Table S1 Gene accession numbers for phylogenetic analysis

Organism	Accession number	Reference
Streptococcus pyogenes PmtA	AAZ51785.1	(1)
Streptococcus agalactiae	KLL21255.1	
Streptococcus canis	WP_003044256.1	
Streptococcus dysgalactiae	WP_046159323.1	
Streptococcus iniae	WP_003101088.1	
Streptococcus mutans	WP_002304112.1	
Streptococcus pneumoniae	CVM74562.1	
Streptococcus porcinus	WP_003083554.1	
Streptococcus suis	WP_029187041.1	
Streptococcus thermophilus	WP_049555285.1	
Enterococcus faecalis	WP_034863010.1	
Enterococcus faecium	WP_058138288.1	
Listeria monocytogenes FrvA	WP_014929421.1	(2-4)
Bacillus subtilis PfeT	CUB56232.1	(4, 5)
Mycobacterium smegmatis CtpD		(6)
Sulfitobacter sp. NAS 14.1 sCoaT	ZP_00964573.1	(7)
Cupriavidus metallidurans CzcP	WP_011514822.1	(8)
Mycobacterium tuberculosis CtpD	WP_057125145.1	(9)
Mycobacterium tuberculosis CtpJ	WP_031727628.1	(9)
Chlamydia trachomatis	CRH88065.1	

Table S2 List of strains and	plasmids used in this study
------------------------------	-----------------------------

Bacterial strains	Description	Reference		
<u>Escherichia coli</u>				
MC1061	E. coli laboratory cloning strain	(10)		
Top10	E. coli laboratory cloning strain			
<u>Streptococcus pyogenes</u>				
5448	S. pyogenes invasive M1T1 strain	(11)		
$5448 \Delta pmtA$	S. pyogenes 5448 $\Delta pmtA::km^{R}$ deletion mutant	This study		
5448 $\Delta pmtA::pmtA$	S. pyogenes 5448 pmtA complemented strain	This study		
$5448\Delta perR$	S. pyogenes 5448 $\Delta perR$::spec ^R deletion mutant	(12)		
$5448\Delta perR::perR$	S. pyogenes 5448 $\Delta perR$ complemented strain	(12)		
Plasmids	Description	Reference		
pHY304	Temperature sensitive shuttle plasmid::Em ^R	(13)		
pJRS233	Temperature sensitive shuttle plasmid::Em ^R	(14)		
pUC4ΩKm2	Template for Km^{R}	(15)		
pHY304-pmtA-KO	pHY304 + pmtA knockout construct inserted at t	he This study		
	XhoI and BamHI site	-		
pJRS233-pmtA	pJRS233 + pmtA complement construct inserted	at the This study		
-	XhoI and BamHI site	-		

Table S3 List of primers used in this study

Tuble 55 List of princip used in this study				
Primer	Sequence (5'-3')			
Deletion mute	ation and reverse complementation constructs			
pmtA-KO-1	CCCGGCTCGAGTTGATAGCGACAAGGTTCTTTTT	XhoI		
pmtA-KO-2	CAAAGTTGGCGTATAACATACCGATAGCTGCCAAAATCAT	$Km^{R} 5'$		
pmtA-KO-3	TTACTGGATGAATTGTTTTAGAGAACGAACCGCCAATTATG	<i>Km</i> ^R 3'		
pmtA-KO-4	GGGCCC GGATCC CTTTCATAAGTCTTACTATTATTAAACAC	BamHI		
km-F	TATGTTATACGCCAACTTTG			
km-R	CTAAAACAATTCATCCAGTAA			
Gene expression studies				
pmtA-RT-F	GAAAAGCAAAACCGCCACCT			
<i>pmtA</i> -RT-R	GGGCACATGGTGAAGCTACT			
gyrA-RT-F	GAAGTGATCCCTGGACCTGA			
gyrA-RT-R	CCCGACCTGTTTGAGTTGTT			

Figure S1: Multiple sequence alignment of *S. pyogenes* PmtA and homologous P_{1-B4} type ATPase family sequences. Relative location of six core purported transmembrane helices based on the coordinates from *Bacillus subtilis* PfeT transmembrane profiles (reference). Key conserved motifs within TM helices 4 and 6 are highlighted in blue and the essential serine within TM 6 is highlighted in red. Consensus patterns based on discriminating equivalence class at a 100% threshold are

indicated under the alignment. Percent amino acid identity relative to *S. pyogenes* PmtA (TM 1-6) are indicated next to the species name.

Figure S2: Growth analysis in the presence of Co(II). Overnight cultures of 5448 WT (black circles), 5448 $\Delta pmtA$ (open circles) and 5448 $\Delta pmtA$::pmtA (grey circles) were diluted to OD₆₀₀ = 0.05 into THY broth alone (A) or THY broth with 0.5 mM (B), 0.75 mM (C) or 1 mM (D) Co(II). Growth was monitored at 37°C by optical density recording at 595 nm (OD₅₉₅). Graphs represent mean ± standard deviation of 3 independent biological replicates.

Figure S3: Growth analysis in the presence of Mn(II). Overnight cultures of 5448 WT (black circles), 5448 $\Delta pmtA$ (open circles) and 5448 $\Delta pmtA$::pmtA (grey circles) were diluted to OD₆₀₀ = 0.05 into THY broth alone (A) or THY broth with 0.5 mM (B), 0.75 mM (C) or 1 mM (D) Mn(II). Growth was monitored at 37°C by optical density recording at 595 nm (OD₅₉₅). Graphs represent mean ± standard deviation of 3 independent biological replicates.

Figure S4: Growth analysis in the presence of Ni(II). Overnight cultures of 5448 WT (black circles), 5448 $\Delta pmtA$ (open circles) and 5448 $\Delta pmtA$::pmtA (grey circles) were diluted to OD₆₀₀ = 0.05 into THY broth alone (A) or THY broth with 1 mM (B), 1.5 mM (C) or 2 mM (D) Ni(II). Growth was monitored at 37°C by optical density recording at 595 nm (OD₅₉₅). Graphs represent mean ± standard deviation of 3 independent biological replicates.

Figure S5: Growth analysis in the presence of Cu(II). Overnight cultures of 5448 WT (black circles), 5448 $\Delta pmtA$ (open circles) and 5448 $\Delta pmtA$::pmtA (grey circles) were diluted to OD₆₀₀ = 0.05 into THY broth alone (A) or THY broth with 0.6 mM (B), 1.2 mM (C) or 1.8 mM (D) Cu(II). Growth was monitored at 37°C by optical density recording at 595 nm (OD₅₉₅). Graphs represent mean ± standard deviation of 3 independent biological replicates.

Figure S6: Growth analysis in the presence of Zn(II). Overnight cultures of 5448 WT (black circles), $5448\Delta pmtA$ (open circles) and $5448\Delta pmtA$::pmtA (grey circles) were diluted to $OD_{600} = 0.05$ into THY broth alone (A) or THY broth with 0.25 mM (B), 0.5 mM (C) or 0.75 mM (D) Zn(II). Growth was monitored at 37°C by optical density recording at 595 nm (OD_{595}). Graphs represent mean ± standard deviation of 3 independent biological replicates.

Figure S7: Intracellular metal accumulation of Co and Zn. Mid-exponential cultures $(OD_{600} \ 0.6-0.8)$ of 5448 WT, 5448 $\Delta pmtA$ and 5448 $\Delta pmtA$::pmtA were challenged with either sterile water (black bars) or 0.50 mM Co(II) (A) or 1 mM Zn(II) (B) (white bars) for 1 h at 37°C. Cells were analyzed by inductively-coupled plasma mass spectrometry (ICP-MS). Total metal content was normalized to protein content of the sample. Graph represents mean + standard deviation of 3 independent biological experiments (2-way ANOVA used comparing all to 5448 WT of that condition, **** P < 0.0001)

Figure S8: Growth curve analysis of strains 5448 WT (black circles), $5448\Delta pmtA$ (open circles) and $5448\Delta pmtA::pmtA$ (grey circles) in hydrogen peroxide. Strains were grown in THY to mid-exponential phase (OD 0.6-0.8) and diluted to $OD_{600} = 0.05$ in THY broth (A) or THY broth containing 1 mM (B), 2 mM (C) or 3 mM (D) H_2O_2 . Growth was monitored at 37°C by optical density recording at 595 nm (OD₅₉₅). Graphs represent mean ± standard deviation of 3 independent biological replicates.

Figure S9: Growth analysis in the presence of the superoxide generator, paraquat. Overnight cultures of 5448 WT (black circles), $5448\Delta pmtA$ (open circles) and $5448\Delta pmtA::pmtA$ (grey circles) were diluted to $OD_{600} = 0.05$ THY broth alone (A) or THY broth with 0.75 mM (B), 1 mM (C) or 1.25 mM (D) paraquat. Growth was monitored at 37°C by optical density recording at 595 nm (OD_{595}). Graphs represent mean ± standard deviation of 3 independent biological replicates.

Figure S10: Virulence of 5448 $\Delta pmtA$ in murine model of infection. Survival of mice after subcutaneous challenge of transgenic humanized plasminogen *AlbPLG1* C57BL/J6 mice with 5448 WT (black circles), 5448 $\Delta pmtA$ (red triangles) and 5448 $\Delta pmtA::pmtA$ (black squares). Infecting dose 2 x 10⁸ colony-forming units (CFU). Mantel-cox log rank test was performed comparing 5448 $\Delta pmtA$ to 5448 WT (*P* = 0.5162) and 5448 $\Delta pmtA::pmtA$ (*P* = 0.9723) (Graphpad Prism 7)

Figure S11: Growth curve analysis of streptonigrin rescue by Mn(II). Overnight cultures of strains 5448 WT (black circles), $5448\Delta pmtA$ (open circles) and $5448\Delta pmtA$::pmtA (grey circles) were diluted to $OD_{600} = 0.05$ in THY broth (A) or THY broth with 250 nM streptonigrin (B), 250 nM streptonigrin + 0.25 mM Mn(II) (C) or 250 nM streptonigrin + 0.5 mM Mn(II) (D). Growth was monitored at 37°C by optical density recording at 595 nm (OD_{595}). Graphs represent mean \pm standard deviation of 3 independent biological replicates.

Figure S12: Growth curve analysis of Co(II) rescue by Mn(II). Overnight cultures of strains 5448 WT (black circles), 5448 Δ *pmtA* (open circles) and 5448 Δ *pmtA::pmtA* (grey circles) were diluted to OD₆₀₀ = 0.05 in THY broth (A) or THY broth with 1 mM Co(II) (B), 1 mM Co(II) + 0.25 mM Mn(II) (C) or 1 mM Co(II) + 0.5 mM Mn(II) (D). Growth was monitored at 37°C by optical density recording at 595 nm (OD₅₉₅). Graphs represent mean ± standard deviation of 3 independent biological replicates.

- 1. **Brenot A, Weston BF, Caparon MG.** 2007. A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in *Streptococcus pyogenes*. Mol. Microbiol. **63:**1185-1196.
- 2. **McLaughlin HP, Bahey-El-Din M, Casey PG, Hill C, Gahan CG.** 2013. A mutant in the *Listeria monocytogenes* Fur-regulated virulence locus (frvA) induces cellular immunity and confers protection against listeriosis in mice. J. Med. Microbiol. **62:**185-190.
- 3. McLaughlin HP, Xiao Q, Rea RB, Pi H, Casey PG, Darby T, Charbit A, Sleator RD, Joyce SA, Cowart RE, Hill C, Klebba PE, Gahan CG. 2012. A putative P-type ATPase required for virulence and resistance to haem toxicity in Listeria monocytogenes. PLoS One 7:e30928.
- 4. **Pi H, Patel SJ, Arguello JM, Helmann JD.** 2016. The *Listeria monocytogenes* Fur-regulated virulence protein FrvA is an Fe(II) efflux P type ATPase. Mol. Microbiol. **100:**1066-1079.
- 5. **Gaballa A, Helmann JD.** 2002. A peroxide-induced zinc uptake system plays an important role in protection against oxidative stress in *Bacillus subtilis*. Mol. Microbiol. **45:**997-1005.
- 6. **Raimunda D, Long JE, Sassetti CM, Argüello JM.** 2012. Role in metal homeostasis of CtpD, a Co2+ transporting P1B4-ATPase of Mycobacterium smegmatis. Mol. Microbiol. **84:**1139-1149.
- Zielazinski EL, Cutsail GE, Hoffman BM, Stemmler TL, Rosenzweig AC. 2012. Characterization of a Cobalt-Specific P-1B-ATPase. Biochemistry 51:7891-7900.
- 8. Scherer J, Nies DH. 2009. CzcP is a novel efflux system contributing to transition metal resistance in Cupriavidus metallidurans CH34. Mol. Microbiol. **73:**601-621.
- 9. **Raimunda D, Long JE, Padilla-Benavides T, Sassetti CM, Arguello JM.** 2014. Differential roles for the Co2+/Ni2+ transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence. Mol. Microbiol. **91:**185-197.
- 10. Wertman KF, Wyman AR, Botstein D. 1986. Host-vector interactions which affect the viability of recombinant phage lambda clones. Gene **49:**253-262.
- Chatellier S, Ihendyane N, Kansal RG, Khambaty F, Basma H, Norrby-Teglund A, Low DE, McGeer A, Kotb M. 2000. Genetic relatedness and superantigen expression in group A *Streptococcus* serotype M1 isolates from patients with severe and nonsevere invasive diseases. Infect. Immun. 68:3523-3534.
- 12. **Turner AG, Ong CL, Gillen CM, Davies MR, West NP, McEwan AG, Walker MJ.** 2015. Manganese homeostasis in Group A *Streptococcus* is critical for resistance to oxidative stress and virulence. mBio 6:e00278-00215.
- 13. **Chaffin DO, Beres SB, Yim HH, Rubens CE.** 2000. The serotype of type Ia and III group B streptococci is determined by the polymerase gene within the polycistronic capsule operon. J. Bacteriol. **182:**4466-4477.
- Perezcasal J, Price JA, Maguin E, Scott JR. 1993. An M-Protein with a Single C-Repeat Prevents Phagocytosis of Streptococcus-Pyogenes - Use of a Temperature-Sensitive Shuttle Vector to Deliver Homologous Sequences to the Chromosome of S-Pyogenes. Mol. Microbiol. 8:809-819.
- 15. **Perez-Casal J, Caparon MG, Scott JR.** 1991. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to

the receptor proteins of two-component regulatory systems. J. Bacteriol. **173:**2617-2624.