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The nematic phase boundary has been determined using standard finite size scaling techniques
appropriate to a two-dimensional classical Ising transition, as described in the appendix of Ref. 1.
The superconducting transition temperature has been determined using the helicity modulus, following
Ref. 2:

ρs = lim
qy→0

lim
L→∞

Kxx(qx = 0, qy) (S1)

where

Kxx(q) ≡ 1

4
[Λxx(qx → 0, qy = 0)− Λxx(q)] , (S2)

and Λxx is the current-current correlator

Λxx(q) =
∑
i

∫ β

0

dτe−iq·ri〈Jx(ri, τ)Jx(0, 0)〉. (S3)

Here, the current density operator is given by Jx(ri) =
∑
σ it(1+ατzi,j)c

†
iσcjσ+H.c., where rj = ri+ x̂.

The q → 0 limits above are not strictly well defined for finite size systems, so we use the smallest
nonzero momentum q = 2π/L to define a value of ρs in finite size systems. Fig. S1 exhibits curves of
ρs(T ) for various system sizes, which cross at a temperature near where they attain the BKT jump of
2T/π. Rough error bars are determined by inspection.

The Tc determined above can be corroborated by examining other thermodynamic quantities (Fig.
). For instance the pair susceptibility

Ps =

∫ β

0

dτ
∑
i

〈∆†s(ri, τ)∆s(0, 0)〉. (S4)

where, ∆s(ri) = ci↑ci↓ diverges in the thermodynamic limit only in the superconducting phase. The
uniform spin susceptibility also shows evidence of the opening a spin gap in the superconducting phase.

∗ These authors have contributed equally to this work.
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Figure S1. Helicity modulus versus temperature for various system sizes. The black line represents the BKT
jump of 2T/π.
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Figure S2. Left: the onset s-wave pairing susceptibility versus temperature. Right: the uniform spin sus-
ceptibility versus temperature. Both are shown for various system sizes, and indicate a superconducting Tc
consistent with that determined above.

S-I. ESTIMATING THE DC RESISITIVITY

A. Resistivity proxy from the long imaginary time data

Next, we describe the “resistivity proxy” ρ2 introduced in the main text as an estimator for the
d.c. resistivity, ρdc. ρ2 can be computed directly from imaginary time data (without the need for any
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analytical continuation). It is proportional to ρdc under certain assumptions, as we discuss below. We
have used the resistivity proxy analysis as a complement to direct analytical continuation. The fact
that both approaches give a qualitatively similar temperature dependence for the resistivity, and even
the quantitative estimates agree within a factor of ∼ 2 (see Fig. 5 of the main text), provides support
for the validity of our assumptions.

The imaginary-time (and Matsubara frequency) current-current correlations are related to the real
part of the real-frequency conductivity by

Λ(iωn) =

∫
dω

π

ω2σ′(ω)

ω2 + ω2
n

. (S5)

Λ̃(τ) =

∫
dω

2π
σ′(ω)

ω cosh
[
(β2 − τ)ω

]
sinh

(
βω
2

) , (S6)

[Note that Eq. (S6) is valid for 0 ≤ τ ≤ β.] Since the kernels in Eqs. (S6,S5) are ill-conditioned,
inverting these equations is a highly numerically unstable problem. To make matters worse, σ′(ω)
turns out to have features whose characteristic width is of order T or less - which is less than the
intrinsic “resolution” of the kernel.

However, under many circumstances, we would expect that σ′(ω, T ) at low frequencies is determined
by the behavior of Λ̃(τ) at the longest imaginary times, τ ∼ β/2, or equivalently by the low-frequency
moments (LFMs) [3]

m0 ≡ βΛ̃(τ =
β

2
) = β

∫
dω

2π

ωσ′(ω)

sinh
(
βω
2

) , (S7)

m2 ≡ β∂2
τ Λ̃(τ =

β

2
) = β

∫
dω

2π

ω3σ′(ω)

sinh
(
βω
2

) , (S8)

in terms of which the resistivity proxy defined in the text is

ρ2 ≡
m2

2πTm2
0

=
∂2
τ Λ̃

2πΛ̃2

∣∣∣∣∣
τ=β/2

(S9)

To illustrate the usefulness of this definition, consider the simple case in which σ′(ω) is a Lorentzian,

σ′(ω, T ) =
1

ρ

[
Γ2

ω2 + Γ2

]
→ ρ2

ρ
=

2π2 − βΓF (βΓ)

[F (βΓ)]2
(S10)

where

F (x) = 2x
[
ψ
( x

2π

)
− ψ

( x
4π

)
− log(2)

]
− 2π, (S11)

and ψ(x) is the digamma function. It is easy to see that ρ2/ρ does not depend very strongly on βΓ.
Specifically, ρ2 → ρ as βΓ→∞ and ρ2 → ρ/2 as βΓ→ 0 (i.e. for a narrow Lorentzian).
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Figure S3. Λ−1(iωn) at h ≈ hc for different temperatures. The parameters used in the runs are α = 1.5,
V = 0.5, µ = −1, and h = 2.6.

Naturally, especially at criticality, it is not reasonable to expect σ′(ω) to have a simple Lorentzian
form. However, ρ2 turns out to provide a reasonable estimate of ρ under much more general circum-
stances. Specifically, let us assume that

σ′(ω, T ) = σD(ω, T ) + σreg(ω, T ), (S12)

where σD(ω, T ) is a Drude-like piece (i.e. maximal at ω = 0), that satisfies

σD(ω, T ) −−−→
T→0

Dδ(ω), (S13)

and whose characteristic width at finite temperature is of the order of T or less, while σreg(ω, T ) is
a regular piece with a width that is always large compared to T and correspondingly a magnitude at
low frequencies (ω <∼ T ) that is small compared to σD (i.e. σ′D(0, T ) � σreg(0, T )). Evidence for the
validity of Eq. (S12) in our problem can be seen by comparing Λ(iωn) for different temperatures. This is
shown in Fig. S3. For all temperatures, Λ(iωn) has an apparent “jump” from ωn = 0 to ωn > 0. Λ(iωn)
for different temperatures are seen to approximately lie on a single, nearly temperature-independent
curve. Both features can be readily understood from Eq. (S12). The jump at ωn = 0 is a consequence
of σD(ω, T ), which so long as its width is less than 2πT behaves effectively as if it were a delta function
at ωn = 0. The fact that finite ωn data from different temperatures lie on a single curve suggests that
σreg(ω, T ) is not strongly T dependent over the relevant range of T .

We are now faced with the task of disentangling σreg(ω) and σD(ω). The LFMs clearly combine
information about both σreg and σD. Crucially, however, the two contributions may scale differently
with temperature as T → 0. Consider σreg: its contribution to the LFMs, to lowest order in T , is
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expected to behave as

m0,reg = β

∫
dω

2π

ω
[
σreg(0) + 1

2∂
2
ωσreg(0)ω2 + . . .

]
sinh

(
βω
2

) ∼ T +O(T 3),

m2,reg = β

∫
dω

2π

ω3
[
σreg(0) + 1

2∂
2
ωσreg(0)ω2 + . . .

]
sinh

(
βω
2

) ∼ T 3 +O(T 5). (S14)

In contrast, assuming σD(ω) has a width of the order of T or less, its corresponding LFMs will scale
differently. If the total weight of σD(ω) has a non-zero limit as T → 0, and if the characteristic width
of σD(ω) is much less than T , we expect

m0,D = β

∫
dω

2π

ωσD(ω)

sinh
(
βω
2

) ≈ ∫ dω

π
σD(ω), (S15)

and hence, this is non-zero in the T → 0 limit. This is true also if the characteristic width of σD(ω)
is of the order of T . For example, if σD has a scaling form: σD(ω, T ) = 1

T f
(
ω
T

)
, then we get that

m0,D →
∫∞
−∞ dx xf(x)

2 sinh( x
2 )

= const. in the limit T → 0. In our data, we find that over a range of

temperatures, m0(T ) is weakly temperature dependent, suggesting that it is dominated by m0,D (see
Fig. S4).

The interpretation of m2 is more subtle, as it depends on the precise form of σD(ω) at frequencies
of the order of T . It is instructive to consider a simple model for σD(ω, T ):

σD(ω, T ) =

σ0(T ), ω < ω0(T ),

σ0(T )
(
ω
ω0

)−α
, ω0(T ) < ω.

(S16)

with ω0(T ) < AT , where A is a constant. Having a finite optical weight requires α > 1. Then, to
be consistent with the observation that m0,D ≈ const., we require that σ0(T )ω0(T ) = D = const. We
then get that

m2,D ≈ σ0(T )

∫ ω0(T )

0

dωω2 + σ0

∫ T

ω0(T )

dωω2

(
ω

ω0

)−α
=

1

3
Dω2

0 +
1

3− αDω
2
0

[(
T

ω0

)3−α
− 1

]
. (S17)

We see that, if ω0/T → 0 as T → 0, we get that m2,D/T
2 → 0 as T → 0. For example, if ω0 ∼ T 1+ε

with ε > 0, then m2,D ∼ Tmin[2+(α−1)ε, 2(1+ε)]. On the other hand, if ω0 ∼ T , we get that m2,D ∼ T 2.
As another example, one can analyze the low-frequency conductivity of a clean Fermi liquid with

umklapp scattering. The conductivity is given by

σFL(ω) =
D

π

Γtr(T, ω)

[Γtr(T, ω)]2 + ω2
, (S18)

where the Fermi liquid transport scattering rate is Γtr(T, ω) = (ω2 + 4π2T 2)/W (W is of the order of
the Fermi energy). The integral for m0 can be calculated in the limit T → 0, and gives m0 = D. The
integral for m2 is dominated by frequencies ω ∼ T , such that at low temperatures, m2 ∼ T 3.
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Figure S4. m0 and m2/T
2 as a function of T at criticality.

Turning to our DQMC data, m0 and m2 as a function of temperature at criticality are shown in
Fig. S4 for two sets of parameters. We find that both m0 and m2/T

2 extrapolate to a non-zero value
in the limit T → 0. This implies that these moments are indeed dominated by the contribution of σD.
For the larger Tc parameter set (right panel), both quantities show a sudden drop at temperatures
below T = 0.2t; this is likely to be an effect of superconducting fluctuations upon approaching the
superconducting critical temperature, Tc≈ 0.11t. Over a range of temperatures above T = 0.05t (left
panel) and T = 0.2t (right panel), the observed behavior is consistent with ω0 ∝ T in Eq. (S16) and
with σ0 ∝ 1/T .

It is worth noting that there are other possible ways to define a resistivity proxy in terms of m0 and
m2, depending on the assumed form of σ at criticality. For instance, if σD(ω) = σ0g

(
ω
Γ

)
, where g(x)

is a dimensionless function with a well-defined second moment (unlike a Lorentzian) and Γ ≤ AT , we
get that m0 ∝ σ0Γ and m2 ∝ σ0Γ3. In this case, a more appropriate resistivity proxy is

ρ̃2 =

√
m2/m0

m0
∝ 1

σ0
. (S19)

In the particular case where Γ ∝ T , σ0 ∝ 1/T , both ρ2 and ρ̃2 are proportional to T . Reassuringly,
computing ρ̃2 from our DQMC data at criticality produces qualitatively similar results as ρ2.
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B. Fitting function for Λ(ωn)

In order to fit the imaginary-time data for the current-current correlator, Λ(ωn), we use the following
model for the optical conductivity [Eq. (4) of the main text]:

Λfit(ωn) =

N∑
j=1

Aj
ω2
n + γj |ωn|+ Ω2

j

, (S20)

with free parameters Aj , γj , Ωj , and we have found that N = 2 is sufficient to fit our data. When
comparing this form to the QMC data, we need to recall that the QMC simulations are performed with
a finite imaginary time step, ∆τ . The imaginary time correlation function Λ̃(τ) is sampled at discrete
values τ = n∆τ (where n is an integer), and Λ(ωn) is its discrete Fourier transform. In particular,
Λ(ωn) is periodic in ωn with a period of 2π/∆τ . The discrete imaginary time version of (S20), which
is appropriate for comparison with our Matsubara frequency data, is

Λfit,∆τ (ωn) =

N∑
j=1

∞∑
q=−∞

Aj(
ωn − 2πq

∆τ

)2
+ γj |ωn − 2πq

∆τ |+ Ω2
j

. (S21)

The sum over q can be performed explicitly, using

∞∑
q=−∞

1

(x+ q)2 +A|x+ q|+B2
=
ψ
(
A
2 +

√
A2−4B2

2 + x
)
− ψ

(
A
2 −

√
A2−4B2

2 + x
)

√
A2 − 4B2

+
ψ
(

1 + A
2 +

√
A2−4B2

2 − x
)
− ψ

(
1 + A

2 −
√
A2−4B2

2 − x
)

√
A2 − 4B2

, (S22)

where ψ(x) is a polygamma function, A =
γj∆τ

2π , B =
Ωj∆τ

2π , and x = ωn∆τ
2π (0 ≤ x < 1). This is the

form we used in our fits to the QMC data.

C. Sources of error for transport measurements

Our numerical experiments entail several sources of error, particularly with respect to measurement
of the DC resistivity via ρ1 and ρ2. In this appendix we first discuss error estimates for the finite size
data shown in Fig. S5, and then estimate the error entailed by taking the largest available system to
represent the thermodynamic limit.
ρ2 is extracted directly from the value and second τ derivative of Λ̃(τ) at τ = β/2, which are in turn

determined by a linear fit of Λ̃(τ) vs (τ − β/2)2 over an appropriate window. The statistical errors on
Λ̃(τ) give rise to straightforward confidence intervals on Λ̃(β/2) and ∂2

τ Λ̃(β/2), which are propagated
to yield the error estimates for ρ2 reflected in Fig. S5.

Fig. S6 shows that statistical error is not a meaningful source of error for ρ1. While the two compo-
nent fit described in the text is consistently within a few percent of Λ(ωn), the deviation substantially
exceeds the statistical error bars on Λ(ωn) in a systematic, frequency dependent way. It is beyond our
simple approach to estimate the magnitude of the error in ρ1 that this systematic deviation entails. An
additional source of error is in numerical minimization–different starting guesses for the least squares
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Figure S6. Left: data for Λ(ωn) and the two-component fit described in the text. Right: the deviation between
fit and data, expressed as a fraction of Λ, with statistical errors for comparison.

algorithm lead to variation of the inferred ρ1 due to a broad minimum in the objective function, par-
ticularly at high temperature. This variation (for several choices of starting guess) yields the error
bars pictured in Fig. S5.

For both ρ1 and ρ2, there are systematic finite-size errors that become increasingly important at low
temperature. In the text, we quote the value for the largest system size simulated (between 16 × 16
and 20 × 20, depending on the temperature). To estimate the magnitude of the finite-size error, we
perform a quadratic fit to the data as a function of 1/L, as shown in Fig. S7. The difference between
the 1/L → 0 extrapolation and the value for the largest system size is our estimate for the finite size
error. The finite size error and the fitting/minimization error are added in quadrature to produce the
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Figure S7. Estimation of finite size error via a quadratic fit in 1/L.

error estimates in the paper. An identical procedure of error estimation is employed for the width and
weight of the Drude-like piece shown in the paper.

D. Insensitivity of the fit to an additional narrow peak in σ′(ω)

In the main text, we have used a simple two-component form for the conductivity σ′(ω) to fit the
Matsubara frequency data. This is the “minimal” form that is required, in the sense that the data
cannot be well described with a single component form. However, as we now show, we cannot exclude
the presence of additional components. In particular, the data can be described equally well with an
additional narrow peak in σ′(ω) centered at ω = 0, whose width is much smaller than T .

In order to demonstrate this, we have repeated the fitting analysis describes in the paper with an
additional delta-function contribution to σ′(ω) with a variable weight A. This corresponds to the
following fitting function:

Λ̃fit = Λfit + πAδωn,0, (S23)

where Λfit is the two component form used in the main text [Eq. (??) above]. In Fig. S8 we present
the root mean square deviation of the best fit as a function of A. As seen in the figure, the fit quality
improves slightly upon increasing A, until it reaches a certain critical value where the deviation turns up
sharply. We conclude that our analysis of the conductivity cannot rule out the presence of additional
“fine structure” of σ′(ω) at frequencies ω <∼ T . In particular, if such fine structure is present, the
resistivity proxies can be dramatically different from the true DC resistivity. (For example, if A 6= 0,
the DC resistivity is zero.)

Therefore, the resistivity proxies which we obtained by analyzing the imaginary time (or Matsubara
frequency) correlator cannot be related to the true DC resistivity without further assumptions. The
proxies can tell us about the DC resistivity only if σ′(ω) has a sufficiently simple structure at low
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Figure S8. Softness of the two component conductivity fit to the addition of a sharp Drude peak. Plotted is
the root mean squared deviation of the fit from the numerical data, normalized by Λ̄, the mean value of Λ.
The parameters used in the QMC run were α = 1.5, V = 0.5, µ = 1, h = 2.6 ≈ hc, and L = 20. The quality of
the fit is modestly improved by the addition of a delta function component of fixed weight, with the remaining
two components of form (??). As expected, we cannot rule out additional structure of the conductivity at
frequencies far less than the temperature.

frequency, such as Eq. (S12) above. The appeal of this form is in its simplicity; however, there are
well-defined scenarios where it might fail, e.g. due to the emergence of an approximate conserved
momentum in the presence of a sharp Fermi surface. Whether this is the case in our problem requires
going beyond the present analysis.

E. Comparison with maximal-entropy analytic continuation

As an additional test on our results, we obtain the conductivity by applying the maximal entropy
method (maxEnt), using Bryan’s algorithm [4, 5]. The maxEnt method, while not as constrained as
the fitting approach we have used in the main text, is biased towards producing broad, featureless
spectral functions. The resulting conductivity σ(ω), shown in Fig. S9 has two-peak structure much
like the fitting function used in the main text. Close to criticality, the Drude-like peak at ω = 0 has
width comparable to T , and the resistivity roughly matches the results of the fit, ρmaxEnt ≈ ρ2. There
is a greater discrepancy between the two component fit and the maximum entropy result far from hc.
This is consistent with the development of a parametrically sharp Drude peak (i.e. one with width
much smaller than T ), a feature likely to be ill-captured by any unbiased form of analytic continuation.

S-II. FERMION MASS ENHANCEMENT

We present evidence in the main text that the low temperature metallic states for h away from hc
are Fermi liquid-like in character, and should therefore be characterized by an effective quasiparticle
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Figure S9. Top panels: The optical conductivity σ(ω) as obtained by maxEnt, compared with the fitting
function shown in the main text. Bottom panels: The temperature dependence of the DC resistivity obtained
by both methods. Shown here for α = 1.5, V = 0.5, µ = 1

dispersion. In this section we describe a method to approximately measure this dispersion near the
Fermi surface, and show that it is subject to substantial flattening as h → hc. This reduction in the
effective Fermi velocity, which is observed everywhere on the Fermi surface except the cold spots, is
typically described as an enhanced effective mass.

We define a low-frequency moment of the spectral function, Ω1

(
~k
)
from the Fermion green function

G̃
(
~k, τ

)
according to

Ω1

(
~k
)

= −∂τ log
[
G̃
(
~k, τ

)] ∣∣∣∣∣
τ=β/2

=

∫
dω

ωA(~k,ω)
cosh(βω/2)∫

dω
A(~k,ω)

cosh(βω/2)

, (S24)

where the final equality is an exact identity. For a free fermion system, Ω1

(
~k
)
precisely equals the

dispersion. In a Fermi liquid at temperature T , there is a renormalized quasiparticle dispersion ε
(
~k
)
,

and as ~k approaches the Fermi surfaces, the spectral function is dominated by a peak centered at
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ε
(
~k
)
, with width much less than T . Accordingly, Ω1

(
~k
)
→ ε

(
~k
)
as ε

(
~k
)
/T → 0. Therefore, in a

Fermi liquid, Ω1

(
~k
)
is a valid proxy for the dispersion within a range ∼ T of the Fermi level. The

assumptions above clearly break down close to criticality (at least away from the cold regions), where
there are no well-defined quasiparticles.

In Fig. S10 we exhibit the momentum dependence of Ω1 at fixed temperature for a variety of values
of the tuning parameter h. Except for near the cold spots, Ω1 tends to flatten near the Fermi level as
hc is approached. Similar results are found for smaller values of the coupling constant and the fermion
density.
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Figure S10. The low frequency moment Ω1 along various cuts through the Fermi surface, showing mass
enhancement on approach to the QCP. The QCP is located at h ≈ 2.6, and for h ≤ hc (upper row), a small
symmetry breaking field has been applied to orient the nematic order so that hopping in the x direction is
enhanced (this also cuts off fluctuation effects to some extent near hc). The cut through ky = π/2 passes near
the cold spot, and has little mass enhancement on approach to the QCP. The shaded range is within 2T of the
Fermi level, roughly where Ω1 should faithfully measure the quasiparticle dispersion.

S-III. FERMION SPECTRAL FUNCTION

In this section we construct the fermionic spectral function Ak(ω) by the maximum entropy method.
Close to criticality, [Fig.S11], the spectral function away from the cold spots shows very broad features,
without a well-defined dispersing peak. Below the superconducting Tc, a gap opens around ω = 0.
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At the cold spots or away from criticality [Fig.S12], we find well-defined peaks, showing a BCS-like
transition into the superconducting phase. Although the maxEnt results are visually appealing and
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Figure S11. The fermionic spectral function as obtained by the maxEnt method. Different curves represent
different momenta close to the Fermi surface. Shown here for h ≈ hc

agree with the direct analysis of imaginary-time data shown in the main text, a word of caution is in
order. The maxEnt method favors spectral functions which are as smooth and featureless as possible,
while still in agreement with the data. Thus, it is not reliable for extracting spectral features with
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Figure S12. The fermionic spectral function as obtained by the maxEnt method. Different curves represent
different momenta close to the Fermi surface. Shown here for h > hc

typical frequencies much smaller than the temperature.
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Figure S13. Phase diagrams for two values of the coupling constants.

S-IV. BEHAVIOR AT LOWER DENSITIES

In this section we present results for somewhat smaller densities than those presented in the main
text. We focus on the two sets of couplings α and V as in the main text, with the chemical potential
set to µ = −2. In figure S13 we show the phase diagrams. For both couplings, the finite temperature
nematic phase boundary Tnematic(h) is linear at high temperature, and undergoes a sharp change
of slope at lower temperatures. At the weaker coupling, α = 1, a multi-peak structure is seen in the
distribution of several thermodynamic quantities, such as the density and the nematic order parameter,
suggesting a weakly first order transition at low temperatures. Whereas at the stronger coupling,
α = 1.5 and V = 0.5, we find a high Tc superconducting dome with maximal Tc ≈ 0.12, there is
no evidence of superconductivity for the weaker coupling, α = 1 and V = 1, down to temperatures
T = 0.033.

The imaginary part of the single fermion self-energy, shown in Fig. S14, shares similar characteristics
to the larger-density data. A substantial “nodal-antinodal” dichotomy is seen, and the self energy close
to h = hc seems to approach a constant as νn → 0. At the stronger coupling, α = 1.5, the characteristic
upturn of the self energy at low frequencies is seen below the superconducting Tc.

The estimates for the resistivity, ρ1 and ρ2, are shown in Fig. S15. As in the higher densities shown
in the main text, the resistivity proxy ρ2 (right column) agrees qualitatively with the results of the two-
component fit ρ1 (left column). The optical conductivity contains a Drude-like peak. The magnitude
of the DC resistivity is of order of the quantum of resistance h̄/e2. However, unlike for higher densities,
we do not find linear-in T resistivity over a range of temperatures close to the nematic quantum phase
transition.

A possible cause for the qualitative difference in the resistivity between the lower and higher density
systems is the smaller size of the Fermi surface at these densities, which might lead to a suppression of
certain umklapp processes at low temperatures. For our Fermi surface, an umklapp scattering process
involving two fermions near the Fermi point along the line (0, π) − (π, π), ~kh, and symmetry-related
points requires kh ≥ π

2 . Similarly, a process involving two fermions near the Fermi points along the
diagonal, ~kd, and symmetry-related points requires kd ≥ π√

2
. The magnitudes of the Fermi momenta

kd and kh, measured with respect to (π, π), are shown in Table I, and are found to be close to the
aforementioned limiting values.
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Figure S14. The imaginary part of the fermion self-energy, for various temperatures and with the nominal
Fermi momenta kd and kh along the (0, 0) − (π, π) and (0, π) − (π, π) directions, respectively. Data are shown
for a 14 × 14 system both near hc (left column) and somewhat in the symmetric phase (right column). In the
upper panels, data points below Tc are connected by dashed lines.

2kh
π

2kd√
2π

α = 1, V = 1, µ = −2 1.16 ± 0.08 0.72 ± 0.08

α = 1.5, V = 0.5, µ = −2 1.28 ± 0.08 0.80 ± 0.08

Table I. Magnitudes of Fermi momenta along high symmetry directions.
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Figure S15. The temperature dependence of the resistivity proxies.


