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Parameter estimation

A summary of all the model parameters is given in tables 1 and 2.

In the sequel, in an expression of the form Kxxﬁ in the context of activation,
the half-saturation parameter Ky is taken to be the steady state of the species
X provided X tends to a steady state. Hence in steady state equations this
factor is equal to %

It is technically hard to assess the level of cytokines in acutal pancreatic
tissue. We shall assume that the concentrations in the tissue may be anywhere

from 2-fold to 10-fold greater in tissue compared to serum.

Eqn. (1)

e Py: The ratio of cells volume to ECM volume varies from less than 1:10
to more than 10:1 [7]. Based on [36], we estimate the ratio between cells
volume and ECM in the pancreatic islets to be close to 1:1. However,
taken over the entire organ, the ratio of cells volume to ECM volume is
smaller, and we take it to be 1:10. The mass of PSC is 4-7% of the total
cells mass in the pancreas [4]; we take it to be 5%. Assuming average
density of 1 g/ml in the pancreas, we get Py = density of PSC=5 x 1073

g/ml.

o K : There are several reports on the level of TNF-« in serum of patients
with chronic pancreatitis (CP) and in healthy control case (C). In [18], the
level is 9.88 pg/ml in CP and 10.09 in C; in [24] it is 23 pg/ml in CP and
13 pg/ml, in [36] it is 8.52 pg/ml in C, and in our own clinical tests (see
Supplementary Material (SM)) it was 8.54 pg/ml in PC and 4.58 pg/ml
in C. We assume that the concentration of TNF-« in tissue is larger than
in serum and take T, steady state in blood of heathy individuals to be 9
pg/ml, and T, = K7, = 30 pg/mi=3 x 107! g/ml in tissue.

e K: The level of serum concentration of healthy individual was reported
in [5] to be 17.5 pg/ml. Our clinical data (in SM) show concentrations of



Eqn.

Eqn.

0.102 ng/ml in CP and 0.363 ng/ml in C. We take larger tissue concen-
tration in healthy steady state, namely, G = Kg = 60 ng/ml=6 x 10~8
g/ml in tissue.

Kr,: In our clinical tests we found that the level of TGF-3 in blood was
6.602 ng/ml for CP and 7.736 ng/ml for C. On the other hand, a larger
concentration of 36.75 ng/ml was reported for C in [36]. We assume that

concentration of TGF-$ in tissue of healthy individuals is larger than in
blood, and take T = K7, =8 x 1077 g/ml.

Kp,: There are several report on the level of IL-6 in CP and C. In [24]
it was reported to be 7.3 pg/ml in CP and 3.3 pg/ml in C; in [36] it was
reported to be 0.58 pg/ml in C, while our clinical tests give 9.16 pg/ml in
CP and 7.14 pg/ml in C. We take the level of IL-6 in healthy tissue to be

Is = K1, =8 pg/ml =8 x 10712 g/ml.

)\PTa and /\Pfa:

Experiments in vivo in [2, 23] reported on the activation of PSC by
cytokines TGF-8, TNF-« and IL-6. We assume that TGF-3 activates
PSC more effectively than TNF-a, but less effectively than IL-6, and
take )\PTB = 2.2 X 10*2/day, )\PTa = 1.82 x 10*2/day and )\p]6 =
3.67 x 1072 /day.

Ap and Apg: Experiments in [3] show that PDGF, and to lesser extend
TNF-a, increase the proliferation of APSC. We take A\p = 4 x 1073 /day,
and A\pg = 2.7 x 1073 /day.

(2)
Ap,: From the steady state of PSC for a healthy pancreas, we have Ap, =

dp, Py. Taking Py = 5 x 1073 g/ml and using the value dp, = 1.66 x 10~2
day~! [33], we get Ap, = 8.3 x 107° g/cm? day 1.

(3)

doar: The degradation rate of MCP-1 is do = 1.73 day~! [6]. MCP-1
chemoattracts macrophages, so some of the cytokines get internalized by
macrophage [21, 27]. We assume that the rate of internalization is the
same as the rate of degradation when C' is at half-saturation

Kc

deKc =doy—Mp.
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and Mo =5 x 107" [10], we get dear = 2465S = 2.08 x 1077 day .

K¢t In our clinical tests (SM) we found that the serum concentration of
MCP-1 in CP is 54.66 pg/ml and in C is 58.89 pg/ml. We assume a larger
concentration of MCP-1 in tissue of healthy individuals and, accordingly,
take K¢ = 300pg/ml=3 x 10719 g/ml.



e \op: According to the experiments of MCP-1 production by TNF-« in
[30], we have the following linear relation

AepP —dcC =0.

More precisely, the concentration of MCP-1 is 1.8 ng/ml when TNF-« is
100 ng/ml. Assuming that in this experiment the density of P exceeded
its half-saturation Kp, we take Acp = 2 x 1077 day—".

Eqgn. (6)

e A\,r,: We take A\,p = 0.0432 day~'. It was reported in [3] that collagen
synthesis with TGF-5 = 1 ng/ml, was increased to three fold.

We assume that with such a small amount of Tz (compared to Kr,) the
production would increase only 5% the collagen in the pancreas, so that
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or Ayr, = 3X,p = 2.673 day~—!.

o p*: The steady states of p*, @* and @} of p, @ and @), are determined by
solving the following steady state equations in healthy pancreas

AopPo(1 — p%) —dpQp —dop =0,

AgroPo — dgq, Q:Q —doQ =0,
AQ,pPo — dq,RQQr — dg,Qr = 0.

where all the parameters are given in Table 1 and 2. By direct computa-
tion, we find that p* = 3.22 x 107% g/em?, Q* = 4.18 x 1075 g/em3 and
QF =4.24 x 107 g/em3.

Eqn. (7)

In steady state in health, Ay, = @, where dg, = 3.33 x 10?/day [31], T =
8x10~7 g/mland P = Py = 5 x 103 g/ml, so that “2° = 5.328 x 10~ /day.
P is proliferating, so in steady state P is larger than Py and hence Ar, should

be smaller; we take Ag, = 6.7 x 1072 /day.

Eqgn. (8)
In steady state in health
N — dr, T,
To — M )
where dr, = 55.45/day [25], T, = 3 x 10~ g/ml, and M = My =5 x 10~°g/ml

[10], so that % = 3.3 x 107°/day. In chronic pancreatic case the concentra-

tion of T, is higher, so we take Az, = 9.98 x 107°/day.



Eqn. (9)

e \;: In steady state in health, \;, = dl}"fﬁ where dj, = 0.173/day [19],

Is = 4x10"2g/mland P = Py = 5x 1073 so that &' = 1.4x 10710 /day.
In chronic pancreatic case P is larger than Py, so we take the smaller value
A1, = 7 x 10711 /day.

Eqgn. (10)

e A\g: In steady state in health, A\¢ = 9% where d¢ = 2.84/day [34],
G =6x108g/ml and P = Py = 5 x 107 g/ml. Hence 9% = 4 x
1075 /day. For the chronic pancreatitis case P is larger than Py, so we
take A\g =2 x 1077 day~'.

Eqgn. (11)

e \op, and \gp: We take A\gp, = 3.025 x 107° day ™" as in [16]. In [26], it
was reported that the amount of MMP activated by P is 30% more than
that by Py. Accordingly, we have

Aop = 1.3\gp, = 3.93 x 107° day .

e \gr; and Agpe: According to [26], Tz increases the production of Q
by P more than I does, we assume that T increases this production by
approximately 1-fold and I increases it by approximately %—fold, and take

Aory = 7.6 x 107° day™". and Aqgr, = 3.72 x 107° day ™.

Clinical data

Peripheral venous blood was collected into sodium heparin tubes by venipunc-
ture from human patients. All studies were conducted under an IRB-approved
protocol from patients with clinically confirmed chronic calcific pancreatitis (17
patients), non-calcific pancreatitis (9), a family history of pancreatic disease
(non-pancreatitis) (12), and no disease(7). Blood samples were centrifuged at
1200 x g for 10 minutes to obtain plasma, and was stored at -80 °C' . Plasma
samples were batch analyzed using a custom Luminex Multiplex Cytokine Kits
(Procarta Cytokine Assay Kit, Affymetrix). Analyte concentrations were cal-
culated based on a standard curve for each analyte and represent the average
of two batched duplicates. Additional single-plex ELISA kits were used to an-
alyze the concentration of additional factors, including TGF-g and I1L-6 (R&D
Systems, Inc.), as per manufacturer instructions.



Table 1: Parameters’ description and value

Parameter Description Value
Dp diffusion coefficient of activated PSC 1.47 x 10=% cm? day~! [10]
Dp, diffusion coefficient of quiescent PSC 1.47 x 107% cm? day~! [10]
Dy, diffusion coefficient of M1 macrophage 8.64 x 1077 em? day1[10]
D, diffusion coefficient of M2 macrophage 8.64 x 1077 em? day1[10]
D¢ diffusion coefficient of MCP-1 17.28 ¢cm? day~'[10]
Dy, diffusion coefficient for IL-6 1.08 x 1072 e¢m? day—1[10]
Dr, diffusion coefficient for TNF-« 1.29 x 1072 em? day~1[10]
Dr, diffusion coefficient for TGF-f 4.32 x 1072 em? day = [12]
D¢ diffusion coefficient for PDGF 8.64 x 1072 em? day~1[10, 34]
Dq diffusion coefficient of MMP 4.32 x 1072 em? day~1[10, 22]
Dq, diffusion coefficient for TIMPs 4.32 x 1072 em? day~* [10, 22]
APT, activation rate of PSC by TGF-j3 2.2 x 1072 day~ ' [3] & estimated
APT, activation rate of PSC by TNF-« 1.82 x 10~2day ™" [3, 23] & estimated
ApI, activation rate of PSC by IL-6 3.67 x 1072 day ' [3, 23] & estimated
Ap proliferation rate of PSC by TNF-a 4 x 1073 day ' [23] & estimated
Arc proliferation rate of PSC by PDGF 2.7 x 1073 day ™' [3] & estimated
A\op production rate of ECM due to PSC 0.0432 day~! [15]
AoTs activation rate of ECM due to TGF-j 2.673 day~! [15, 3] & estimated
Acp activation rate of MCP-1 due to PSC 2 x 1077 day ! [30] & estimated
Al activation rate of IL-6 due to PSC 7 x 1071 day~! [2, 20] & estimated
AT} activation rate of IL-6 due to TGF-3 7 x 1071 day~! [2] & estimated
AT, activation rate of TNF-a due to macrophage 9.98 x 1075 day ! [1] & estimated
A1 P activation rate of TGF-f due to PSC 6.7 x 1073 day ! [25, 28] & estimated
ATy M activation rate of TGF-8 due to M2 macrophages 1.5 x 1072 /day [11]
Acp activation rate of PDGF due to PSC 2 x 107 day—?! [32]
AGMs activation rate of PDGF due to M2 macrophages 4.8 x 107%/day [13]
AQp, activation rate of MMP due to quiescent PSC 3.025 x 1075 day ' [16]
Agp activation rate of MMP due to activated PSC 3.93 x 1075 day " [26, 16] & estimated
QT activation rate of MMP by TGF-8 7.6 day® [26, 10] & estimated
AQIs activation rate of MMP by IL-6 3.72 x 107° day ' [26, 10] & estimated
AQ. Py activation rate of TIMP due to quiescent PSC 6 x 107° day~! [10, 17]
Ao, P activation rate of TIMP due to activated PSC 6 x 1075 day~! [10, 17] & estimated
As production rate of Scar 1 estimated
AsQ production rate of Scar due to MMP 1 estimated
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Table 2: Parameters’ description and value

Parameter Description Value

dp degradation rate of activated PSC 4.15 x 1072 day~! [33]

dp, degradation rate of quiescent PSC 1.66 x 1072 day ! [33]

dar, death rate of M1 macrophage 0.02 day~—! [8]
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SM*: data from supplementary material.
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