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Parameter estimation

A summary of all the model parameters is given in tables 1 and 2.
In the sequel, in an expression of the form X

KX+X in the context of activation,
the half-saturation parameter KX is taken to be the steady state of the species
X provided X tends to a steady state. Hence in steady state equations this
factor is equal to 1

2 .
It is technically hard to assess the level of cytokines in acutal pancreatic

tissue. We shall assume that the concentrations in the tissue may be anywhere
from 2-fold to 10-fold greater in tissue compared to serum.

Eqn. (1)

• P0: The ratio of cells volume to ECM volume varies from less than 1:10
to more than 10:1 [7]. Based on [36], we estimate the ratio between cells
volume and ECM in the pancreatic islets to be close to 1:1. However,
taken over the entire organ, the ratio of cells volume to ECM volume is
smaller, and we take it to be 1:10. The mass of PSC is 4-7% of the total
cells mass in the pancreas [4]; we take it to be 5%. Assuming average
density of 1 g/ml in the pancreas, we get P0 = density of PSC=5 × 10−3

g/ml.

• KTα : There are several reports on the level of TNF-α in serum of patients
with chronic pancreatitis (CP) and in healthy control case (C). In [18], the
level is 9.88 pg/ml in CP and 10.09 in C; in [24] it is 23 pg/ml in CP and
13 pg/ml, in [36] it is 8.52 pg/ml in C, and in our own clinical tests (see
Supplementary Material (SM)) it was 8.54 pg/ml in PC and 4.58 pg/ml
in C. We assume that the concentration of TNF-α in tissue is larger than
in serum and take Tα steady state in blood of heathy individuals to be 9
pg/ml, and Tα = KTα = 30 pg/ml=3 × 10−11 g/ml in tissue.

• KG: The level of serum concentration of healthy individual was reported
in [5] to be 17.5 pg/ml. Our clinical data (in SM) show concentrations of
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0.102 ng/ml in CP and 0.363 ng/ml in C. We take larger tissue concen-
tration in healthy steady state, namely, G = KG = 60 ng/ml=6 × 10−8

g/ml in tissue.

• KTβ : In our clinical tests we found that the level of TGF-β in blood was
6.602 ng/ml for CP and 7.736 ng/ml for C. On the other hand, a larger
concentration of 36.75 ng/ml was reported for C in [36]. We assume that
concentration of TGF-β in tissue of healthy individuals is larger than in
blood, and take Tβ = KTβ = 8 × 10−7 g/ml.

• KI6 : There are several report on the level of IL-6 in CP and C. In [24]
it was reported to be 7.3 pg/ml in CP and 3.3 pg/ml in C; in [36] it was
reported to be 0.58 pg/ml in C, while our clinical tests give 9.16 pg/ml in
CP and 7.14 pg/ml in C. We take the level of IL-6 in healthy tissue to be
I6 = KI6 = 8 pg/ml = 8 × 10−12 g/ml.

• λPTα and λPI6 :

Experiments in vivo in [2, 23] reported on the activation of PSC by
cytokines TGF-β, TNF-α and IL-6. We assume that TGF-β activates
PSC more effectively than TNF-α, but less effectively than IL-6, and
take λPTβ = 2.2 × 10−2/day, λPTα = 1.82 × 10−2/day and λPI6 =
3.67 × 10−2/day.

• λP and λPG: Experiments in [3] show that PDGF, and to lesser extend
TNF-α, increase the proliferation of APSC. We take λP = 4 × 10−3/day,
and λPG = 2.7 × 10−3/day.

Eqn. (2)

• AP0
: From the steady state of PSC for a healthy pancreas, we have AP0

=
dP0

P0. Taking P0 = 5× 10−3 g/ml and using the value dP0
= 1.66× 10−2

day−1 [33], we get AP0
= 8.3 × 10−5 g/cm3 day−1.

Eqn. (3)

• dCM : The degradation rate of MCP-1 is dC = 1.73 day−1 [6]. MCP-1
chemoattracts macrophages, so some of the cytokines get internalized by
macrophage [21, 27]. We assume that the rate of internalization is the
same as the rate of degradation when C is at half-saturation

dCKC = dCM
KC

KC +KC
M0.

and M0 = 5 × 10−5 [10], we get dCM = 2dCKC
M0

= 2.08 × 10−5 day−1.

• KC : In our clinical tests (SM) we found that the serum concentration of
MCP-1 in CP is 54.66 pg/ml and in C is 58.89 pg/ml. We assume a larger
concentration of MCP-1 in tissue of healthy individuals and, accordingly,
take KC = 300pg/ml=3 × 10−10 g/ml.
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• λCP : According to the experiments of MCP-1 production by TNF-α in
[30], we have the following linear relation

λCPP − dCC = 0.

More precisely, the concentration of MCP-1 is 1.8 ng/ml when TNF-α is
100 ng/ml. Assuming that in this experiment the density of P exceeded
its half-saturation KP , we take λCP = 2 × 10−7 day−1.

Eqn. (6)

• λρTβ : We take λρP = 0.0432 day−1. It was reported in [3] that collagen
synthesis with TGF-β = 1 ng/ml, was increased to three fold.

We assume that with such a small amount of Tβ (compared to KTβ ) the
production would increase only 5% the collagen in the pancreas, so that

λρTβ
1

20
= 3λρP , (1)

or λρTβ = 3λρP = 2.673 day−1.

• ρ∗: The steady states of ρ∗, Q∗ and Q∗
r of ρ, Q and Qr are determined by

solving the following steady state equations in healthy pancreas
λρPP0

(
1 − ρ

ρ0

)
− dρQQρ− dρρ = 0,

λQP0P0 − dQQrQrQ− dQQ = 0,

λQrP0P0 − dQrQQQr − dQrQr = 0.

,

where all the parameters are given in Table 1 and 2. By direct computa-
tion, we find that ρ∗ = 3.22 × 10−4 g/cm3, Q∗ = 4.18 × 10−6 g/cm3 and
Q∗
r = 4.24 × 10−11 g/cm3.

Eqn. (7)

In steady state in health, λTβ =
dTβTβ

P , where dTβ = 3.33 × 102/day [31], Tβ =

8× 10−7 g/ml and P = P0 = 5× 10−3 g/ml, so that
dTβTβ

P = 5.328× 10−1/day.
P is proliferating, so in steady state P is larger than P0 and hence λTβ should
be smaller; we take λTβ = 6.7 × 10−2/day.

Eqn. (8)

In steady state in health

λTα =
dTαTα
M

,

where dTα = 55.45/day [25], Tα = 3×10−11g/ml, and M = M0 = 5×10−5g/ml

[10], so that
dTαTα
M = 3.3× 10−5/day. In chronic pancreatic case the concentra-

tion of Tα is higher, so we take λTα = 9.98 × 10−5/day.
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Eqn. (9)

• λI6 : In steady state in health, λI6 =
dI6I6
P where dI6 = 0.173/day [19],

I6 = 4×10−12g/ml and P = P0 = 5×10−3 so that
dI6I6
P = 1.4×10−10/day.

In chronic pancreatic case P is larger than P0, so we take the smaller value
λI6 = 7 × 10−11/day.

Eqn. (10)

• λG: In steady state in health, λG = dGG
P where dG = 2.84/day [34],

G = 6 × 10−8g/ml and P = P0 = 5 × 10−3 g/ml. Hence dGG
P = 4 ×

10−5/day. For the chronic pancreatitis case P is larger than P0, so we
take λG = 2 × 10−7 day−1.

Eqn. (11)

• λQP0 and λQP : We take λQP0 = 3.025× 10−5 day−1 as in [16]. In [26], it
was reported that the amount of MMP activated by P is 30% more than
that by P0. Accordingly, we have

λQP = 1.3λQP0
= 3.93 × 10−5 day−1.

• λQTβ and λQI6 : According to [26], Tβ increases the production of Q
by P more than I6 does, we assume that Tβ increases this production by
approximately 1-fold and I6 increases it by approximately 1

2 -fold, and take

λQTβ = 7.6 × 10−5 day−1. and λQI6 = 3.72 × 10−5 day−1.

Clinical data

Peripheral venous blood was collected into sodium heparin tubes by venipunc-
ture from human patients. All studies were conducted under an IRB-approved
protocol from patients with clinically confirmed chronic calcific pancreatitis (17
patients), non-calcific pancreatitis (9), a family history of pancreatic disease
(non-pancreatitis) (12), and no disease(7). Blood samples were centrifuged at
1200 x g for 10 minutes to obtain plasma, and was stored at -80 oC . Plasma
samples were batch analyzed using a custom Luminex Multiplex Cytokine Kits
(Procarta Cytokine Assay Kit, Affymetrix). Analyte concentrations were cal-
culated based on a standard curve for each analyte and represent the average
of two batched duplicates. Additional single-plex ELISA kits were used to an-
alyze the concentration of additional factors, including TGF-β and IL-6 (R&D
Systems, Inc.), as per manufacturer instructions.
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Table 1: Parameters’ description and value

Parameter Description Value
DP diffusion coefficient of activated PSC 1.47 × 10−4 cm2 day−1 [10]
DP0 diffusion coefficient of quiescent PSC 1.47 × 10−4 cm2 day−1 [10]
DM1

diffusion coefficient of M1 macrophage 8.64 × 10−7 cm2 day−1[10]
DM2

diffusion coefficient of M2 macrophage 8.64 × 10−7 cm2 day−1[10]
DC diffusion coefficient of MCP-1 17.28 cm2 day−1[10]
DI6 diffusion coefficient for IL-6 1.08 × 10−2 cm2 day−1[10]
DTα diffusion coefficient for TNF-α 1.29 × 10−2 cm2 day−1[10]
DTβ diffusion coefficient for TGF-β 4.32 × 10−2 cm2 day−1 [12]
DG diffusion coefficient for PDGF 8.64 × 10−2 cm2 day−1[10, 34]
DQ diffusion coefficient of MMP 4.32 × 10−2 cm2 day−1[10, 22]
DQr diffusion coefficient for TIMPs 4.32 × 10−2 cm2 day−1 [10, 22]

λPTβ activation rate of PSC by TGF-β 2.2 × 10−2 day−1 [3] & estimated

λPTα activation rate of PSC by TNF-α 1.82 × 10−2day−1 [3, 23] & estimated

λPI6 activation rate of PSC by IL-6 3.67 × 10−2 day−1 [3, 23] & estimated

λP proliferation rate of PSC by TNF-α 4 × 10−3 day−1 [23] & estimated

λPG proliferation rate of PSC by PDGF 2.7 × 10−3 day−1 [3] & estimated
λρP production rate of ECM due to PSC 0.0432 day−1 [15]
λρTβ activation rate of ECM due to TGF-β 2.673 day−1 [15, 3] & estimated
λCP activation rate of MCP-1 due to PSC 2 × 10−7 day−1 [30] & estimated
λI6 activation rate of IL-6 due to PSC 7 × 10−11 day−1 [2, 20] & estimated
λI6Tβ activation rate of IL-6 due to TGF-β 7 × 10−11 day−1 [2] & estimated
λTα activation rate of TNF-α due to macrophage 9.98 × 10−5 day−1 [1] & estimated
λTβP activation rate of TGF-β due to PSC 6.7 × 10−3 day−1 [25, 28] & estimated
λTβM2

activation rate of TGF-β due to M2 macrophages 1.5 × 10−2/day [11]
λGP activation rate of PDGF due to PSC 2 × 10−6 day−1 [32]
λGM2

activation rate of PDGF due to M2 macrophages 4.8 × 10−4/day [13]

λQP0 activation rate of MMP due to quiescent PSC 3.025 × 10−5 day−1 [16]

λQP activation rate of MMP due to activated PSC 3.93 × 10−5 day−1 [26, 16] & estimated

λQTβ activation rate of MMP by TGF-β 7.6 day−5 [26, 10] & estimated

λQI6 activation rate of MMP by IL-6 3.72 × 10−5 day−1 [26, 10] & estimated
λQrP0

activation rate of TIMP due to quiescent PSC 6 × 10−5 day−1 [10, 17]
λQrP activation rate of TIMP due to activated PSC 6 × 10−5 day−1 [10, 17] & estimated
λS production rate of Scar 1 estimated
λSQ production rate of Scar due to MMP 1 estimated
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