Supporting more matter	on rubie or rue emory o	me stem een aerroation	emenency
Culture medium	No. of embryos	Established lines	Efficiency (%)
2i medium	10	2	20
3i medium	25	15	60

Supporting Information Table S1 Rat embryonic stem cell derivation efficiency

n	T 0 /·	T 11 CA		•		
Sunnorfing	Information	I ahle N	' List of r	nrogramming	vectors used i	n this study
Supporting	imor mation	I abit 54		cpi ogi amming	vectors used i	in this study

Vectors Combination of transcription factors

pMaster3 hOCT4, hSOX2, hKLF4, hC-MYC, hNANOG, hLIN28, hNR5A2

pMaster12 hOCT4, hSOX2, hKLF4, hC-MYC, hNANOG, hLIN28, hNR5A2, hMIR302/367

pMaster22 hOCT4, hSOX2, hKLF4, hC-MYC, hNANOG, hLIN28, hNR5A2, rat mir302/367

Vector	Culture condition	Reprogramming efficiency
pMaster3	Normoxia	0
pMaster3	Hypoxia (5% O ₂)	~0.0004%
pMaster12	Normoxia	~0.001%
pMaster12	Hypoxia (5% O ₂)	~0.01%
pMaster22	Normoxia	~0.002%
pMaster22	Hypoxia (5% O ₂)	~0.02%

Suppor	ting I	nformation	Table S	3 Rep	rogramming	efficien	cies of	each	vector
· · · · · · ·									

Experiment	Induction	Passage	Culture	Picked	Established	Culture	Establishment
No.	vector	of REFs*	medium	colonies	lines	condition	Efficiency (%)
LSP-12	pMaster12	P5**	2i/Lif	25	15	Нурохіа	52
LSP-13	pMaster22	Р5	2i/Lif	32	13	Нурохіа	41
LSP-17	pMaster12	P1	2i/Lif	8	6	Нурохіа	75
LSP-18	pMaster22	P1	2i/Lif	8	5	Нурохіа	62.5
LSP-19	pMaster3	P1	2i/Lif	8	4	Нурохіа	50
LSP-20	pMaster12	P1	2i/Lif	0	0	Normoxia	0
LSP-22	pMaster12	P1	3i/Lif	12	2	Normoxia	17
LSP-23	pMaster22	P1	3i/Lif	12	2	Normoxia	17
LSP-24	pMaster12	P1	3i/Lif	48	37	Нурохіа	77.1
LSP-28	pMaster22	P1	3i/Lif	8	5	Нурохіа	62.5

Supporting Information Table S4 Rat iPS cells establishment efficiency

*REFs = rat embryonic fibroblasts

**P5 means passage 5

Cell line	Culture medium	Reprogramming vector	Culture condition	Transgene-fre
				e
LSP-12-10-1	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-10-2	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-11-1	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-11-3	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-11-5	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-11-6	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-12-1	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-12-2	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-12-4	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-12-5	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-12-6	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-1-3	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-2-4	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-2-5	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-2-6	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-4-1	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-4-2	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-4-3	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-5-1	2i	pMaster12	Hypoxia (5% O2)	Y

Supporting Information Table S5 PCR analysis results of rat iPS cells

LSP-12-5-2	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-5-3	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-5-4	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-5-5	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-6-1	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-9-2	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-12-9-4	2i	pMaster12	Hypoxia (5% O2)	Ν
LSP-12-9-6	2i	pMaster12	Hypoxia (5% O2)	Y
LSP-13-13-4	2i	pMaster22	Hypoxia (5% O2)	Ν
LSP-13-13-5	2i	pMaster22	Hypoxia (5% O2)	Y
LSP-13-14-1	2i	pMaster22	Hypoxia (5% O2)	Y
LSP-13-14-3	2i	pMaster22	Hypoxia (5% O2)	Ν
LSP-13-16-2	2i	pMaster22	Hypoxia (5% O2)	Ν
LSP-13-16-3	2i	pMaster22	Hypoxia (5% O2)	Ν
LSP-13-7-1	2i	pMaster22	Hypoxia (5% O2)	Ν
LSP-13-9-5	2i	pMaster22	Hypoxia (5% O2)	Y
LSP-13-9-6	2i	pMaster22	Hypoxia (5% O2)	Y
LSP-24-20-1	3i	pMaster12	Hypoxia (5% O2)	Y
LSP-24-12	3i	pMaster12	Hypoxia (5% O2)	Ν
LSP-24-20	3i	pMaster12	Hypoxia (5% O2)	Y
LSP-24-19	3i	pMaster12	Hypoxia (5% O2)	Ν
LSP-24-21	3i	pMaster12	Hypoxia (5% O2)	Y

LSP-24-22	3i	pMaster12	Hypoxia (5% O2)	Y
LSP-24-23	3i	pMaster12	Hypoxia (5% O2)	Y
LSP-24-23-3	3i	pMaster12	Hypoxia (5% O2)	Y
LSP-24-20-3	3i	pMaster12	Hypoxia (5% O2)	Y
LSP-24-24	3i	pMaster12	Hypoxia (5% O2)	Y
LSP-24-3	3i	pMaster12	Hypoxia (5% O2)	Ν
LSP-25-5-2	3i	pMaster12	Hypoxia (5% O2)	Y
LSP-27-2-1	3i	pMaster12	Hypoxia (5% O2)	Y
LSP-26-2-1	3i	pMaster22	Hypoxia (5% O2)	Ν
LSP-26-3-4	3i	pMaster22	Hypoxia (5% O2)	Y
LSP-26-4-2	3i	pMaster22	Hypoxia (5% O2)	Ν
LSP-26-6-2	3i	pMaster22	Hypoxia (5% O2)	Y
LSP-28-1-2	3i	pMaster22	Hypoxia (5% O2)	Y

Y=Yes; N=No

	Gene_symbol	Base Mean	log ₂ (Fold	lfcSE	stat	p Value	padj
			Change)				
ENSRNOG0000047706	RT1-CE16	34.5394	-6.1057	1.3237	-4.6127	3.97E-06	0.0038
ENSRNOG0000060849	Rcor2	17.8088	-5.2608	1.0745	-4.8959	9.79E-07	0.0014
ENSRNOG0000007523	Cct6b	46.8523	-5.1359	1.0149	-5.0604	4.18E-07	0.0010
ENSRNOG0000015401	Mapk4	159.5972	-2.1030	0.4663	-4.5100	6.48E-06	0.0050
ENSRNOG0000003745	Atf3	116.1880	-1.9472	0.4842	-4.0214	5.78E-05	0.0206
ENSRNOG0000020202	Asrgl1	47.3198	-1.7402	0.3737	-4.6568	3.21E-06	0.0034
ENSRNOG0000048861	LOC498122	122.4874	-1.5498	0.2792	-5.5515	2.83E-08	9.11E-05
ENSRNOG0000019802	Zfp428	531.3881	-1.3415	0.3259	-4.1158	3.86E-05	0.0174
ENSRNOG0000004430	Cep131	245.8407	-1.1508	0.2937	-3.9179	8.93E-05	0.0248
ENSRNOG0000001517	Pdk1	430.8831	-1.0696	0.2203	-4.8550	1.20E-06	0.0016
ENSRNOG0000002373	Akap1	966.6341	1.0321	0.1724	5.9856	2.16E-09	1.16E-05
ENSRNOG00000029971	ND5	11490.0973	1.1299	0.2902	3.8938	9.87E-05	0.0269
ENSRNOG0000021056	Kenj14	88.0326	1.3264	0.3033	4.3733	1.22E-05	0.0070
ENSRNOG00000011879	Nfat5	741.9896	1.3586	0.3174	4.2808	1.86E-05	0.0103
ENSRNOG0000019573	Lcat	42.5623	1.3929	0.3363	4.1415	3.45E-05	0.0163
ENSRNOG0000030644	ND1	16387.5236	1.4310	0.2979	4.8029	1.56E-06	0.0019
ENSRNOG0000024066	Fundc2	134.4565	1.5605	0.3440	4.5366	5.72E-06	0.0046
ENSRNOG0000001271	Card6	139.2871	1.8049	0.3110	5.8033	6.50E-09	2.62E-05

Supporting Information Table S6 List of differentially exppressed genes in transgene-free rat iPS cells vs ES cells

ENSRNOG0000020585	Tbxa2r	51.6061	2.3676	0.5643	4.1957	2.72E-05	0.0137
ENSRNOG0000029427	Grhl3	120.2871	2.4612	0.6266	3.9281	8.56E-05	0.0242
ENSRNOG00000014427	Chrnb4	25.6065	2.6140	0.5870	4.4533	8.46E-06	0.0061
ENSRNOG0000006653	Slc38a4	602.4645	2.7891	0.4284	6.5112	7.46E-11	6.00E-07
ENSRNOG00000014761	Rasd2	23.9922	2.7897	0.7194	3.8779	0.0001	0.0283
ENSRNOG0000013027	Rgl3	25.6125	2.8101	0.7434	3.7799	0.0002	0.0377
ENSRNOG0000009620	Cybrd1	112.9714	2.9425	0.7267	4.0492	5.14E-05	0.0197
ENSRNOG0000005277	Ptprv	213.7536	2.9958	0.6445	4.6480	3.35E-06	0.0034
ENSRNOG0000013835	Timm8a2	15.0403	2.9987	0.7626	3.9323	8.41E-05	0.0242
ENSRNOG0000032231	Mroh6	10.4090	3.1344	0.8285	3.7831	0.0002	0.0377
ENSRNOG00000014683	Il1rl2	202.0463	3.1362	0.7148	4.3877	1.15E-05	0.0068
ENSRNOG00000014504	ll1r1	279.0232	3.2094	0.7554	4.2484	2.15E-05	0.0115
ENSRNOG0000001414	Serpine1	2721.5855	3.5571	0.8854	4.0175	5.88E-05	0.0206
ENSRNOG0000001195	Trpv4	12.5600	3.5756	0.9582	3.7314	0.0002	0.0436
ENSRNOG0000054438	LOC292543	109.6941	3.6031	0.4471	8.0593	7.68E-16	1.24E-11
ENSRNOG0000005572	RGD1306782	69.9785	3.6059	0.7254	4.9706	6.68E-07	0.0011
ENSRNOG0000013291	Cyp2c23	7.3644	3.7179	0.9971	3.7288	0.0002	0.0436
ENSRNOG00000014361	Edn1	69.4878	3.8871	1.0346	3.7570	0.0002	0.0401
ENSRNOG00000047367	Card14	294.8559	3.9451	0.9889	3.9894	6.62E-05	0.0219
ENSRNOG0000009118	Pou2f3	6.6205	3.9772	0.9676	4.1106	3.95E-05	0.0174
ENSRNOG00000016460	Clu	1171.7083	3.9810	0.9384	4.2421	2.21E-05	0.0115
ENSRNOG0000012347	Gata2	51.4198	3.9997	0.9588	4.1715	3.03E-05	0.0148

ENSRNOG00000011800	F3	495.6745	4.0093	0.9916	4.0432	5.27E-05	0.0197
ENSRNOG0000028531	Ccl25	27.1723	4.0680	0.8204	4.9583	7.11E-07	0.0011
ENSRNOG0000021242	Adam33	122.4006	4.2129	1.0578	3.9826	6.82E-05	0.0219
ENSRNOG0000051548	Lmod1	290.7254	4.2408	1.0737	3.9496	7.83E-05	0.0233
ENSRNOG0000008697	Nov	469.7524	4.2533	1.0785	3.9438	8.02E-05	0.0235
ENSRNOG0000032240	Gbp5	10.8610	4.3675	0.9855	4.4316	9.36E-06	0.0061
ENSRNOG0000050040	Akr1c12	23.2951	4.3796	1.1009	3.9782	6.94E-05	0.0219
ENSRNOG0000033706	Klk14	12.5645	4.4543	1.0988	4.0538	5.04E-05	0.0197
ENSRNOG0000004400	Avpr1a	176.1344	4.4982	1.1374	3.9547	7.66E-05	0.0233
ENSRNOG0000019757	Dpep3	7.3221	4.9564	1.1157	4.4423	8.90E-06	0.0061
ENSRNOG0000021345	Timd2	9.3230	4.9851	1.2561	3.9686	7.23E-05	0.0224
ENSRNOG0000012789	Trhr2	29.8242	5.0345	1.0820	4.6529	3.27E-06	0.0034
ENSRNOG0000019445	Msln	24.2446	5.7523	1.3015	4.4197	9.88E-06	0.0061

Down-regulated in ES cells

Up-regulated in ES cells

	Cell line	Target	No. of candidate	No. of targeted	Targeting
		genes	colonies	colonies	frequency
iPS cells	LSP-24-24	Leptin	128	24	18.8%
ES cells	LSP-9-3	Leptin	18	3	16.6%

Supporting Information Table S7. *Leptin* gene targeting frequency in transgene-free rat iPS cells and ES cells

Supporting Information Table S8. Primers used in this study				
PCR amplified	Primer Sequence (5'-3')	Production length		
region		(bp)		
for q-PCR				
Oct4	F: AGCATACGAGTTCTGTGGAGGGA	352		
	R: GATGGTTGTCTGGCTGAACACCT			
Rex1	F: AAAAGGTGGCATATGACCGCAGT	230		
	R: AGTCCCTTTCAGCTCCTCTACCC			
Klf4	F: GGACCCAGTATACATTCCGCCAC	369		
	R: AGTTCCTCGGGACTCAGTGTAGG			
Sox2	F: GGAGAACCCCAAGATGCACAACT	205		
	R: TCCGGGAAGCGTGTACTTATCCT			
Eras	F:TCTTTGCTCTTGATGACCCGTCG	220		
	R: AAAGCTTCCTCTACACCTTGCCG			
Nanog	F: CCTACCTCTTCAAGATAGCCCTG	184		
	R: CCTTTGCCTCTGAAACCTATCCT			
Gapdh	F: TTGCCATCAACGACCCCTTCATT	211		
	R: ACGCCAGTAGACTCCACGACATA			
for PCR				
neo-IRES 1	WS1384: ATGATGGATACTTTCTCGGCAGGA	588		
	WS1385 TGCCACGTTGTGAGTTGGATAGTT			

neo-IRES 2	WS1386:GGACAGGTCGGTCTTGACAAAAAG	569
	WS1387: TCTGTTGAATGTCGTGAAGGAAGC	
<i>tk</i> 1	WS1388: AATCCAGGATAAAGACGTGCATGG	701
	WS1389: GACAATCGCGAACATCTACACCAC	
<i>tk</i> 2	WS1390: ATACCGCACCGTATTGGCAAGTAG	506
	WS1391: ACGTACCCGAGCCGATGACTTACT	
MYC-SOX2 1	WS1392: GAAGTTCTCCTCCTCGTCGCAGTA	502
	WS1393: CCTGCAGTACAACTCCATGACCAG	
MYC-SOX2 2	WS1394: GTCGCAGATGAAACTCTGGTTCAC	616
	WS1395: TGTGGTTACCTCTTCCTCCCACTC	
SOX2-KLF4 1	WS1396: TTCTCCGTCTCCGACAAAAGTTTC	536
	WS1397: AAGAGTTCCCATCTCAAGGCACAC	
SOX2-KLF4 2	WS1398: CCTTCTTCATGAGCGTCTTGGTTT	545
	WS1399: TGAACTGACCAGGCACTACCGTAA	
<i>KLF4-OCT4</i> 1	WS1400: GATCGTTGAACTCCTCGGTCTCTC	618
	WS1401: ATGTGGTCCGAGTGTGGTTCTGTA	
KLF4-OCT4 2	WS1402: GGGTCAGCGAATTGGAGAGAATAA	612
	WS1403: GATCAAGCAGCGACTATGCACAAC	
oriP 1	WS1404: ATGGCTATGGGCAACACATAATCC	523
	WS1405: CTCTCAGCGACCTCGTGAATATGA	
oriP 2	WS1406: CACAAACCCCTTGGGCAATAAATA	500
	WS1407: CCATTAGTGGTTTTGTGGGCAAGT	

EBNA 1	WS1408: CCTCATCTCCATCACCTCCTTCAT	487
	WS1409: TCCAACCCGAAATTTGAGAACATT	
EBNA 2	WS1410:GGAAACCAGGGAGGCAAATCTACT	357
	WS1411:TCACGTAGAAAGGACTACCGACGA	
NANOG-LIN28 1	WS1416: AACCCTTCCATGTGCAGCTTACTC	436
	WS1417: CTGCTGGGGAAGGCCTTAATGTA	
NANOG-LIN28 2	WS1418: CGCCTCTCACTCCCAATACAGAAT	442
	WS1419: GAAGTGGCGTGAAACAGACTTTGA	
NR5A2 1	WS1555: TGTCAATTTGGCAGTTCTGGTTTT	449
	WS1556: AGGGGTTTTATGCGATGGAGTTTC	
NR5A2 2	WS1557: GGACAACGCTTTCTCTGTGTTTTG	415
	WS1558: CCAGCTTGGCACTTGATGTAATTC	
EF1a-OCT4 1	WS1551: GCACTAGCCCCACTCCAACCT	445
	WS1552: AGGGGTTTTATGCGATGGAGTTTC	
EF1a-OCT4 2	WS1553: GAGTTGCTCTCCACCCCGACT	453
	WS1554: CCAGCTTGGCACTTGATGTAATTC	
miR 302/367	WS1645:TCTCCTACTTATTTCTCACCCCGATG	317
	WS1646: GGAAATCATGATCATCCCTTCTCCT	
pZT	F:GGATCTGTAGGGCGCAGTAG	317
	R:AGACCCCTAGGAATGCTCGT	
F: Forward;		

R: Reverse

Generation of iPS cells in normoxic condition

В

 Fibroblasts
 Primary colonies
 Established iPS cells

Figure S3

Polyploid (n=81)

Diploid (n=42)

1 Supplemental Figure Legends

Figure S1. Reprogramming of REFs in normal condition. (A): Flow chart of iPS generation in
normal condition. (B): Representative example of riPS cells in normal condition. The primary
colonies tightly adhered to the culture dish and after subsequent passage, formed riPS cell
without clear boundary to the feeder cells. Scale bar = 200 um.

6

7 Figure S2. PCR verification of transgene-free riPS cells. (A): PCR analysis of candidate riPS cells. Twenty-one riPS cell lines were analyzed by PCR with 10 pairs of primers covering the 8 9 reprogramming vectors pMaster12 and pMaster22. Seventeen of them are completely 10 transgene-free and the remaining 4 colonies still have residual exogenous gene sequences. 11 Rat embryonic fibroblast (REF) genomic DNA was used as a negative control. Genomic DNA 12 of nuclear transfected REFs was used as positive control. PCR without genomic template was used as blank control. (B): PCR analysis of riPS cell line LSP-24-3. We performed PCR with 21 13 14 pairs of primers to detect vector fragments in the riPS cell line. The drug selection marker 15 neo and transcription factors were retained. PCR without genomic template was used as 16 blank control. (C): Frequency of transgene removal in clones obtained with or without A83-17 01. Addition of A83-01 in 2i/Lif medium promoted the frequency of transgene-free riPS cells 18 improved from 47% to 72%.

19

Figure S3. Additional characterization of riPS cells *in vitro* and *in vivo*. (A): The expression levels of endogenous pluripotency factors quantified by q-PCR. We chose 3 different transgene-free riPS cell lines for q-PCR test. The graphs showed that the endogenous *Rex1*,

1

23 Eras, Nanog, Sox2 and Oct4 of established riPS cells were activated, in comparison with rat 24 ES cells, though with variation across different clones. Gene expression levels were 25 normalized to expression of the house-keeping gene glyceraldehyde-3-phosphate dehydrogenase (Gapdh). The RNA expression of pluripotency factors in rat ES cells was set to 26 27 1, rat embryonic fibroblasts were used as a negative control. Data indicates the means ± SD 28 of 3 independent technical repeats. (B): Principal component analysis of the transcriptomes 29 of REFs, transgene-free riPS cells (LSP-24-22, LSP-24-23, LSP-24-24), transgene-intact riPS cells (LSP-24-11, LSP-24-12, LSP-24-19) and rat ES cells (SD-Tg.EC1, DAc2, DAc8) [11, 51]. (C): 30 31 Embryoid bodies (EBs) derived from riPS cells and subsequent differentiated derivatives. We 32 obtained EB formation using riPS cells (LSP-24-24, passage 25) by continuous culture in 33 differentiation medium, which was changed every two days sequentially with serum medium 34 supplemented with 50%, 30% and 0% 3i/Lif medium. Additional culture in serum medium for another week resulted in different cell types. Scale bar, 500 µm. Immunofluorescence 35 36 staining confirmed in vitro differentiated derivatives including all 3 germ layers of ectoderm 37 (NESTIN), mesoderm (alpha smooth muscle actin, α -SMA) and endoderm (GATA 4). Scale bar, 50 µm. (D): Teratoma (black arrow) formed 6 weeks after injection of riPS cells (LSP-24-24, 38 39 passage 30) into SCID mouse. Hematoxylin-eosin (HE) stained sections of the teratoma 40 showed all 3 germ layer derivatives; epidermis (ectoderm), cartilage (mesoderm) and intestinal epithelum (endoderm) are indicated by arrows. Scale bar, 100 μ m. (E): 41 42 Representative polyploid and diploid metaphase chromosome preps of riPS cells. 2i/Lif 43 medium derived riPS clone showed a dominant polyploid metaphase chromosome while 3i/Lif medium derived riPS clone showed a dominant diploid metaphase chromosome. 44