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Method S1. Description of hypothesized paths constituting the models predicting direct and 
indirect effects of H2 exposure on measured microbial processes 
 

A structural equation model (SEM) was computed based on the extensive procedure described by 

Grace (2006) to test the hypothesis that idiosyncratic impact of H2 exposure on soil microbial 

community structure and function is explained by soil biotic and abiotic features acting as ecological 

filters for microbial species and functional groups. The overall model was comprised of seven paths 

involving two composites variables (SOIL and BIO) and two variables (H2O and H2). Composite 

variables were computed by linear combination of observed indicators, of which C, N, C\N and pH 

were combined as a composite variable, named SOIL, and species richness (i.e. Shannon index) of 

bacterial and fungal communities as the composite variable named BIO:  

 

The hypothetical model was based on a number of assumptions supported by literature to predict trace 

gas turnover and carbon utilization profiles. These assumptions are described in the following table: 
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Path Description Potential mechanism 

 

1 Soil physicochemical effects 
on microbial activity. 

The metabolic activity of microorganisms is influenced by the 
abiotic conditions of their environment.  

2 Microbial diversity effects on 
microbial activity. 

According to the biodiversity-ecosystem functioning theory, 
microbial processes are favored by the presence of a high 
diversity level (herein expressed as species richness). 

3 Direct and indirect effects of 
H2 exposure on 
microorganisms catalyzing a 
specific process.  

The results of this study have demonstrated the impact of H2 on 
microbial metabolism. Direct effects on H2 oxidation rate and 
indirect effects on CH4 oxidation rate and carbon mineralization 
potential were observed. The underlying mechanisms are 
unknown, but should involve alteration of microbial community 
structure (abundance and interactions) induced by HOB favored 
by H2 exposure. 

4 Impact of soil 
physicochemical properties 
on microbial diversity. 

Abiotic conditions in soil are known drivers of microbial 
community structure.  

5 Soil water content effect on 
microbial activity. 

Soil water content influences microbial community structure 
and function. Under water stress conditions, drought-tolerant 
microorganisms are favored. Gas diffusion is also a limiting 
factor for H2 and CH4 oxidation rates measured in soil. Our 
inability to maintain the exact same water content in soils (i.e. 
lower water content in farmland soil under eH2 treatment when 
compared to aH2 treatment) justified the addition of this 
variable in the model (see Table 1). 

6 Covariation between soil 
physicochemical properties 
and soil water content. 

Soil water holding capacity measured in the soil samples 
representative of the three land-use types defined the amount of 
water to be added to soil microcosms.  

7 Covariation between 
microbial diversity and H2 
treatment 

Different biodiversity levels were expected to occur at different 
H2 exposure levels.  

 

Composites variables were estimated using multiple linear regression. The weighting for the 

relationship between measured and composite variables for the four modeled microbial processes (high 
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affinity H2 oxidation rate, low affinity H2 oxidation rate, CH4 oxidation rate and Ecoplates profile) are 

shown in the table below. Values reported in the table were used to calculate composite variables 

estimates that were then included in SEM calculation: 

Measured variables Composite variables 

 SOIL BIO 

High affinity H2 oxidation 

C -216  

N -165  

pH 3797  

C/N 1171  

Bacteria species richness (Shannon)  -511 

Fungi species richness (Shannon)  -694 

Low affinity H2 oxidation 

C 129  

N -855  

pH -423  

C/N -154  

Bacteria species richness (Shannon)  210 

Fungi species richness (Shannon)  -40 

CH4 oxidation 

C -10  

N 81  

pH 406  

C/N 78  

Bacteria species richness (Shannon)  -38 

Fungi species richness (Shannon)  53 

Ecoplate 
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C 0.237  

N -2.295  

pH -0.381  

C/N -0.215  

Bacteria species richness (Shannon)  -0.013 

Fungi species richness (Shannon)  0.059 

 

Due to the lack of two bacterial and four fungal ribotying profiles, missing Shannon indices were 

derived from RNA-based ribotyping profiles performed on soil samples collected from the microcosms 

exposed to eH2 and aH2 treatments (RNA-based analyses were obtained from the same incubations 

reported in the current study, but are unpublished as of yet). Regression analyses between Shannon 

indices obtained from DNA-based ribotyping profile (independent variable) and Shannon indices 

obtained from RNA-based ribotyping profile (dependent variable) are shown in the following figures: 
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Derived equations were used to estimate the five Shannon index values presented in the following table 

(ultimately, Shannon index value for microcosm LP(c) (fungi) is still missing since sequencing of both 

DNA and RNA libraries were unsuccessful): 

Sample Shannon index obtained from 
RNA-based ribotyping profile 

Estimated Shannon index 
used in SEM 

HP(b) - Bacteria 6.34 6.47 

LP(c) - Bacteria 5.71 5.64 

HA(b) - Fungi 4.75 4.73 

LP(a) - Fungi 4.64 4.57 

LP(b) - Fungi 4.54 4.42 

 

  

y	=	0.6738x	+	1.5608
R²	=	0.87206

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

3 3.5 4 4.5 5

Sh
an
no
n	
(R
N
A_

Fu
ng
i)

Shannon	 (DNA_Fungi)



	 8	

Method S2. Dynamic microcosm chamber unit  
 

The term “dynamic” holds for the continuous air stream circulating in and out of the microcosms, 

resulting in a user-specified hydraulic residence time and chemical composition of the headspace. The 

system is comprised of three units: a gas blending station, a gas distribution network and an air 

sampling station. The gas blending station has been designed to control the dilution of a commercial 

gas mixture, comprising of 1% H2 in synthetic air (GST-Welco, Pennsylvania, U.S.A), with gas 

supplied from a Balston zero air generator (Parker Hannifin Corp., QC, Canada). It comprises of two 

Brooksâ Delta II Smart mass flow controllers (0-700 Sccm, accuracy of ±1.0%). The air sampling 

networks consists of seven Brooksâ Delta II Smart mass flow controllers (0-100 Sccm, accuracy of 

±1.0%) delivering gas mixture to independent soil microcosms. Microcosms are also vented to the 

atmosphere through the air sampling station. This station has an option allowing to measure, in real-

time, H2 and CO levels when the Trace Analytical ta3000R (Reduction Gas Detector) is connected in 

series (that option was not used in the present study). Operation of the Dynamic microcosm chamber 

unit is under the control of a programmable logic controller (Allen-Bradleyâ PanelView Plus 600) 

comprising of a digital display of system status and alarms for defaults in flowrate, gas supply and 

power. 
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Method S3. Metagenomic analysis pipeline 
 

Metagenomic libraries were prepared and sequenced on an Illumina HiSeq2000 system on a 2x150 

configuration. Sequencing raw data (256 GB for metagenome) were processed through our 

metagenomics bioinformatics pipeline. Read count summaries are provided for metagenome 

sequencing libraries (Data set 5A). Sequencing adapters were removed from each read (Trimmomatic 

v0.32) [Bolger et al., 2014] to generate quality controlled (QC) reads. QC-passed reads from each 

sample were assembled into a large metagenome assembly using Ray software v2.3.1 [Boisvert et al., 

2012] with a kmer size of 31 (Data set 5B). Gene prediction of obtained contigs was performed by 

calling genes on each assembled contig using MetageneMark v1.0 (Tang et al., 2013). Genes were 

annotated following the JGI’s guidelines (Huntemann et al., 2016): 1) RPSBLAST (v2.2.29+) 

(Camacho et al., 2009) against COG database (e.g. CDD v3.11); 2) RPSBLAST (v2.2.29+) against 

KOG database (e.g. CDD v3.11). The best hit having at an e-value ≥ 1e-02 was kept for each query; 3) 

HMMSCAN (v3.1b1) [Eddy, 2011] against PFAM-A (v27.0) database (Finn et al., 2013) best hit 

having at least an e-value ≥ 1e-02 was kept for each query; 4) TIGRFAM database (v15.0) best hit 

having at least an e-value ≥ 1e-02 was kept for each queries; 5) BLASTP (v2.2.29+) against KEGG 

database v71.0, and 6) BLASTN (v2.2.29+) against NCBI`s nucleotide (nt) database (version of May 

16th 2013). Contigs (and not genes) sequences were blasted against NCBI’s nt database as well for 

taxonomic assignment. For each of these databases comparisons, the best hit having at least an e-value 

≥ 1e-02 was kept for each query. QC-passed reads were mapped (BWA mem v0.7.10) (unpublished - 

http://bio-bwa.sourceforge.net) against contigs to assess quality of metagenome assembly and to obtain 

contigs abundance profiles. Alignment files in bam format were sorted by read coordinates using 

samtools v1.1 and only properly aligned read pairs were kept for downstream steps. Each bam file 

(containing properly aligned paired-reads only) was analyzed for coverage of called genes and contigs 

using bedtools (v2.17.0) [Quinlan & Hall, 2010] using a custom bed file representing gene coordinates 
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of each contig. Only paired-reads both overlapping their contigs or genes were considered for gene 

counts. Coverage profiles of each sample were merged together to generate an abundance matrix (rows 

= contig, columns = samples) for which a corresponding CPM (Counts Per Million) abundance matrix 

(edgeR v3.10.2) [Robinson et al., 2010] was generated as well.  

Taxonomy of each contig was assigned using the NCBI taxonomy database [Benson et al., 2009; 

Sayers et al., 2009] (ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz) (as downloaded on June 5th 

2015). Each GIs resulting from BLASTN against nt were used to retrieve full taxonomic lineages 

(when available) from the NCBI taxonomy database. Taxonomic lineages were integrated to the contig 

abundance of read counts matrix to generate an OTU table format file (with contigs replacing OTUs as 

rows). Taxonomic summaries were performed using a combination of in-house Perl and R scripts and 

Qiime v.1.9.0 [Caporaso et al., 2010]. Genome bins abundance tables along with their taxonomic 

lineages are included in Data set 5C. 

Binning was done using Metabat (v0.26.1) [Kang et al., 2015] using an abundance matrix generated 

using the jgi_summarize_bam_contig_depths software (Kang et al., 2015) with --minContigLength 

1000 --minContigDepth 2 and --minContigIdentity 95 parameters. Genome bins obtained from Metabat 

were further processed/decontaminated by splitting each bin into three sub-bins based on the assigned 

taxonomic lineage at the Order level, as each bin typically had a significant amount of contigs 

associated with the same Order taxon. For instance, in our dataset, the bin labeled “1” had 607 contigs 

assigned to the Rhizobiales Order level, 136 contigs to the Burkholderiales and 189 more contigs to an 

undefined taxonomy value. Consequently, 3 sub-bins were generated and labeled Bin-1 (Rhizobiales), 

Bin-1 (Burkholderiales) and Bin-1 (NULL) respectively. All genome bins were characterized using 

CheckM v1.0.4 (Parks et al., 2015) and detailed in Data set 5D. 
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Table S1. Absence of CH4 production in soil microcosms. The absence of methane production in soil microcosms was tested in poplar and 
farmland soils (soils where difference in CH4 oxidation rates were most prominent). For that purpose, microcosms were flushed for 15 
minutes with a synthetic gas mixture (Zero Air, Praxair distribution Inc. PA, USA) containing non detectable CH4 (detection limit “DL” of 
the Agilent GC system below 0.2 ppmv CH4). CH4 level was then monitored for more than 10 hours (compared to 8 hours for CH4 oxidation 
measurements reported in the article). As no CH4 was detected, we also monitored CO2 as an analytical control of the flame ionization 
detector (FID) of the gas chromatograph. Average values of three independent replicates are shown with standard deviations. 

 

 aH2 microcosms eH2 microcosms 

Concentrations 
(ppmv) 

CO2 CH4   CO2  CH4 

Time (min) Poplar Farmland Poplar Farmland Time (min) Poplar Farmlan
d 

Poplar Farmland 

0 18 (10) 18 (4) < DL < DL 0 4 (1) 4 (1) < DL < DL 

66 238 (38) 239 (74) < DL < DL 55 49 (4) 40 (2) < DL < DL 

132 464 (71) 421 (130) < DL < DL 110 96 (5) 75 (3) < DL < DL 

802 2416 (361) 1842 (510) < DL < DL 630 504 (28) 398 (21) < DL < DL 
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Table S2. List of genome bins for which the distribution was influenced by H2 exposure. Log(FC) 
= Log-fold-change, number of times this OTU is more/less abundant in H2 treatment. Log(CPM) = 
Log-fold-change in counts per million. LR = Likelihood ratio or how many times more likely the OTU 
is more/less abundant in a treatment than the other. P-value = significance level (only p-values < 0.05 
were kept). _____ = most abundant in 10,000 ppmv H2 treatment. _____ = most abundant in 0.5 ppmv 
H2 treatment. 

FARMLAND Log(FC) Log(CPM) LR P-value Response to H2 
Bin-30 (Burkholderiales) 0.72 12 5 0.03 0.71523641 
Bin-6 (NULL) 0.94 13 8 0.004 0.93936962 
Bin-3 (Xanthomonadales) 1.1 16 11 0.0007 1.06909082 
Bin-6 (Xanthomonadales) 1.2 16 13 0.0003 1.16462972 
Bin-2 (Burkholderiales) 2.0 12 32 1.84E-08 1.95819705 
Bin-2 (Xanthomonadales) 2.1 17 41 1.24E-10 2.13231989 

      LARCH Log(FC) Log(CPM) LR P-value Response to H2 
Bin-21 (NULL) -3.9 11 17 4.19E-05 -3.87548775 

      POPLAR Log(FC) Log(CPM) LR P-value Response to H2 
Bin-3 (Sphingomonadales) -1.7 12 4 0.048 -1.74271411 
Bin-2 (Xanthomonadales) -0.5 15 5 0.03 -0.52503425 
Bin-7 (Xanthomonadales) -0.7 16 10 0.002 -0.7406181 
Bin-6 (Burkholderiales) -1.4 13 22 2.10E-06 -1.44081785 
Bin-3 (NULL) -1.4 14 24 1.18E-06 -1.3595836 
Bin-6 (Xanthomonadales) -1.6 16 41 1.71E-10 -1.5638836 
Bin-3 (Xanthomonadales) -1.6 16 44 3.11E-11 .63680157 
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Table S3. Multiple linear regression equations defining the relative abundance of (A) genome bins outlined in the PCA and the 
corresponding (B) OTUs (rRNA marker gene amplicon sequencing) according to biotic and abiotic parameters. The interaction 
between the variables “H2 treatment” and “net CO2 production” was considered due to the ability of HOB to fix CO2, resulting in a 
significant decrease in net CO2 production rates in eH2 treatments (CO2 alone displayed non-significant explanatory power). 

A. 

Equations R2  
(p-value) 

Residual 
standard 
error (ε) 

Bin-1 (Rhizobiales) = -13´103 (±1.7´103) pH + 77´103 (±8.5´103) + ε 0.78 (0.0001) 1379 

Bin-2 (Xanthomonadales) = 2.7´104 (±0.65´104) pH – 2.1´10-2 (±5.9´10-3) CO2 x Treatment -1.3´105 (±3.2´104) + ε 0.78 (0.0001) 5091 

Bin-3 (Xanthomonadales) = -1.6´103 (±2.7´102) C/N – 1.1´10-2 (±1.1´10-3) CO2 x Treatment + 1.9´104 (±3.1´103) + ε 0.95 (0.0001) 977 

Bin-6 (Xanthomonadales) = 1.6´103 (±3.0´102) C/N – 9.7´10-3 (±1.3´10-3) CO2 x Treatment + 1.9´104 (±3.4´103) + ε 0.92 (0.0001) 1072 

 
B. 
 

Equations R2 (p-value) 
Residual 
standard 
error (ε) 

Bin-1 (OTU Bradyrhizobium) = -0.041 (±0.003) pH + 0.245 (0.016) + ε 0.93 (2.8 x 10-9) 2.5 x 10-3 

Bin-1 (OTU Rhodoplanes) = -0.033 (±0.003) pH + 0.190 (0.013) + ε 0.92 (4.6 x 10-9) 2.1 x 10-3 

Bin-2 (OTU Luteimonas) = 7.62´10-2 (±1.6´10-2) pH – 8.7´10-8 (±1.6´10-8) CO2 x Treatment – 3.9´10-1 (±7.8´10-2) + ε 0.85 (1.6 x 10-4) 1.2 x 10-2 

Bin-3 (OTU Lysobacter) = -4.0´10-3 (±1.2´10-3) C/N – 5.3´10-8 (±5.7´10-9) CO2 x Treatment + 2.1´10-2 (±1.3´10-2) + ε 0.98 (6.6 x 10-9) 4.1 x 10-3 

Bin-6 (OTU Xanthomonadaceae) = -5.3´10-3 (±1.5´10-3) C/N – 3.7´10-8 (±7.2´10-9) CO2 x Treatment + 5.0´10-2 (±1.7´10-2) + ε 0.89 (3.9 x 10-5) 5.3 x 10-3 
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Table S4. Genome bins of potential HOB containing hydrogenase gene based on search in metagenomic annotation databases (1 
gene) and [NiFe]-hydrogenase HMM (2 genes). The table shows the relative abundance of genome bins (mean and standard deviation) for 
triplicate microcosms exposed to aH2 and eH2 treatments. The asterisks (*) represent genome bins displaying a significant difference (a < 
0.05) between the two H2 treatments (Wilcoxon-Mann-Whitney test). 

Genome bins Soil microcosms 

Poplar monoculture Agricultural Larch monoculture 

eH2-P aH2-P eH2-A aH2-A eH2-L aH2-L 

Bin-1 (Rhizobiales)A 11371 (665) 11773 (871)  10824 (1061) 12593 (1032)  17021 (1920) 16856 (1901) * 

Bin-4 (NULL) 1102 (28) * 1273 (110) *  1205 (92) 1316 (102)  906 (35) 865 (27) 

Bin-25 (NULL) 3770 (75) * 3576 (129) *  3014 (31) * 3175 (40) * 3722 (68) * 4011 (105) * 

AA gene fragment encoding for the small subunit of a group 1 [NiFe]-hydrogenase was found in metagenomic annotation database. 
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Figure S1. Community-level carbon substrates utilization profiling. This heatmap reflects the 
utilization of 31 carbon sources divided into 6 subcategories. The upper part of the graph consists of an 
UPGMA agglomerative clustering of the profiles, showing a clear dichotomy between both H2 
treatments.  
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Figure S2. Overview of the taxonomic composition of bacterial and fungal communities in soils. 
(A) Relative abundance of bacteria and fungi at the phylum level. (B) Venn diagram showing the 
distribution of bacteria and fungi OTUs in the three soils. 
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Figure S3. Metagenomic analysis using MG-RAST pipeline. (A) UPGMA agglomerative clustering 
of soil microcosms according to a Euclidean distance matrix calculated with a Hellinger distance 
matrix of annotated gene abundance profiles. Gene annotation (COG database) was performed using 
unassembled sequenced reads with the pipeline MG-RAST. Land-use types are distinguished by three 
different symbols (square; farmland, circle; larch and triangle; poplar). Black symbols indicate soil 
microcosms exposed to eH2 treatment and white symbols indicate soil microcosms exposed to aH2 
treatment. The Barplots show distribution of sequences (CPM values) in COG gene categories for (B) 
farmland, (C) larch and (D) poplar soil exposed to eH2 and aH2. 

 

 

  



	 18	

Figure S4. Bubble-chart representation of OTUs associated with the 4 genome bins of interest. 
Correspondence between genome bins and OTUs was achieved through correlation network analysis. 
Dots size is proportional to the relative abundance of OTUs in the 16S rRNA gene amplicon 
sequencing. Genome bins are presented along with taxonomic affiliation retrieved from the 16S rRNA 
gene amplicon sequencing analysis. The relative abundance and the rank of the connectivity of each 
OTU are written in parentheses.  
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