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ABSTRACT An effective medium treatment is used to
extend Berg and Purcell's theory of diffusion-controlled ligand
binding to a sphere partially covered by receptors. This
treatment takes into account more completely the effects of
interference between receptors. The results are in excellent
agreement with computer simulations by Northrup.

K of ligands into the absorbing disks. This is given by the
surface integral

K = 0 dS D [aC/ar]r=R* [2]

Smoluchowski's result, KsM, applies when the entire sur-
face is absorbing,

A mathematical problem that arises in many contexts is to
determine the diffusion-controlled rate of irreversible binding
of ligands to receptors on the surface of a sphere. Long ago
this problem was solved by Smoluchowski in the limit where
the surface is completely covered by receptors. Berg and
Purcell (1) solved it in another limit, where there are many
receptors but the size of a single receptor is much smaller
than the typical distance between receptors. They found that
even in this limit the Smoluchowski result is recovered if the
number of receptors is large enough. Berg and Purcell used
an electrostatic analogy to obtain their final results; an
intuitively appealing re-derivation was given by Shoup and
Szabo (2).
Northrup (3) reported Brownian dynamics simulations of

this problem. At low coverage, the agreement with the
Berg-Purcell result was good. But small discrepancies were
found at higher coverage; for example, when about one-
fourth of the sphere's surface was covered by receptors, the
simulation results were about 5% higher than the Berg-
Purcell prediction.

I present here an approximate treatment of this problem
that takes into account more completely the effects of coop-
erative interactions between receptors. The result agrees
with Northrup's simulations at all coverages to within their
experimental error (S. H. Northrup, personal communica-
tion).
The problem is as follows. N receptors are placed at

random on the surface of a sphere of radius R and area 4iR2.
A single receptor is treated as a disk of radius a and area ira2.
The radius ofthe disk is assumed to be much smaller than that
of the sphere, but if there are enough receptors, the total area
Nra2 of the disks can be comparable with the area 4irR2 of
the sphere. The fraction of the sphere's surface that is
covered by disks is

KsM = 4irDR. [3]

The result found by Berg and Purcell, for partial coverage, is

Na
KBP=KsM N;Va + irR [4]

This reduces to the Smoluchowski KsM when Na is much
larger than 'rR, and to 4DNa when irR is much larger than
Na. My modification of the Berg-Purcell formula is

Na
KE = K5MNa + irR(l - PA) [5

The extra factor in the denominator is the fraction of the
sphere's surface that is not occupied by absorbing disks. (The
subscript E stands for "effective medium.") This is the
formula that agrees well with Northrup's simulations.
As a beginning, it will be useful to review the derivation of

the Berg-Purcell formula due to Shoup and Szabo. The
steady-state diffusion equation is

DV2 C= 0. [6]

This is to be solved with appropriate boundary conditions on
the surface of the sphere. To an observer far from the sphere,
the surface appears to be uniform but neither perfectly
reflecting nor perfectly absorbing. This suggests use of a
"radiation boundary condition,"

D-= kC on r = R.
ar [7]

If k = 0, the surface is perfectly reflecting, and if k -a oo, the
surface is perfectly absorbing. Then the appropriate solution
of the diffusion equation is

PA = Nira2/4irR2. [1]

The ligands have a diffusion coefficient D, and their concen-
tration C at position r is maintained at the constant value C
= 1 far from the sphere. On the surface of the sphere, C
vanishes if r is inside any disk, and the normal gradient aC/ar
vanishes if r is outside all disks. That is, the disks are
perfectly absorbing, and otherwise the surface is perfectly
reflecting. The problem is to determine the steady-state flux

a
C = 1 --,

r
[8]

and the boundary condition on R determines the coefficient

k
kIR + DIR2 [9]

The total flux into the sphere is obtained by integrating the
normal gradient of C over the surface, Eq. 2,

47rDk
KsM = 4'rDa = kIR + DIR2
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Shoup and Szabo suggest an approximation for k, based on
the observation (4) that the flux into a single isolated hole or
absorbing disk of radius a in an infinite flat plane is 4Da. It
is reasonable to expect that the flux into a single disk on the
sphere is also 4Da, as long as the radius of the disk is much
smaller than the radius of the sphere, so that its environment
is locally flat. The number of disks per unit area is N/4irR2.
Then Shoup and Szabo use the intuitively plausible guess that
k is the product of the flux into one disk times the number of
disks per unit area,

N
k 4Da2.41TR" [11]

This guess can be good only if the disks are far enough
apart. The reason is that a single absorbing disk produces a
change of the concentration C that extends a distance of the
order of many disk radii. This complicates the fitting of
boundary conditions on the reflecting region and on the other
disks.
When Eq. 11 is put into KSM, one gets the Berg-Purcell

formula. My result is equivalent to replacing k by k/(1 - pA,
where PA is the fraction of the surface area that is absorbing.
This takes into account at least approximately the effects on
k of interference between disks.
The derivation to be presented here uses an "effective

medium" approximation. (Effective medium arguments are
hardly ever exact but they are often surprisingly accurate,
and they provide results with a minimum of labor.) The
sphere having N absorbing disks on a reflecting surface is
replaced by a sphere with one disk-shaped region, which can
be either perfectly absorbing or perfectly reflecting, sur-
rounded by a uniform partially absorbing surface of the sort
used by Shoup and Szabo. The probability that the special
region is perfectly absorbing is PA, and the probability that it
is perfectly reflecting is PR = 1 - PA.
Now consider the three cases E (for effective), A (for

absorbing), and R (for reflecting). In case E, the entire
surface is uniformly partially absorbing; the total flux into the
sphere is KE. In case A, the special region is perfectly
absorbing and the rest of the surface is partially absorbing;
the total flux is KA. In case R, the special region is perfectly
reflecting and the rest ofthe surface is partially absorbing; the
total flux is KR. The effective medium approximation is found
by requiring that KE is the average of KA and KR,

KE = PAKA + PRKR- [12]
This determines the degree to which the surface is partially
absorbing. Now the three fluxes are needed.
At this point it appears to be necessary to solve Laplace's

equation for the three cases E, R, and A; however, most of
the work has already been done, and only some careful
organization is needed. Spherical polar coordinates (r, 6, 4)
are used; the surface is r = R. In all cases, C(r, 6, 4) is fully
determined by the boundary conditions. Far from the sphere,
C = 1. On the surface of the sphere, the boundary conditions

may involve either the value C(R, 6, 4) or the normal
derivative

Y(6, 4)) = C(r, r [13]

The part of the surface lying inside the chosen disk is denoted
by [in], the rest of the surface is [out], and the entire surface
is [all] = [in] + [out]. Then the three cases may be summa-
rized as follows:

E[all] CE= 1-yR; YE =y

R [in] CR = ?

[out] CR= ?

A [in] CA= 0

[out] CA= ?

; YR=0

; R= Y

; YA ?

; YA = Vt

The question marks indicate values or derivatives that are to
be determined by solving Laplace's equation, using the
boundary conditions that are explicitly stated. One more
case, S, is needed. This is a single absorbing disk on a
reflecting sphere:

S [in] Cs = 0;

[out] Cs= ?;

es= ?

Vs = O.

In case E, the solution is known. In case R, it is not really
needed, because the flux is fully determined by y(6, 4) and
this is given. In case S, the solution is nearly that of a hole in
a flat plate, which is known. As observed earlier, the total
flux into the hole is 4Da. So only case A remains. But there
is a simple identity connecting A to E and S:

CA (r, 6, 4) = CE(r) + CE(R)[CS(r, 6, 4) - 1]. [14]

This may be verified by observing that it solves Laplace's
equation and fits all the boundary conditions, far from the
sphere and on [in] and [out]. The radial derivative is

YA(O, 4) = Y + CE(R)YS(6, 40)) [15]

Now it is easy to find the three fluxes. They are KE =

4IR2Dy, KR = (4irR2 - lra2)Dy, Ks = 4Da, and KA = KE +
CE(R)4Da. After some algebraic rearrangement, the effective
medium self-consistency condition, Eq. 12, leads to Eq. 5 for
KE. This concludes the derivation.

I thank Attila Szabo and Scott Northrup for their comments and
assistance.
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