Supporting Information

Refactoring the Embden-Meyerhof-Parnas pathway as a whole of portable GlucoBricks for implantation of glycolytic modules in Gram-negative bacteria

by

Alberto Sánchez-Pascuala, Víctor de Lorenzo, and Pablo I. Nikel

SUPPLEMENTARY METHODS

Construction of mutant bacterial strains. Bacterial strains used in this study are listed in Table S1. A $\Delta g / k$ derivative of *Pseudomonas putida* KT2440 was constructed by using the procedure described by Martínez-García and de Lorenzo¹, using the suicide pEMG vector (*Table S2*). Suitable oligonucleotides (PP 1011-TS1F and PP 1011-TS1R, and PP 1011-TS2F and PP 1011-TS2R, Table S3) were employed to amplify ca. 500-bp long flanking regions upstream and downstream of alk (PP 1011) by PCR using chromosomal DNA from strain KT2440 as the template. A 1-kbp amplification product (i.e., spanning the TS1-TS2 regions flanking glk) was obtained using the two 500-bp amplicons mentioned above as the template and the external oligonucleotides (i.e., PP_1011-TS1F and PP_1011-TS2R) by splicing-by-overlap extension (SOEing) PCR^{2,3}. The TS1-TS2 DNA fragment was digested with EcoRI and BamHI, cloned into the I-Scel-bearing pEMG vector digested with the same enzymes (giving rise to plasmid pEMG Δglk) and verified by enzyme restriction and Sanger DNA sequencing (Secugen SL, Madrid, Spain). The suicide pEMG Δglk plasmid was transferred to P. putida KT2440 by electroporation. Kanamycin (Km)-resistant colonies (i.e., chromosomal co-integration events) were checked by colony PCR¹. Successful co-integrates were transformed with plasmid pSW-I, which allows for the resolution of co-integration events by inducing the expression of the gene encoding the I-Scel homing meganuclease from Saccharomyces cerevisiae with sodium 3-methylbenzonate at 15 mM. The resultant Km-sensitive colonies were checked by PCR to select for the correct deletion events. Plasmid pSW-I was finally cured by successive passages on LB medium⁴ without antibiotics. The removal of the plasmid was tested by plating the cells onto LB plates containing 500 µg ml⁻¹ ampicillin.

Preparation of bacterial cell-free extracts. All the enzyme activity determinations were carried out in cell-free extracts obtained from bacterial cells harvested during the mid-exponential phase of growth [i.e., corresponding to an optical density measured at 600 nm (OD₆₀₀) of ca. 0.5] or, in some cases, after 24 h of culture. Cell-free extracts were prepared starting from 50 ml of culture broth and centrifuging it at 4,000 r.p.m. for 15 min at 4°C. Cell were washed twice with 25 ml of pre-cooled 67 mM potassium phosphate buffer (pH = 7.1) at 4°C. The washed pellets were suspended in 1 ml of the same buffer and centrifuging in 2-ml Eppendorf tubes at 8,000 r.p.m. for 10 min at 4°C. After carefully removing the supernatant, the cell wet weight was obtained for each pellet in order to calculate the volume of reagents needed for protein extraction using the Novagen BugBuster™ protocol (EMD Millipore Corp., Billerica, MA, USA). Pellets and cell-free extracts were kept on ice throughout the whole procedure. Bacterial lysis was achieved by using 5 ml of BugBuster[™] Protein Extraction Reagent per gram of cell paste. Afterwards, 1 µl of Lysonase™ Bioprocessing Reagent was added per 1 ml of BugBuster™ Protein Extraction Reagent used for re-suspension of the cells. Bacteria were lysed by shaking for 20 min at room temperature in a Rotamax 120 orbital shaker (Heidolph Instruments GmbH & Co. KG, Schwabach, Germany) at 150 r.p.m. The insoluble cell debris was removed by centrifugation at 13,000 r.p.m. for 20 min at 4°C and the supernatants (i.e., cell-free extracts) were stored at -20°C until use.

- *In vitro* enzymatic assays. The activity of three key glycolytic enzymes (Glk, Pfk, and GA3P dehydrogenase) was assessed *in vitro* at 30°C when using cell-free extracts from *P. putida* or at 37°C when using cell-free extracts from *P. aeruginosa* and *Escherichia coli*, the remaining activities were measured at 25°C as indicated by Sigma-Aldrich Co. (St. Louis, MO, USA) in the corresponding enzymatic assay protocols. All the enzymes were assessed under the optimal reported conditions for pH, substrate, and cofactor concentration⁵⁻⁸.
- *In vitro* assays were conducted in Nunc[™] MicroWell[™] 96-well microplates (Thermo Fisher Scientific Inc., Waltham, MA, USA) in a SpectraMax[™] M2e multi-mode microplate reader (Molecular Devices LLC, Sunnyvale, CA, USA). All the specific enzyme activities are reported as nmol substrate converted min⁻¹ mg of protein⁻¹.
- The protein concentration in cell-free extracts was obtained using the Bradford⁹ Protein Assay (Bio-Rad Laboratories Inc., Hercules, CA, USA). All the accessory enzymes (with the exceptions indicated below) were from *Saccharomyces cerevisiae* and they were purchased from Sigma-Aldrich Co. An extinction coefficient (ε_{NADP/H}) of 6.22 mM⁻¹ cm⁻¹, representing the difference between the extinction coefficients of NAD(P)H and NAD(P)⁺, was used throughout. The specific protocols used for the determinations are detailed below.
- **Glk.** *ATP–D-Hexose* 6-phosphotransferase or hexokinase (EC 2.7.1.1). The reaction mixture contained 67 μ l of 120 mM Tris·HCl buffer (pH = 8.2), 26 μ l of 500 mM glucose, 8 μ l of 250 mM MgCl₂, 53 μ l of 36 mM ATP, 10 μ l of 20 mM NADP⁺, 13 μ l of glucose-6-*P* dehydrogenase (15 units ml⁻¹), 18 μ l of water, and 5 μ l of cell-free extract (or an appropriate dilution in 67 mM potassium phosphate buffer, pH = 7.1). The increase in the absorbance at 340 nm (A_{340}) was measured during the assay.
- **Pgi.** *Phosphoglucose isomerase* (EC 5.3.1.9). The reaction mixture contained 33.3 μ l of 240 mM glycylglycine Buffer (pH = 7.1), 6.7 μ l of 100 mM D-fructose-6-*P*, 6.7 μ l of 20 mM NADP+, 6.7 μ l of 100 mM MgCl₂, 6.7 μ l of glucose-6-*P* dehydrogenase (50 units ml⁻¹), 133.2 μ l of water, and 6.7 μ l of cell-free extract (or an appropriate dilution in 67 mM potassium phosphate buffer, pH = 7.1). The increase in A₃₄₀ was measured during the assay.
- Pfk. 6-Phosphofructokinase (EC 2.7.1.11). The reaction mixture contained 20 μl of 1 M Tris HCl buffer (pH = 7.5), 2 μl of 100 mM fructose-6-P, 8 μl of 250 mM MgCl₂, 4 μl of 100 mM NH₄Cl, 4 μl of 10 mM NADH, 6 μl of 36 mM ATP, 4 μl of fructose-1,6-P₂ aldolase (50 units ml⁻¹), 1.5 μl of triosephosphate isomerase (500 units ml⁻¹), 1.5 μl of glycerol-3-P dehydrogenase from rabbit muscle (170 units ml⁻¹), 144 μl of water, and 5 μl of cell-free extract (or an appropriate dilution in 67 mM potassium phosphate buffer, pH = 7.1). The decrease in A₃₄₀ was measured during the assay.
- **Aldolase**. *Aldolase* (EC 4.1.2.13). The reaction mixture contained 17.3 µl of 1 M Tris·HCl buffer (pH = 7.4), 6.7 µl of 58 mM fructose-1,6-*P*₂, 1.9 µl of 14 mM NADH, 6.7 µl of α-glycerophosphate dehydrogenase/triosephosphate isomerase from rabbit muscle (50 units ml⁻¹ each), 165.4 µl of water, and 2 µl of cell-free extract (or an appropriate dilution in 67 mM potassium phosphate buffer, pH = 7.1). The decrease in A_{340} was measured during the assay.
- **Tpi.** *Triose phosphate isomerase* (EC 5.3.1.1). The reaction mixture contained 20 µl of 1 M triethanolamine buffer (pH = 7.9), 2 µl of 0.5 M EDTA, 4 µl of glycerol-3-*P* dehydrogenase from rabbit muscle (17 units ml⁻¹), 2 µl of 40 mM D,L-glyceraldehyde-3-*P*, 2 µl of 14 mM NADH, 168 µl of water, and 2 µl of cell-free extract (or an appropriate dilution in 67 mM potassium phosphate buffer, pH = 7.1). The decrease in A₃₄₀ was measured during the assay.

GA3P dehydrogenase. *Glyceraldehyde-3-P dehydrogenase* [EC 1.2.1.12 (NAD⁺ dependent)/EC 1.2.1.13 NADP⁺ dependent)]. The reaction mixture contained 20 μl of 1 M Tris·HCl buffer (pH = 7.5), 5 μl of 250 mM D,L-glyceraldehyde-3-*P*, 40 μl of 50 mM cysteine·HCl, 20 μl of 150 mM NaH₂AsO₄, 34 μl of 120 mM NaF, 20 μl of 35 mM NAD⁺ or NADP⁺, 56 μl of water, and 5 μl of cell-free extract (or an appropriate dilution in 67 mM potassium phosphate buffer, pH = 7.1). The increase in *A*₃₄₀ was measured during the assay.

Strain	Relevant characteristics ^a	Reference or source
Escherichia coli		
CC118	Cloning host; Δ (ara-leu) araD Δ lacX174 galE galK phoA thiE1 rpsE rpoB(Rif ^R) argE(Am) recA1	Manoil and Beckwith ¹⁰
DH5 $\alpha \lambda pir$	Cloning host; F ⁻ λ ⁻ endA1 glnX44(AS) thiE1 recA1 relA1 spoT1 gyrA96(Nal ^R) rfbC1 deoR nupG Φ 80(lacZ Δ M15) Δ (argF-lac)U169 hsdR17(r _K ⁻ m _K ⁺), λ pir lysogen	Hanahan and Meselson ¹¹
BW25113 ^b	Wild-type strain; $F^- \lambda^- \Delta(araD-araB)567 \Delta lacZ4787(::rrnB-3)$ rph-1 $\Delta(rhaD-rhaB)568 hsdR514$	Datsenko and Wanner ¹²
JW3887-1 ^b	Same as BW25113, but $\Delta pfkA775$::aphA; Km ^R	Baba <i>et al</i> . ¹³
JW5280-1 ^b	Same as BW25113, but <i>∆pfkB</i> 722:: <i>aphA</i> ; Km ^R	Baba <i>et al</i> . ¹³
BPfkAB	Same as BW25113, but <i>∆pfkA</i> 775:: <i>FRT ∆pfkB</i> 722:: <i>aphA</i> ; Km ^R	This study
JW2385-1 ^b	Same as BW25113, but Δglk -726:: <i>aphA</i> ; Km ^R	Baba <i>et al</i> . ¹³
JW2409-1 ^b	Same as BW25113, but <i>∆ptsI745::aphA</i> ; Km ^R	Baba et al. ¹³
BPG	Same as BW25113, but <i>∆glk-</i> 726:: <i>FRT ∆ptsI745::aphA</i> ; Km ^R	Nikel and de Lorenzo ²
JW3890-2 ^b	Same as BW25113, but <i>∆tpiA778::aphA</i> ; Km ^R	Baba <i>et al</i> . ¹³
W3110	Wild-type strain; F- λ - <i>IN</i> (<i>rrnD-rrnE</i>)1 <i>rph</i> -1	Jensen ¹⁴ , Bachmann ¹⁵
DS121 ^b	Same as W3110, but <i>∆epd-11∷erm</i> ; Ery ^R	Seta <i>et al</i> . ¹⁶
DS122 ^b	Same as W3110, but <i>∆gapA12::cat</i> ; Cm ^R	Seta <i>et al</i> . ¹⁶
DS123 ^b	Same as W3110, but $\Delta gapA12::cat \Delta epd-11::erm$; Cm ^R Ery ^R	Seta <i>et al</i> . ¹⁶
DS123PK	Same as W3110, but ∆ <i>gapA12::cat ∆epd-11::erm</i> ∆ <i>ptsI745::aphA</i> ; Cm ^R Ery ^R Km ^R	This study
DS123P	Same as W3110, but $\Delta gapA12::cat \Delta epd-11::erm \Delta ptsI745::FRT; Cm^R Ery^R$	This study
DF575 ^b	$F^- \lambda^-$ glnX44(AS) relA1 eno-2 rpsL104 malA malT1(λ^R) xyl-7 mtlA2 thiE1	Thomson <i>et al</i> . ¹⁷
DF576 ^b	$F^- \lambda^-$ glnX44(AS) relA1 pgk-2 rpsL104 malA malT1(λ^R) xyl-7 mtlA2 thiE1	Thomson <i>et al</i> . ¹⁷

Table S1. Bacterial strains used in this study.

 Table S1 (cont.).
 Bacterial strains used in this study.

Strain	Relevant characteristics ^a	Reference or source		
Pseudomonas putida				
KT2440	Wild-type strain, derived from <i>P</i> . <i>putida</i> mt-2 ¹⁸ cured of the TOL plasmid pWW0	Bagdasarian <i>et al</i> . ¹⁹		
KT2440 <i>∆glk</i>	Same as KT2440, but with an in-frame deletion of the <i>glk</i> gene (<i>PP_1011</i>)	This study		
Pseudomonas aeruginosa				
PAO1	Wild-type strain (PAO1001), original stock conserved by P. V. Phibbs	Stover et al.20		

^a Antibiotic markers: *Ap*, ampicillin; *Cm*, chloramphenicol; *Ery*, erythromycin; *Gm*, gentamicin; *Km*, kanamycin; *Nal*, nalidixic acid; *Rif*, rifampicin; *Sm*, streptomycin; *Sp*, spectinomycin; and *Tc*, tetracycline.

^b Strain obtained from the *E. coli* Genetic Stock Center (Yale University, New Haven, CT, USA).

 Table S2. Plasmids used in this study.

Plasmids	Relevant characteristics ^a	Reference or source
pKD46	Ap ^R ; helper plasmid expressing the λ -Red recombination functions	Datsenko and Wanner ¹²
pCP20	Ap ^R Cm ^R ; helper plasmid used for excision of <i>FRT-aphA-FRT</i> (Km ^R), <i>Saccharomyces cerevisiae FLP</i> λ cl857 λ P _R repA(Ts)	Cherepanov and Wachernagel ²¹
pEMG	Km ^R ; <i>oriV</i> (R6K), vector used for deletions, $lacZ\alpha$ with two flanking I-Scel target sites	Martínez-García and de Lorenzo ¹
pEMG∆ <i>glk</i>	Km ^R ; pEMG derivative bearing a 1.0-kb TS1-TS2 <i>Eco</i> RI- <i>Bam</i> HI insert for deletion of the <i>glk</i> gene of <i>P. putida</i> KT2440	This study
pSW-I ^b	Ap ^R ; <i>oriV</i> (RK2), <i>xyIS</i> , $Pm \rightarrow I$ -Scel, transcriptional fusion of the gene encoding I-Scel to the Pm promoter	Wong and Mekalanos ²²
pAeT41	Ap ^R ; derivative of cloning vector pUC18 (Thermo Fisher Scientific Inc.; Pittsburgh, PA, USA) bearing a <i>ca</i> . 5-kb <i>Smal/Eco</i> RI DNA fragment spanning the <i>phaC1AB1</i> gene cluster from <i>Cupriavidus necator</i>	Peoples and Sinskey ²³
pSEVA224	Km ^R ; standard SEVA expression vector, <i>oriV</i> (RK2) <i>lacI</i> ^Q , <i>P</i> _{trc}	Silva-Rocha et al.24
pS224·GPG	Km ^R ; pSEVA224 derivative bearing <i>glk</i> and <i>pfkA</i> from Module I, and <i>gapA</i> from Module II	This study
pS224·GBI	Km ^R ; pSEVA224 derivative bearing Module I as an <i>Avr</i> II- <i>Bam</i> HI insert	This study
pS224·GBII	Km ^R ; pSEVA224 derivative bearing Module II as a <i>Bam</i> HI- <i>Hin</i> dIII insert	This study
pSEVA234	Km ^R ; standard SEVA expression vector, <i>oriV</i> (pBBR1) <i>lacI</i> ^Q , <i>P</i> _{trc}	Silva-Rocha et al.24
pS234∙GBI	Km ^R ; pSEVA234 derivative bearing Module I as an <i>Avr</i> II- <i>Bam</i> HI insert	This study
pSEVA434	Sm ^R /Sp ^R ; standard SEVA expression vector, <i>oriV</i> (pBBR1) <i>lacI</i> ^Q , <i>P</i> _{trc}	Silva-Rocha et al.24
pS434·GBI	Sm ^R /Sp ^R ; pSEVA434 derivative bearing Module I as an <i>Avr</i> II- <i>Bam</i> HI insert	This study
pSEVA424	Sm ^R /Sp ^R ; standard SEVA expression vector, <i>oriV</i> (RK2) <i>lacI</i> ^Q , <i>P</i> _{trc}	This study
pS424 <i>∙gapA</i>	Sm ^R /Sp ^R ; pSEVA424 bearing <i>gapA</i> from Module II	This study
pS424∙GBI	Sm ^R /Sp ^R ; pSEVA424 derivative bearing Module I as an <i>Avr</i> II- <i>Bam</i> HI insert	This study
pSEVA438	Sm ^R /Sp ^R ; standard SEVA expression vector, <i>oriV</i> (pBBR1) <i>xy</i> /S, <i>Pm</i>	This study
pS438∙GBI	Sm ^R /Sp ^R ; pSEVA438 derivative bearing Module I as an <i>Avr</i> II- <i>Bam</i> HI insert	This study

^a Antibiotic markers: *Ap*, ampicillin; *Cm*, chloramphenicol; *Km*, kanamycin; *Sm*, streptomycin; and *Sp*, spectinomycin. Ts, temperature-sensitive origin of replication.
 ^b This plasmid is the same as pSW(I-SceI)²², renamed here as pSW-I for simplicity.

Name	Sequence $(5' \rightarrow 3')^a$	Tm (°C)	Use
PP_1011-TS1F	G GA ATT C GA GGC CCC GGC GCG GGT GTT CCA GGA CCA G	89.2	Construction of <i>P. putida</i> ∆glk
<i>PP_1011</i> -TS1R	CAT CGG GGC CGC AAA GCG CCC CCC TCA GTG GTG CTT CAT TTG AGG TGC TCC AGG GCC GAG	91.5	
<i>PP_1011-</i> TS2F	CAC TGA GGG GGG CGC TTT GCG GCC CCG ATG	86.5	
<i>PP_1011-</i> TS2R	CG G GAT CC C GCC AGT CGT CGA AGG CCA GCA CGG CGT TG	91.2	
pfkA·fbaA-Check-F	GAA AGG TAA AAA ACA CGC GAT C	58.7	Screening of recombinants carrying Module I ^b
<i>pfkA·fbaA</i> -Check-R	ACG CTG CGA TGG TGA AAC	59.2	
gpmA · eno-Check-F	ATT CTG CCG CGT ATG AAG AG	58.9	Screening of recombinants
<i>gpmA∙eno</i> -Check-R	CAG AGC TTC AGC GTT GGA AC	59.6	carrying Module II ^c
phaC1-Check-F	GCC ACT GGA CTA ACG ATG CGC TG	68.7	Screening of recombinants carrying the
phaA-Check-F	TCA CCG TGC CGG CCT TGT C	68.6	phaC1AB1 gene cluster ^d

 Table S3. Oligonucleotides used in this study.

^a Bold letters indicate recognition site for the restriction enzymes and the complementary sequences used in splicing-by-overlap extension (*SOEing*^{2,3}) PCR amplifications are shown in italics.

^b A PCR amplification using these oligonucleotides yields a 1,015-bp amplicon in the junction of the *pfkA* and *fbaA* genes.

^c A PCR amplification using these oligonucleotides yields a 938-bp amplicon in the junction of the *gpmA* and *eno* genes.

^d A PCR amplification using these oligonucleotides yields a 1,017-bp amplicon in the junction of the *phaC1* and *phaA* genes.

REFERENCES

- (1) Martínez-García, E., and de Lorenzo, V. (2011) Engineering multiple genomic deletions in Gramnegative bacteria: analysis of the multi-resistant antibiotic profile of *Pseudomonas putida* KT2440, *Environ. Microbiol.* 13, 2702-2716.
- (2) Nikel, P. I., and de Lorenzo, V. (2013) Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors, *J. Biotechnol.* 163, 143-154.
- (3) Horton, R. M. (1995) PCR-mediated recombination and mutagenesis: *SOEing* together tailormade genes, *Mol. Biotechnol.* 3, 93-99.
- (4) Green, M. R., and Sambrook, J. (2012) *Molecular cloning: a laboratory manual*, 4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- (5) Nikel, P. I., Chavarría, M., Fuhrer, T., Sauer, U., and de Lorenzo, V. (2015) *Pseudomonas putida* KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways, *J. Biol. Chem.* 290, 25920-25932.
- (6) Nikel, P. I., Kim, J., and de Lorenzo, V. (2014) Metabolic and regulatory rearrangements underlying glycerol metabolism in *Pseudomonas putida* KT2440, *Environ. Microbiol.* 16, 239-254.
- (7) Chavarría, M., Nikel, P. I., Pérez-Pantoja, D., and de Lorenzo, V. (2013) The Entner-Doudoroff pathway empowers *Pseudomonas putida* KT2440 with a high tolerance to oxidative stress, *Environ. Microbiol.* 15, 1772-1785.
- (8) Nikel, P. I., and Chavarría, M. (2016) Quantitative physiology approaches to understand and optimize reducing power availability in environmental bacteria, In *Hydrocarbon and Lipid Microbiology Protocols–Synthetic and Systems Biology - Tools* (McGenity, T. J., Timmis, K. N., and Nogales-Fernández, B., Eds.), pp 39-70, Humana Press, Heidelberg, Germany.
- (9) Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, *Anal. Biochem.* 72, 248-254.
- (10) Manoil, C., and Beckwith, J. (1985) TnphoA: a transposon probe for protein export signals, *Proc. Natl. Acad. Sci. USA* 82, 8129-8133.
- (11) Hanahan, D., and Meselson, M. (1983) Plasmid screening at high colony density, *Methods Enzymol.* 100, 333-342.
- (12) Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products, *Proc. Natl. Acad. Sci. USA* 97, 6640-6645.
- (13) Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., and Mori, H. (2006) Construction of *Escherichia coli* K-12 in-frame, singlegene knockout mutants: the Keio collection, *Mol. Syst. Biol.* 2, 2006.0008.
- (14) Jensen, K. F. (1993) The *Escherichia coli* K-12 "wild types" W3110 and MG1655 have an *rph* frameshift mutation that leads to pyrimidine starvation due to low *pyrE* expression levels, *J. Bacteriol.* 175, 3401-3407.
- (15) Bachmann, B. J. (1972) Pedigrees of some mutant strains of *Escherichia coli* K-12, *Bacteriol. Rev.* 36, 525-557.
- (16) Seta, F. D., Boschi-Muller, S., Vignais, M. L., and Branlant, G. (1997) Characterization of *Escherichia coli* strains with *gapA* and *gapB* genes deleted, *J. Bacteriol.* 179, 5218-5221.
- (17) Thomson, J., Gerstenberger, P. D., Goldberg, D. E., Gociar, E., Orozco de Silva, A., and Fraenkel, D. G. (1979) ColE1 hybrid plasmids for *Escherichia coli* genes of glycolysis and the hexose monophosphate shunt, *J. Bacteriol.* 137, 502-506.
- (18) Worsey, M. J., and Williams, P. A. (1975) Metabolism of toluene and xylenes by *Pseudomonas putida* (*arvilla*) mt-2: evidence for a new function of the TOL plasmid, *J. Bacteriol.* 124, 7-13.

- (19) Bagdasarian, M., Lurz, R., Rückert, B., Franklin, F. C. H., Bagdasarian, M. M., Frey, J., and Timmis, K. N. (1981) Specific purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in *Pseudomonas*, *Gene* 16, 237-247.
- (20) Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K. S., Wu, Z., Paulsen, I. T., Reizer, J., Saier, M. H., Hancock, R. E. W., Lory, S., and Olson, M. V. (2000) Complete genome sequence of *Pseudomonas aeruginosa* PAO1, an opportunistic pathogen, *Nature 406*, 959-964.
- (21) Cherepanov, P. P., and Wackernagel, W. (1995) Gene disruption in *Escherichia coli*: Tc^R and Km^R cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant, *Gene 158*, 9-14.
- (22) Wong, S. M., and Mekalanos, J. J. (2000) Genetic footprinting with *mariner*-based transposition in *Pseudomonas aeruginosa*, *Proc. Natl. Acad. Sci. USA* 97, 10191-10196.
- (23) Peoples, O. P., and Sinskey, A. J. (1989) Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC), J. Biol.Chem. 264, 15298-15303.
- (24) Silva-Rocha, R., Martínez-García, E., Calles, B., Chavarría, M., Arce-Rodríguez, A., de las Heras, A., Páez-Espino, A. D., Durante-Rodríguez, G., Kim, J., Nikel, P. I., Platero, R., and de Lorenzo, V. (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes, *Nucleic Acids Res.* 41, D666-D675.