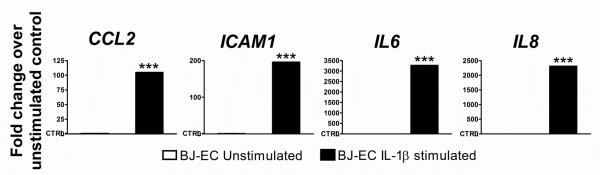
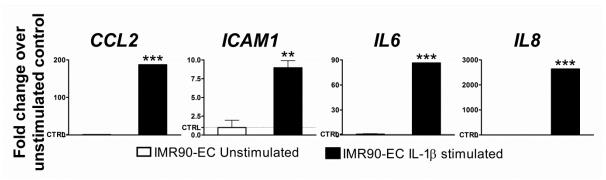
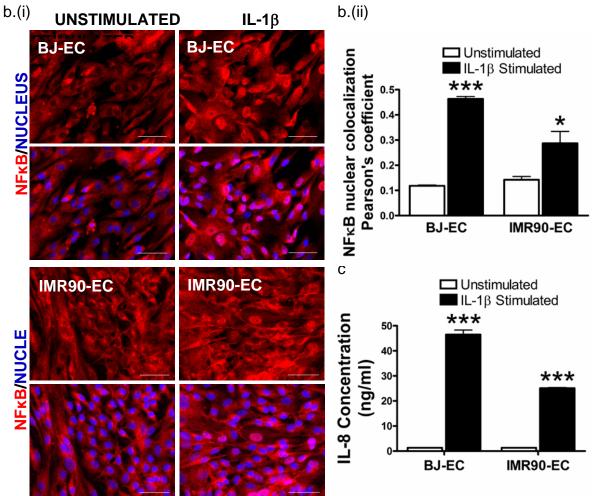
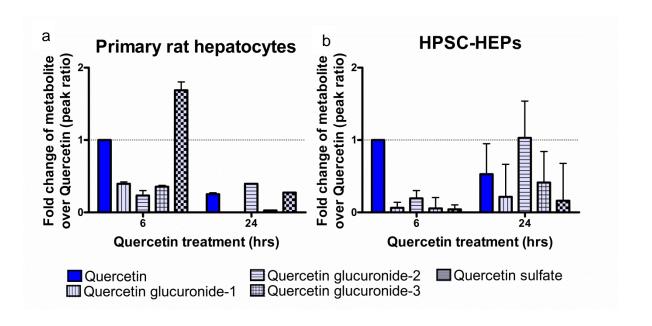

Supplementary Information

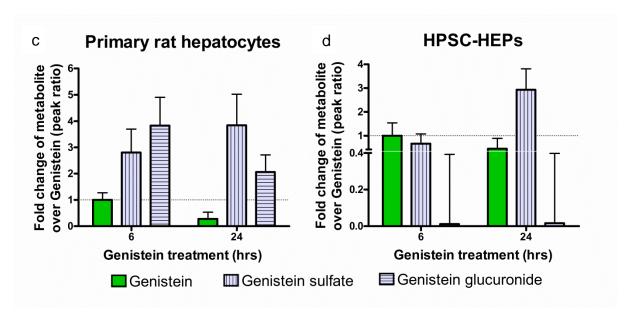


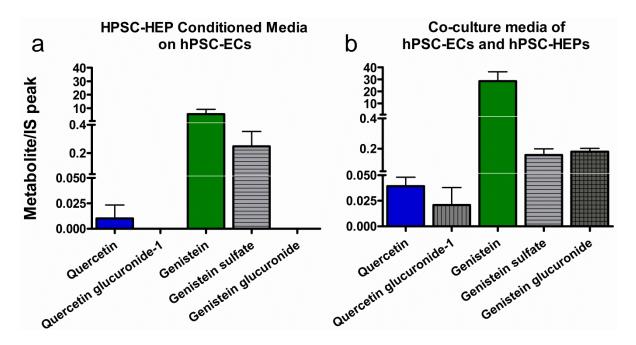
Supplementary Figure S1. Efficiency of endothelial differentiation in H9-ESCs. (a) Expression of endothelial genes over time under 1% or 21% O_2 culture. Data is represented as fold change over unstimulated control \pm SEM. *p-value <0.05 ***p-value < 0.001. (b) Representative histogram plots of PECAM1-expressing cells during endothelial differentiation (day 10, 15, 20), under 1% O_2 vs 21% O_2 condition.



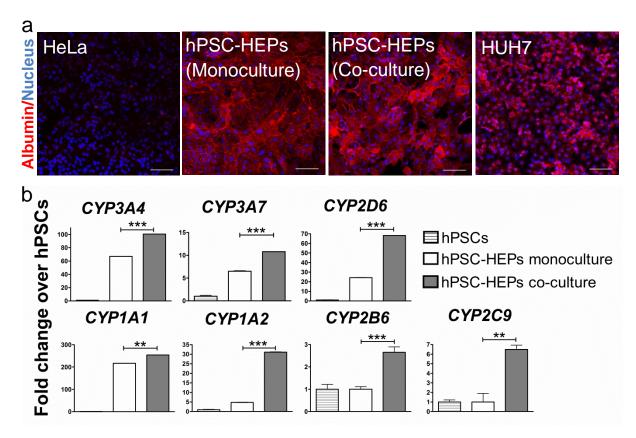

Supplementary Figure S2. Functional characterization of endothelial cells from BJ and IMR90 induced pluripotent stem cell lines. (a) Western blot of CDH5 protein in HCAEC, BJ-EC, IMR90-EC (duplicates). Glycosylated forms of CDH5 were detected. (b) Immunostaining of vWF in BJ-EC, IMR90-EC and HeLa cells (negative control). Scale bars, 100 μm. (c) Tube formation assay of BJ-EC and IMR90-EC seeded on matrigel plugs. Scale bars, 500 μm.






Page 3 of 9 ScholarOne Support: (434) 964-4100

Supplementary Figure S3: Inflammatory activation in BJ-ECs and IMR90-ECs. (a) Increased expression in inflammatory marker genes upon IL-1 β stimulation in BJ-ECs and IMR90- ECs. Data is represented as fold change over unstimulated control \pm SD. **p-value <0.01 ***p-value < 0.001. (b.i) Immunofluorescent images of NF κ B nuclear translocation upon IL-1 β stimulation in BJ- ECs (top four panels) and IMR90- ECs (bottom four panels). Scale bar = 50 μ m. (b.ii.) Quantification of immunofluorescent images shows significant increase in NF κ B nuclear colocalization. *p-value < 0.05, ***p-value < 0.001. (c) Increased IL-8 protein levels in the IL-1 β -stimulated BJ- ECs and IMR90- ECs. ***p-value < 0.001.



Supplementary Figure S4: Turnover of metabolites from quercetin (a,b) and genistein (c,d) in H9-ESC-HEPs and primary rat hepatocytes. Data is represented as fold change in the metabolite levels over parent metabolite at 6hrs, fold change in peak ratio (metabolite peak/IS peak) \pm SD, n=3.

Supplementary Figure S5. LCMS analysis of quercetin and genistein metabolites in conditioned media and co-cultures. Metabolite profile of quercetin and genistein in (a) hPSC-HEP conditioned media treated on hPSC-ECs and (b) co-cultured media as measured by LCMS.

Supplementary Figure S6: Functional characterization of H9-ESC-HEPs co-cultured with H9-ESC-ECs. (a) Albumin immunofluorescence in hPSC-HEPs in monoculture and co-culture shows similar levels of expression in both the culture configurations. Scale bar = 100 μm. **(b)** The hPSC-HEPs co-cultured with hPSC-ECs express higher levels of CYP genes than the hPSC-HEPs in monoculture supporting the beneficial effects of endothelial cells on hPSC-HEPs metabolic potential. n=3. Data is represented as fold change over undifferentiated hPSCs ± SD. **p-value < 0.01, ***p-value < 0.001.

Supplementary Tables Supplementary Table 1 Primer sequences for qPCR

Genes	Sequences	
CD31	CAGGCGCCGGGAGAAGTGAC	
	CGTCCAGTCCGGCAGGCTCT	
CDH5	TGGCCAGCTGGTCCTGCAGAT	
	TGCCCGTGCGACTTGGCATC	
TIE2	GCAGTGCAATGAAGCATGCCACC	
	GGTAGCGGCCAGCCAGAAGC	
CD34	CACAGGAGAAAGGCTGGGCGA	
	TGGCCGTTTCTGGAGGTGGC	
VWF	TAGCCCGCCTCCGCCAGAAT	
	CCTGCAGGCGCAGGTGAAGT	
VEGFa	GCACATAGGAGATGAGCTTC	
	CCACAGGGACGGGATTTCTTG	
NFKB1	ACTACCTGGTGCCTCTAGTGA	
	TTTGACCTGAGGGTAAGACTTCT	
MCP1	AAGCTCGCACTCTCGCCTCCA	
	GCATTGATTGCATCTGGCTGAGCG	
IL6	AAATTCGGTACATCCTCGACGG	
	GGAAGGTTCAGGTTGTTTTCTGC	
IL8	TTGGCAGCCTTCCTGATTTCTGCAG	
	ACAACCCTCTGCACCCAGTTTTC	
VCAM1	ATGGTCGCGATCTTCGGAGCC	
	AACGGACTTGGCCCCCTCTGT	
ICAM1	ACCGGAAGGTGTATGAACTGA	
	TGGTTGGCTATCTTCTTGCAC	
bFGF	AGCGACCCTCACATCAAGCTACA	
	CTGCCCAGTTCGTTTCAGTGCCA	
CYP3A4	AAGTCGCCTCGAAGATACACA	
	AAGGAGAACACTGCTCGTG	
CYP3A7	TGCTTTGTCCTTCCGTAAGGG	
	CAGCATAGGCTGTTGACAGTC	
CYP2B6	GCACTCCTCACAGGACTCTTG	
	CCCAGGTGTACCGTGAAGAC	
CYP1A1	ACATGCTGACCCTGGGAAAG	
	GGTGTGGAGCCAATTCGGAT	
CYP1A2	ATGCTCAGCCTCGTGAAGAAC	
	GTTAGGCAGGTAGCGAAGGAT	
CYP2C9	GCCTGAAACCCATAGTGGTG	
	GGGGCTGCTCAAAATCTTGATG	

Supplementary Table 2. Antibodies list

Proteins	Applications	Dilution factors	Source
NFĸB	IMMUNO	1:200	ABCAM (AB32536)
VWF	IMMUNO	1:100	ABCAM (AB9378)
CDH5 (VE-cadherin)	WESTERN	1:1000	ABCAM (AB33168)
B-ACTIN	WESTERN	1:1000	SIGMA (SAB2100037)
eNOS	IMMUNO	1:100	ABCAM (AB5589)
Albumin	IMMUNO	1:100	R&D (MAB1455-SP)