2-5A –	TaNAC2-5A binds to the	Overexpression of TaNAC2-5A in	Higher grain yield and	(He et al.		
isolation,	a nitrate inducible	promoter regions of the	wheat enhanced root growth and	higher nitrogen	2015)		
overexpressi	and cereal-specific	genes encoding nitrate	nitrate influx rate	accumulation in aerial parts			
on in	NAM, ATAF, and	transporter and glutamine		and allocated more nitrogen			
transgenic	CUC (NAC)	synthetase; involved in		to grains in a field			
wheat lines	transcription factor	nitrate signaling; members		experiment			
		in other species					
RNAi	TaABCC13;	Functionally important for	Silencing of <i>TaABCC13</i> reduced PA	Grain development	(Bhati et al.		
	TaABCC13	grain development and	in mature grains and developmental		2016)		
	functional	detoxification of heavy	defects				
	transporter	metals.					
	1	Genes of cytokinin me	<u>tabolism – plant architecture – grain s</u>	<u>size</u>	1		
Haplotype	<i>ТаСКХ6-D1</i> ; СКХ	CKX enzymes irreversibly	Five haplotypes <i>a-e</i> . Haplotype	Grain weight, grain size,	(Lu et al.		
variants	– cytokinin	degrade cytokinins;	<i>TaCKX6-D1a</i> associated with higher	filling rate	2015; Zhang et		
	dehydrogenase	temporal and spatial control	grain weight – decreased expression		al. 2012)		
		of cytokinin level;	relative to haplo b in 8 DAP seeds;				
		orthologs in barley, rice	novel allele <i>TaCKX6a02</i>				
		(OsCKX2) and family					
		members in other species					
Recombinan	<i>TaCKX4</i> ; CKX -	As above	Significant association of copy	Grain weight	(Chang et al.		
t inbred lines	cytokinin		number variation of <i>TaCKX4</i> with		2015)		
(RIL)	dehydrogenase		flag leaf chlorophyll content after				
QTL			anthesis and grain weight				
Gibberellin signaling – plant architecture – culm (stem) robustness/hardiness							

Natural mutations	<i>Rht-B1</i> and <i>Rht-D1</i> , <i>Rht-B1c</i> DELLA proteins that share an N-terminal DELLA domain	GR genes, transcriptional regulators that negatively regulate GA signaling, suggested regulation of GATA-like transcription factor; ortholog of <i>Arabidopsis GAI</i> and <i>SLN1</i> in barley	GA insensitive alleles of the <i>Rht-B1</i> and <i>Rht-D1</i> loci; semidominant mutations (more than 20); truncated proteins lacking the DELLA motif cannot respond to GA3; <i>Rht-B1c</i> partially dominant or co-dominant for plant height, differed from <i>Rht- B1a</i> by one 2 kb <i>Veju</i> retrotransposon insertion, primarily responsible for the extreme dwarfing effect	Reduced plant height and a compact lodging-resistance phenotype, effect on seed dormancy, and photosynthesis	(Pearce et al. 2011; Peng et al. 1999; Sun and Gubler 2004; Wen et al. 2013)
Natural mutation, RIL, fine mapping	<i>Rht8</i> ; as above	Reduced cell elongation; reduced sensitivity to brassinosteroids	Not known	Shorter intermodal segments and culm, improved lodging resistance; used in dry environments	(Gasperini et al. 2012)
		Cell division/pi	roliferation regulators – grain size		
QTL – rice, comparative genomics, cloning, TILLING	<i>TaGW2</i> (<i>GRAIN</i> <i>WIDTH 2</i>) <i>OsGW2</i> encodes an E3 RING ligase	<i>TaGW2-A</i> and <i>-D</i> act in both the cell division and late grain-filling phase; ortholog in rice	Homologs in the A, B, D genomes $TaGW2$ – down-regulation, significant reduction in endosperm cell number; $gw2-A1$ – significant increase of grain size and weight	Grain size and weight	(Bednarek et al. 2012; Hong et al. 2014; Simmonds et al. 2016; Su et al. 2011)
Comparative genomics, haplotypes	<i>TaTGW6</i> indole-3- acetic acid-glucose hydrolase	Low expression of <i>TaTGW6</i> is associated with low IAA content and high grain weight; ortholog in rice (<i>TGW6</i>)	<i>TaTGW6-a, TaTGW6-A1b</i> – low TGW; <i>TaTGW6-A1a</i> (3 SNPs), <i>TaTGW6-b</i> (InDel mutant), <i>TaTGW6-c</i> (null mutant) – last two low or lack of expression and significant increase in grain size and weight	Thousand grain weight (TGW) and yield	(Hanif et al. 2016; Hu et al. 2016)
Comparative genomics	TaGS-D1	Regulate stigma length and stigma extension in rice; ortholog of rice <i>OsGS3</i>	InDels in the introns of the gene between genotypes – higher or lower TGW	Grain weight and grain length	(Zhang et al. 2014)
VIGS	TaCYP78A3	Affects the extent of	Specifically expressed in wheat	Grain size: 11–48%	(Ma et al.

silencing, overexpressi on (A.	cytochrome P450 CYP78A3 protein	integument cell proliferation	reproductive organs; positively correlated with the final seed size	increase in Arabidopsis seed size	2015b)
Comparative genomics, transgenic rice	<i>TaGS5-3A-T</i> , serine carboxypeptidases (SCPs), members of the a/b hydrolase proteins in the S_10 protein family	Promotes cell division by regulating cell cycle genes resulting in large grain size generated by an increased cell number; ortholog in rice OsGS5	<i>TaGS5-3A-T</i> preferentially expressed in young spikes and developing grains, significantly correlated with larger grain size and higher thousand kernel weight	Larger grain size, larger kernel and yield	(Ma et al. 2015a)
		Sucrose, starch meta	<u>bolism – plant architecture – grain yie</u>	ld	
Transgenic wheat, field trials	<i>HvSUT1</i> , sucrose transporter (SUT)	Stimulates storage protein synthesis	Up-regulated gene expression of positive and negative regulators of sugar signaling and assimilate supply	Increased grain yield and micronutrient concentration	(Saalbach et al. 2014; Weichert et al. 2010)
Comparative genomics, haplotypes	<i>TaSus1</i> and <i>TaSus2</i> sucrose synthase SUS	Sucrose synthase catalysis is the first step in the conversion of sucrose to starch	Loci: <i>TaSus2-2A</i> , <i>TaSus2-2B</i> , <i>TaSus1-7A</i> , and <i>TaSus1-7B</i> main variations within the introns; significant differences between the haplotypes correlated with TKW differences	Larger grain size	(Hou et al. 2014)
Haplotypes	<i>TaCWI</i> , cell wall invertase (CWI),	Wheat anther-specific invertase genes; hydrolyzes sucrose into glucose and fructose; orthologs in rice	<i>TaCWI-4A, TaCWI-5D</i> – SNPs <i>TaCWI-5B</i> – no polymorphism; <i>TaCWI-5D</i> significantly associated with TKW	Higher thousand kernel weight	(Jiang et al. 2015)
Natural mutant	<i>T6P/SnRK1</i> trehalose6- phosphate (T6P)	T6P is the intermediary in TRE synthesis formed from glucose-6-phosphate and UDP-glucose; source/sink interaction	Not known	Expected function to determine grain yield	(reviewed by Lawlor and Paul 2014)
RNAi	<i>GWD</i> GWD – glucan, water-dikinase, the primary enzyme required for starch	unclear	RNAi-mediated down-regulation (endosperm-specific promoter) – a decrease in starch phosphate content and an increase in grain size (+ increased level of α -amylase activity	Increases in grain size, early vigor and plant biomass	(Ral et al. 2013; Ral et al. 2012)

	phosphorylation		in the aleurone layer during grain		
			maturation)		
Induced	Tin	Reduced tillering due to	Upregulation of a gene	Reduced tillering	(Kebrom et al.
mutant	(tiller inhibition)	early cessation of tiller bud	induced by Suc starvation,	(branching)	2012)
		outgrowth during the	downregulation of a Suc-inducible		
		transition of the shoot apex	gene, and reduced Suc content in		
		from the vegetative to the	dormant tin buds		
		reproductive stage.			