
SUPPLEMENTARY INFORMATION

Supplementary Note 1 - Datasets

The present framework and data acquisition have gone through an extensive process of

revision and approval that took more than one year and have IRB approval Protocol No.

2016-1418 at City University of New York.

In the framework of the study, the private and/or sensitive information of the telecommu-

nications company clients was protected. In particular, the Bank didn’t gain access to any

individual information about the telecommunications company users. Similarly, the private

information of the Bank’s clients was protected in the framework of the study. In particular,

the telecommunications company didn’t have access to the individual information of the

Bank’s clients. The variables shared were revised to guarantee that the privacy of clients

was protected.

All of our datasets are encrypted and securely stored. The mobile dataset consists of

records of phone calls and SMS (short message service) metadata which was collected from

clients of a major operator of a Latin American country. The dataset is anonymized. All the

data are encrypted and stored in a server secured by enterprise-grade firewall. The records

cover a period of 122 consecutive days. Each phone number was encrypted by a high level of

hashing in order to eliminate all possible access to personal information. For our purposes,

each CDR (Call Detail Record) is represented as a tuple 〈x, y, t, dur, d, l〉, where x and

y are the encrypted phone numbers of the caller and the callee, t is the date and time of

the call, dur is the duration of the call, d is the direction of the call (incoming or outgoing,

with respect to the mobile operator client), and l is the location of the tower that routed

the communication. Similarly, each SMS metadata record is represented as a tuple 〈x, y, t,

d, l〉. We constructed a social network G = (N,E) based on the phone call and SMS traffic.

Both reciprocal and non-reciprocal links are preserved for further processing.

In inferring the real social network from the mobile network, we take the assumption that

the communication demands are rigid against the cost, which is usually affordable to most

families (∼USD $17 monthly cell phone service fee vs. ∼USD $600 monthly income in the

year data was collected, respectively). Thus, the direct impact of an individual’s financial

status on the communication structure evidenced in the mobile phone network might be
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limited. However, the financial cost of using phone services makes it possible that there is

a systematic bias in how much wealthy individuals use the phone services relative to people

that have less money to spend on phone calls. At this point, with the present data, we

cannot rule out this possibility.

The financial dataset from a major bank in the same country was collected during the

same time period as the mobile dataset. These data record financial details of 1.23 × 106

clients assigned unique anonymized identifiers over the same three-month period as the

mobile network. The dataset consists of records of the bank clients’ age, gender, credit

score, total transaction amount during each billing period, credit limit of each credit card,

balance of cards (including debit and credit), zip code of billing address, and encrypted

registered phone number. A subset of 5.02 × 105 clients have an encrypted mobile phone

number, thus enabling them to be matched with the mobile communication dataset. The

phone numbers are encrypted in the same way as in the mobile dataset, which guarantees

that the two datasets are matched. Excluding the information on credit lines, all other

personal information is erased. We sum up the credit limits of all the credit cards of each

account owner to represent the total credit limit of each individual.

In the absence of direct access to an individual’s income and total assets, evaluating an

individual’s financial status remains an open question. In this dataset, we can access the

following factors:

Transaction amount, which also directly reflects the individuals’ consumption patterns.

However, since it is common that one holds multiple accounts in different banks, and some

of these may not be used at all, records in only one bank might not correctly reflect the

real spending ability of an individual. Similar reasoning can be applied to total credit card

balance per month, which could also lose its ability to measure one’s financial status.

Credit scores assigned to individuals by credit scoring agencies are also good indicators of

financial status. However, the values of credit scores are quite limited, ranging from 300 to

850. This limited range makes the credit score a low-resolution indicator of wealth that does

not allow us to correctly classify a large number of people into well-defined financial classes.

On the other hand, the credit limit ranges over three orders of magnitude, allowing us to

correctly classify the entire population. Considering the weaknesses of the other features,

total credit limit is the most convenient measure of personal financial status in the present

dataset.
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Instead of transaction amounts and credit scores, we choose the total credit limit which is

assigned by the bank after comprehensive evaluation of an individual’s financial status, as a

proxy for financial status. Since detailed information on how the credit limit is assigned is not

provided, there are several possible factors that could cause bias in inferring an individual’s

real economic status. These include the delay of credit limit in reflecting a change in an

individual’s financial status, possible correlation with the age of the account, and so on. In

fact, the credit limit might be capturing the amount of information the bank has about the

customer, instead of his/her actual income.

Supplementary Note 2 - Removing non-human-operated lines

Inferring social network structure through mobile phone data requires the removal of lines

operated by non-humans. Due to privacy restrictions, we could not filter business landlines

and spawn spreaders at the outset. Several ways of filtering the landlines were applied in

previous works, including setting a cut-off threshold degree [1] or only considering reciprocal

phone calls [2]. However, these methods usually also cut off some important human com-

munication behavior in that particular window of observation. All communication events

should be considered in evaluating the social network. Therefore, the key problem is to find

a method to distinguish human- and non-human-operated lines while retaining maximal

information about individuals’ communication patterns.

Although we do not have the human/non-human label for the totality of the phone lines,

which could separate at the outset the non-human-operated lines, we are in possession of the

set of phone numbers registered with the bank dataset. These human-operated lines provide

the possibility of supervising a machine learning process to learn the human behavior that

separates them from robots and non-human-operated lines. We set up a hypothesis test by

modeling the human-operated lines based on several variables. We first cluster the human-

operated lines in a hyperspace. A new unlabeled node will be assigned a p-value according

to its distance to the cluster. By carefully choosing a threshold of the p-values, we can label

the node according to whether we accept or reject the hypothesis that the line is operated

for personal use.

A training set consisting of the phone lines in the bank database (1.23×106 nodes), which

is around 1% of all of the data in the entire network (1.10 × 108 nodes), was set up. We
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define a call or message from phone number i to j as a ‘communication event,’ and denote

the total number of communication events on the link as Wi→j. The key assumptions of the

model are the following:

1. Communication between lines of personal use is usually (but not always) reciprocal.

This means that the fraction of paired communication events on human-operated lines is

generally higher than that of unpaired ones. Namely, it suggests that although communica-

tion load difference Di on every line:

Di =

∣∣∣∣∣∑
j∈∂i

Wi→j −
∑
j∈∂i

Wj→i

∣∣∣∣∣ (1)

should increase with degree k, it should be bound by an upper limit in the case of human-

operated lines. Numbers operated for non-personal use like business hubs and spawn spread-

ers may have very large Di because they are usually operated only for sending or receiving

phone calls independently, but not for both at the same time.

2. Other types of business hubs may have large numbers of paired communications despite

their limited Di. These business hubs include the phone numbers for company landlines,

roadside assistance, or other services requiring instant follow-up by the recipient of the phone

call. To filter out these hubs we assume that the paired communication:

Ri =
∑
j∈∂i

min(Wi→j,Wj→i) (2)

also increases with k, but is limited for lines for personal use. The decay of the tail is

supposed to follow a power-law due to the preferential attachment rule [2].

The last assumption is: 3. Most phone numbers in the network are for personal use,

which results in the number of non-human-operated lines being small.

After we introduce these basic assumptions, empirical analysis can be applied to build a

model describing human-operated line behavior. The model simplifies to a parametric prob-

ability distribution depending on two random variables Di and Ri, and a variable maximum

degree k which controls the parameters. Under the preferential attachment rule of assump-

tion 2, it is reasonable to assume the distributions of both Di and Ri for a given k deviate

from a maximum entropy distribution and show a power-law tail. A good approximation is

the log-logistic distribution:

P (Di|k) ∼ LL(di, αD(k), βD(k)), (3)
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and

P (Ri|k) ∼ LL(ri, αR(k), βR(k)), (4)

where

LL(x, α(k), β(k)) =
(β/α)(x/α)β−1

[1 + (x/α)β]2
. (5)

This also suggests the logarithm of both metrics follows a normal-like but exponential

tailed logistic distribution:

P (logDi|k) ∼ L(di, µD(k), sD(k)), (6)

and

P (logRi|k) ∼ L(ri, µR(k), sR(k)), (7)

where

L(x, µ(k), s(k)) =
1

4s(k)
sech2

(
x− µ(k)

2s(k)

)
, (8)

with µ(k) = log(α(k)), and s(k) = 1
β(k)

. Based on the knowledge we have, this distribution

is the best choice even though we cannot precisely provide an exact fitting. However, the

fitting results strongly support the approximation geometrically (Supplementary Figure 1).

The model involves four parameter sequences: µ̂D(k), ŝD(k) and µ̂R(k), ŝR(k). To determine

the function of dependency, we pick the interval k = 40 to 160. We consider this a normal

range of degrees wherein the nodes are almost all human-operated to fit the trend of µ and

s. Adequate numbers of observers in each degree division guarantee the reliability of the

results. The estimated µ̂D(k), ŝD(k) and µ̂R(k), ŝR(k) can be simply described by linear

models within this range (Supplementary Figure 2, R2 > 0.98). The relations are then used

to predict parameters under other degree ranges.

After validating the assumptions, we are able to implement the learning process by per-

forming a hypothesis test:

1. Fit the model of training data and get the sequence of estimated µ̂D(k), ŝD(k), µ̂R(k),

and ŝR(k).

2. For each node i with given difference di, number of communication pairs ri and degree

ki, calculate the p-value of pD(i) = P (D < di|ki), and pR(i) = P (R < ri|ki).

3. Set a threshold p using the following test to classify the nodes:

If:

p < pD(i) < 1− p ∧ p < pR(i) < 1− p (9)
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then i is a human-operated line. Otherwise a p-value outside the range defined above will

be rejected by the null hypothesis: H0 → i is a human-operated line. It will be labeled as

a non-human-operated business hub due to its extraordinarily unbalanced communication

pattern or large volume of communication events.

Last but not least, the threshold p should be optimized. Suppose the network follows the

exact distribution given by the model above. The fraction of outliers (non-human-operated

lines) ε is exactly 2p. The difference ε− 2p can be approximately regarded as the number of

non-human-operated lines or ‘outliers’. Supplementary Figure 3 is the plot of p over ε− 2p.

A maximum is reached when p ∼ 1.6×10−5. At that point, the filter is the most sensitive to

detecting outliers since it covers the boundary of human- and non-human-operated nodes.

The result of data filtering is shown in Supplementary Figure 4. The final network has

1.07 × 108 nodes (97.27% of the total data) and 2.46 × 108 links. There are 4.51 × 107

reciprocal social ties. The size of the giant connected component is 99.2% and the average

degree is 4.7. The maximum degree k is 1056 and the maximum total communication load

of a single node is ∼ 10K including messages and calls, which is reasonable for a person who

is active in business contacts during a three-month period.

Supplementary Note 3 - Entropy Analysis

In order to explore the structural differences between people with different levels of credit

limits, we performed an entropy analysis. First, we choose people within the top 5% and

bottom 5 to 10% credit limit percentiles, representative of the wealthy and poor populations

respectively. Then, we randomly divided both groups into 20 small subgroups where each

subgroup contained N(0) ∼ 2700 bank clients. Next, we expanded each subgroup’s contacts

by a distance ` to get a subnetwork and clustered the nodes in the subnetwork through

modularity analysis (Supplementary Note 6) into different communities, finally counting

the number of nodes inside each community (ni). The entropy of this subnetwork is defined

as:

S = −
∑
i

pi log pi, (10)

where pi = ni∑
i ni

is the fractional size of community i. Also, we introduced two indicators:

(1) Rn(`) = N(`)/N(0), which is the ratio between the size of the augmented network N(`)
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and the size of the initial subgroup N(0), and (2) Rc(`) = C(`)/C(0), where C(`) is the

number of communities in the augmented network and C(0) is the number of communities

in the initial subgroup. Supplementary Table 1 shows the results of entropy S, Rn(`) and

Rc(`) across an average of 20 subgroups, with uncertainties.

The entropy in subnetworks generated from the poor population is higher than in sub-

networks generated from the wealthy population, while the numbers of both the total com-

munities and nodes are smaller. This suggests that the sizes of the communities in the

subnetwork of poor people are relatively more balanced than in the wealthy population.

Namely, wealthy people are more likely to form larger and more closely-connected commu-

nities which result in relatively low entropy. The result of Rn and Rc shows the significant

difference between the size and diversity of the subnetworks of the wealthy and poor popu-

lations. By expanding their contacts, people with higher credit limits ‘collect’ more people

and more communities. Such differences exist even when we increase the value of ` to 4.

The result of the entropy analysis implies that the network structure of these two groups

may be significantly different. Wealthy people have higher diversity in mobile contacts and

are centrally located, surrounded by other highly-connected people (network hubs).

Entropy analysis results also provide evidence of homophily, which implies that there

exists a higher probability that two wealthy individuals are connected than that a wealthy

individual and an extremely poor individual are connected. Since society is known to have

this strong stratification property embedded in social networks, we would expect that this

feature is expressed in our network. For example, if wealth implies higher degree, then

homophily will lead to degree correlations, higher k-shell scores for wealthy individuals, and

higher CI. Thus, part of the effect we observe in the present study might be due to the effects

of homophily. However, the exact picture of how homophily affects the wealthy population

is still to be discovered.

Supplementary Note 4 - Social Network Metrics

In order to capture the analytical evidence describing the effects shown in Figs. 1a–d, we

introduce four different metrics to evaluate network influence [3, 4].

1. Degree centrality ki is the simplest evaluation of an individual’s local contact size.

It requires minimum information and is easy to calculate. Other centralities such as be-
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tweenness centrality cannot be efficiently calculated in our networks due to their nonlinear

running times with system size.

2. k-core and k-shell index ks [5] capture the centrality of a node in the global network by

the method of k-shell decomposition. In this method, nodes are removed iteratively if their

degree ki < k until all the remaining nodes have degree equal to or greater than k. These

nodes remain in the k-core of index k. The largest k-core a node can hold is the k-shell index

ks, which means the node is in the ‘shell’ of the k’th core but outside the k+ 1’th core. The

k-shell or k-core number is a global metric. It has been proven efficient in identifying single

influencers through the SIR model [5]. The k-shell index requires the overall information

of the network. It is a quantity that does not allow one to classify the nodes with high

resolution: there usually exist a few k-shells in the whole system, each containing many of

the nodes in the network. Fig. 1c is a schematic example of a k-shell in a network.

3. PageRank [6] is as eigenvalue centrality metric used to evaluate the probability that

information or knowledge will likely visit a node through a random walk. PageRank is

calculated through an iterative algorithm in which nodes collect PageRank values from

their neighbors in every iteration. For simplicity, each node is initially assigned a value of

PR(i) = 1. During each iteration, node i collects a PageRank value through the link pointed

from its neighbor j (j → i) as the PageRank of an adjacent node divided by its outbound

degree kjout. Namely,

PR(i) = (1− d) +
∑

j∈(∂i→i)

PR(j)

kjout

. (11)

Here ∂i→ i is the set of points which have outbound links to i, and d is a damping factor

which we choose as 0.7 in our work. When a converging threshold (10−4) is reached, the

iteration stops and outputs the final result of PageRank.

Although PageRank was originally proposed for ranking websites, it has also been applied

in social network analysis. Given the assumption that senders of messages or makers of phone

calls are likely to be the ones providing the information being communicated, PageRank is a

good metric to evaluate the likelihood that an individual captures the information spreading

in the network. Similarly to k-shell, PageRank requires the global information of the whole

network. However, it is easy to update when the network changes.

4. Collective Influence (CI) is an algorithm to identify the most influential nodes via

optimal percolation [7]. Rather than the above heuristic metrics, Collective Influence is
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introduced by a theoretical approximation of the solution to a problem of influence max-

imization in locally tree-like social networks [8]. CI minimizes the largest eigenvalue of a

modified non-backtracking matrix of the network in order to find the minimal set of nodes

to disintegrate the network. It has been shown that this process maximizes the spread of

information via a threshold model of spreading and also provides the most important nodes

for the integrity of the network (optimal percolation). Each node is associated with a CI

value, and those with the top CI values are the most influential nodes in the network. The

definition of CI is given by:

CI(i) = (ki − 1)
∑

j∈∂Ball(i,`)

(kj − 1), (12)

where the Ball(i, `) is defined in the text. We should note that the mobile communications

network is a typical small world network (average path length < ` >∼ 8.9), and the radius

` of the ball is limited by the network diameter.

Of the metrics we investigated so far, CI draws our attention since in practice, it has

advantages in resolution, correlation with wealth, and scalability to massively large social

networks. On the “global versus local” issue, we point out that while CI comes from a

global theory of maximization of influence, it represents a local approximation in a sphere

of influence of finite radius `. Thus, it is a convenient way to quantify influence in large

social networks due to its scalability. Furthermore, in cases where the whole picture of global

connectivity is incomplete, the local connectivity up to a few layers ` might be enough to

define network influence and predict the financial status of an individual. On the other

hand, we have shown that global quantities like the k-core are also good for capturing

an individual’s financial status. Indeed, the global k-core contains nested structures of

relatively large degrees, which somehow resemble the concentric spheres of influence of a

high-CI node. However, the k-core suffers from resolution problems: wealthy people might

be located preferentially in the core of the network, but this core is too large to locate them

with accuracy. For instance, there are only 25 k-cores in the whole network (Fig. 2b) to

separate one hundred million people, while CI has a larger resolution spanning eight orders

of magnitude. Thus, in practical terms, CI presents advantages both in resolution and in

high correlation with wealth.

Also, CI represents a balance between a global maximization of influence and its local

approximation in successive layers, allowing one to use the CI metric in large-scale datasets
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composed of hundreds of millions of individuals. Overall, we emphasize that CI is just

a useful strategy for the reasons shown above, but by no means the only or best way to

express the wealth of individuals. More generally, supervised machine learning can be applied

to the problem of predicting an individual’s credit score based on a number of features.

These methods could include not only CI but also the other measures discussed, along with

many other standard network metrics. Augmenting these measures for determining feature

importance could allow us to better assess which features are important to determine the

wealth of individuals with higher accuracy than that shown by CI in the present study. The

prediction model will give standard measures of features’ importance in further studies when

we have access to more data. Future work will follow this promising direction.

Supplementary Note 5 - Financial parameters and other factors

We use the following statistics to identify economic effects: First, we separate the in-

dividuals into groups on sampling grids in variable space (1D as segment bins and 2D as

grids). In each group (with more than 10 people for statistical significance), we count the

fraction of wealthy individuals, defined as those individuals in the top 4-quantile Q > 0.75

or who have a total credit limit greater than USD $4,000 (converted).

Besides the credit limit, transaction amount and credit score the bank data also provides

the information of the clients’ birth years. Age as a variable is independent from the network

metrics (Supplementary Table 2) and correlates with the percentile-ranking credit limit

(r = 0.42). However, we do not know the model used by the bank to assign the credit limit,

so the age may be a complex reflection of the mixed effects of both increased income and

increased account history. Thus, the correlation between age and credit limit might not be

capturing only variation in actual wealth but also the amount of information the bank has

about the customer.

To quantitatively evaluate the variance caused by network metrics when combined with

other factors, we employed Analysis of Covariance (ANCOVA) [9]. ANCOVA is an analysis

method which conducts regressions between covariate (CV) and dependent variables (DV)

under different groups of categorical independent variables (IV). In this case, regression

was made between covariate CI and the dependent variable, the fraction of wealth. As

in Fig. 2d, CI is divided into 100 partitions. Based on the information to which we have
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access, ANCOVA was applied separately among the following independent variables: gender,

age, and residential communities. Gender was naturally divided into two groups. Age was

grouped year by year from 18 to 65 in a total of 48 groups. The communities were identified

by their registered zip code. To reduce the dimensionality of the problem and directly

quantify the effect of geographical location, we first sorted the communities by the fraction

of wealthy people inside and divided them into 50 balanced groups. We assigned to every

community an ‘Index of Community Wealth’ (ICW), which is the quantile ranking of each

group that the community belongs to.

The correlation between IVs and CV are shown in Supplementary Table 3. The negli-

gible correlation between these variables ensures the basic assumption of independence in

ANCOVA. Also, in order to test the robustness of our results, the same method was applied

under different thresholds of credit limits to define the wealthy population: Q = 0.75 (the

threshold we used), 0.85 and 0.95.

The basic output of ANCOVA is a series of p-values showing the significance level of the

regression model between CV and DV in different IV groups, and the analysis of variance

(ANOVA) [9] evaluating the significance of the IVs’ effects. The estimated slopes with 95%

confidence intervals are shown in Supplementary Figure 6. Our results show the following:

1. All IVs’ effects are significant (p < 0.001); namely, the fraction of wealthy people is

different among different groups of gender, age or communities.

2. Inside most groups of each IV, the variation caused by CI is also significant (p < 0.001).

The only exception is that CI’s effect is only significant when the clients are older than 24

years (Supplementary Figure 6b). This result indicates that the effect of network metrics,

in most cases, is independent from the other known factors.

3. The slope of regression varies in different groups. However, all the slopes with signifi-

cant values are positive.

4. The results of 1 to 3 above are robust under different thresholds of credit line, so Fig. 2

is also similar under different thresholds. Therefore, we focus our results on a given quantile

threshold Q = 0.75 for the remainder of the study. Although the violation of homogeneity

in 3 prevents us from making a direct comparison between variables, these results imply

that CI significantly and independently affects the fraction of the wealthy population.
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Supplementary Note 6 - Correlation between network metrics and financial sta-

tus

To compare the value of the social metrics to the economic status of individuals, we have

to draw out the best one to describe network location influence effects. We sum up all the

age groups and consider the effect of network metrics to demonstrate the effects of each

variable.

The reason for using the aggregated model instead of the direct correlations at the in-

dividual level is because the regression models at the individual level are based on certain

assumptions that are not satisfied by our data. Thus, we were unable to apply regression

models at the individual level, and instead provide data at an aggregated level. The failure

of regression models at the individual level is due to two reasons:

1. The distribution of credit limit (CL) for a given level of ANC [which is a log-normal-like

distribution with several peaks located at integers such as 50,000 or 100,000 (Supplementary

Figure 7a)] is not invariant under changes in ANC. That is, the distribution changes shape

when ANC increases, showing an increasing fraction of high-CL population while the fraction

of people around the mean value stays unchanged (Supplementary Figures 7b–d). Such

behavior directly violates the constant variance assumption of regression models and causes

the data to be poorly captured by least-square regression models.

2. Besides the above fluctuations in the credit limit, other unknown factors may provide

random fluctuations in inferring individuals’ financial status. Such combined random effects

are considerable at the individual level. However, aggregation models reduce the fluctuation

caused by random factors, and the effect of the network emerges at the population level.

Thus, we adjust our statistical model to reflect the complexity of economic effects from

network metrics and aggregate the data as follows:

First we separate the individuals into groups of sampling grids in a variable space (in 1D

as segment bins and in 2D as grids). In each group (with more than 10 people for statistical

significance), we count the fraction of wealthy individuals defined as those individuals in

the top 4-quantile Q > 0.75 or who have a total credit limit greater than (equivalent to)

USD $4,000. The dependence of our results on different wealth thresholds is provided in

Supplementary Note 5.

Besides the degree, the volume of communication may have correlations with economic
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status since we could not eliminate the systematic bias caused by phone call service fees.

We investigate the correlation between the fraction of wealthy people and the average com-

munication load per link: AVLi = Wi

ki
, where Wi is the volume of communication events and

ki is the degree of node i. The regression result shown in Supplementary Figure 9 shows

that there is no significant correlation between the average communication volume per link

and the fraction of wealthy individuals. Therefore, the effect of communication volume is

negligible in comparison with the other variables considered in this study.

Supplementary Figure 8 shows the results. The large fluctuation in degree for higher

quantiles in Supplementary Figure 8a implies that the effect of degree involves complex

social patterns rather than only the local properties of the degree of the node. Thus, we

abandon the use of degree for further study as an indicator. k-shell is good enough to

present a positive correlation of high network location influence. However, due to the limited

values of k-core, it cannot provide finer resolution for prediction (Supplementary Figure 8b).

Therefore, k-shell is also not considered for further studies as an indicator. The performance

of PageRank (Supplementary Figure 8c) with a slightly negative correlation suggests that

it is not the optimal variable to rank economic status, and thus it is not considered herein.

Finally, CI (Supplementary Figure 8d) shows strong global correlation and satisfying

resolution, which makes it a convenient metric for quantifying the influence of network

location. The strong correlation with CI is invariant under different radii of influence `

(Supplementary Figure 10).

We notice a non-monotonic oscillatory behavior of the fraction of wealthy people when

using k and CI as variates (Supplementary Figures 8a and 8d). This effect is complex and

cannot be captured by either the degree or CI, and may not be limited to local properties.

The oscillation is reduced when using CI in the analysis, and this is one of our reasons

for choosing CI as a potential predictor. We will continue investigating the non-monotonic

pattern in future work.

Supplementary Note 7 - Modularity and Diversity ratio

Additional research on modularity was implemented as follows. Personal structural hole

[10] effects were evaluated by the ratio of total weights attached with nodes outside a commu-

nity kout, to those inside a community kin. A fast community detection algorithm introduced
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by Blondel et al. [11] was implemented in this work. The algorithm aims to maximize the

modularity function [11, 12]:

Qm =
1

W

∑
i,j

[Wij −
WiWj

2m
]δ(ci, cj), (13)

where Wij is the number of communication events loaded on link i, j and ci is the community

label of node i. Wi =
∑

j∈∂iWi,j and W = Wij

∑
i,j. The global maximization of modularity

was achieved by iteratively calculating the local maximization of normalized networks based

on communities. Different communities were labeled during each iteration. Among all the

communities, we chose the clustering of the second iteration to control the average scale of the

community to 102. There are 4.92× 105 communities inside the network. The distribution

of community sizes is fat-tailed with a largest community size of 106 (Supplementary Figure

11). The fraction of wealthy individuals inside each community is independent of the size

of the community (r < 0.05).

After we label the network with its communities, we can evaluate an individual’s struc-

tural hole effect [10] by introducing the diversity ratio DR. DR is defined by the ratio of

total communication events with people outside one’s own community Wout to those with

people inside the community, namely Win, DR =Wout/Win. The ratio is weakly correlated

with CI (r = 0.4). The same statistic of composite ranking was implemented as CI with

the same number of statistic segments and composite factor α = 0.5 as in the text. The

result (Fig. 3d) shows that the structural hole effect also has a strong correlation with the

distribution of affluent individuals while it is weakly dependent on CI. This result confirms

the importance of the ability to communicate with outside communities via “weak ties” for

personal economic development [13].

Supplementary Note 8 - Marketing Campaign

In the marketing campaign, clients were approached by SMS messages offering a benefit.

In the text we sent during the campaign, we did not provide a specific product. Instead, the

only information we provided was to notify the client that he/she was eligible for an offer

from the bank. This somehow eliminated the bias caused by the nature of a product which

may have a different appeal to wealthy or poor people. We sent the following messages:

Request your credit card with benefits from (Bank name) by calling at (Bank phone number).
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Fees and requirements at (Bank url).

(Bank name) has a special offer for you. If you’re interested call at (Bank phone number).

Fees and requirements at (Bank url).

(Bank name) has a credit card fit for you. Request it by calling at (Bank phone number).

Fees and requirements at (Bank url).

(Bank name) has a credit card with benefits. Request it at (Bank phone number).

Fees and requirements at (Bank url).

(Bank name) offers you a credit card with benefits. Request it by calling at

(Bank phone number). Fees and requirements at (Bank url).

(Bank name) has an exclusive offer for you, call at (Bank phone number). Fees

and requirements at (Bank url).
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Supplementary Table 1. Results of the group entropy analysis for the wealthy population (with

quantile ranking Q > 0.95) and poor (0.05 < Q < 0.1) population.

S Rc(`) Rn(`)

` = 1
wealthy 6.37±0.12 5.5±0.4 9.3±0.7

poor 6.68±0.10 4.3±0.3 7.1±0.5

` = 2
wealthy 7.94±0.10 141.3±4.7 6.3± 0.2× 102

poor 8.38±0.14 101.6±3.4 3.1± 0.1× 102

` = 3
wealthy 9.11±0.11 443.0±11.5 7.6± 0.4× 103

poor 9.30±0.12 390.9±6.0 4.9± 0.4× 103

` = 4
wealthy 10.23±0.02 565.4±10.7 5.10± 0.04× 104

poor 10.23±0.04 517.0±9.0 4.23± 0.05× 104

Supplementary Table 2. Correlation (r-values) between the metric centralities obtained from the

social network and age.

k k-shell PageRank log10CI

Age -0.021 -0.016 -0.033 -0.007

k 0.972 0.648 0.953

k-shell 0.589 0.960

PageRank 0.575
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Supplementary Table 3. Correlation between covariate CI and independent variables:

age, gender and Index of Community Wealth (ICW). The correlation between gender and

other features is presented through the Point-Biserial correlation coefficient, and other correlations

are Pearson correlations. Point-Biserial correlation coefficients quantify the male as 1 and female

as 0 and are defined as: r = X̄1−X̄0
sn−1

√
n1n0
n(n−1) . n is the total number of samples. n1 and n0 refer to

the population inside each group. X̄1 and X̄0 are the means of the variables in each group. sn−1

is the estimated unbiased standard deviation of X: sn−1 =
√

1
n−1

∑n
i=1(Xi − X̄)2.

CI Gender ICW

Gender -0.0419

ICW -0.0093 0.0131

Age -0.0007 -0.0116 -0.0022
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Supplementary Figure 1. Logistic fitting result for k = 50, 100 and 200. The result of paired

communication R is presented in log-log scale in order to highlight the fitting for the exponential

tails.

18



a

log
10
k log

10
k

dc

b
E
st
im
at
ed

D
D

E
st
im
at
ed

E
st
im
at
ed

E
st
im
at
ed

R
R

log
10
k log

10
k

Supplementary Figure 2. Scaled parameter estimation and its linear fitting: (a) µ̂D(k), (b)

ŝD(k), (c) µ̂R(k), (d) ŝR(k).
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Supplementary Figure 3. Number of outliers ε − 2p vs cut-off threshold p. Maximum is

reached when p ∼ 1.6× 10−5.
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Supplementary Figure 4. Final result of data filtering. The result is presented in the space of

k and communication pairs R. The data points were put into a grid bin of 200×200. The color

represents the fraction of outliers in each bin. The filter gives us a gradual boundary of human-

and non-human-operated lines.
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Supplementary Figure 5. Distribution of network metrics. (a) degree, (b) k-core, (c) PageR-

ank, and (d) Collective Influence (` =1 to 4). Collective Influence follows a double-tailed distribu-

tion. A small peak for larger CI emerges for even `.
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Supplementary Figure 6. Estimated slopes in different groups of independent variables.

(a), Age, (b), Index of Community Wealth (ICW), and (c), Gender. 95% confidence interval is

marked by error bars in the plot. Different thresholds of wealth Q are labeled by different colors.
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Supplementary Figure 7. Distribution of Credit Limit (CL) under different age-network

composite (ANC) groups. The distribution is not invariant under changes in ANC.
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Supplementary Figure 8. Fitting results of wealthy population vs. network influence

metrics along with corresponding R2 values. (a) Degree (0.51), (b) k-core (0.99), (c)

PageRank (0.28), and (d) Collective Influence (0.80). All variables are normalized to [0, 1] by

the quantile ranking to ensure an adequate number of data points in each partition. The entire

quantile ranking is divided into 200 segments from minimum to maximum. Only those groups with

population larger than 10 are shown on the plot. Out of the four metrics, CI is the most convenient

for capturing high correlations and presenting a large range of values that allow us to classify the

whole population.
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Supplementary Figure 9. Fraction of wealthy people vs. average communication event

load per link (AVL). AVL is in log-10 scale and divided into 200 partitions. Each group with

a population of more than 10 is considered in counting the fraction of wealthy people inside the

group.
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Supplementary Figure 10. Fraction of wealthy people in each group against age and

logarithm collective influence for different radius. Radii ` range from 1 to 3. Communities

are determined by 200 segments covering from the bottom 1% to top 1% of CI values. Only those

groups with population larger than 10 are shown on the plot.
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Supplementary Figure 11. Distribution of community sizes in the entire social network

at second iteration.
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