Microfluidic Screening Reveals Heparan Sulfate Enhances Human Mesenchymal Stem Cell Growth by Modulating FGF-2 Transport

Supplementary Information

Drew M. Titmarsh¹, Clarissa L.L. Tan¹, Nick R. Glass², Victor Nurcombe^{1,3}, Justin J. Cooper-White^{2,4,5}, and Simon M. Cool^{1,6*}

¹Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, SINGAPORE 138648.

²Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, AUSTRALIA.

³Lee Kong Chian School of Medicine, Nanyang Technological University–Imperial College London, SINGAPORE 308232.

⁴School of Chemical Engineering, The University of Queensland, St. Lucia, QLD 4072, AUSTRALIA.

⁵Biomedical Manufacturing, Manufacturing Flagship, CSIRO, Clayton, Victoria 3169, AUSTRALIA.

⁶Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, SINGAPORE 119074.

*Corresponding author: Simon Cool, PhD Institute of Medical Biology 8A Biomedical Grove, #06-06 Immunos, SINGAPORE 138648 Tel +65-64070176 Fax: +65-64789477 Email: simon.cool@imb.a-star.edu.sg

SUPPLEMENTARY FIGURES

Supplementary Figure 1 – Flow Cytometric Immunophenotyping of hMSCs derived from Donor B. Cells were fixed at passage 6 and analysed by flow cytometry for a range of markers including hMSC markers CD90, CD105 and CD73, hematopoietic markers CD45, CD34, CD11b, CD14 and HLA-DR. Percentage positive cells are marked. The cutoff was set for a false-positive rate of < 2%, based on the relevant isotype control.

Supplementary Figure 2 - RT-qPCR Quantification of Expression of Multi-lineage Differentiation Markers by hMSCs derived from Donor B. A Adipogenic markers, B osteogenic markers, and C chondrogenic markers were evaluated from RNA taken from undifferentiated and differentiated cells from Donor B. Columns represent mean mRNA level in relative expression units to reference gene ACTB, +/- S.D. of triplicate cultures, * - *p* < 0.05 and *** - *p* < 0.001 by unpaired Student's *t*-test for each gene.

А

Supplementary Figure 3 - MBA Dye Loading Validation. A-C Photographs of dye loading of Ponceau S solution through individual factor inlets A, B, and C (**A**, **B** and **C**, respectively). The panel below shows the design concentration levels of factor in each column of the array. **D** Dye loading through the cell inoculation inlet, with factor/buffer inlets plugged closed. **E,F** Dye washout (**E**) and re-loading (**F**) from the cell staining inlet, with factor/buffer inlets plugged closed.

Supplementary Figure 4 – Dynamic Filling and Diffusive Mixing of Alexa Fluor 488-labelled Heparin in the MBA. A Progression of diffusive mixing in the MBA. Pixel intensity profiles were measured across successive microchannel segments during diffusive mixing. Pixel intensity was measured across the channel width in successive segments. **B** Dynamic tracking of establishment of the maximum concentration levels in each of the MBA factor channels A, B and C is shown. Evolution of fluorescence was tracked starting from the beginning of syringe pump flow, for 1 hour at 300 μL/h total flowrate. Volume to 90% final value is shown for each factor channel. All factor channels reached the steady state value within 300 μL volume delivery.

А

Supplementary Figure 5 - MBA Combinatorial Screening of HS8, FGF-2 and SU5402 in hMSC Donor B. A Experimental time course. **B** Top panel: compositions of media in each column of the MBA (HS8, μ g/mL; FGF-2, ng/mL; SU5402, μ M). Lower panels: Heatmaps of absolute numbers of Ki67⁺ nuclei, and total nuclei for each chamber in the MBA, corresponding to above compositions. Medium flow was from top (Row 1) to bottom (Row 10) down a column. Mean for each column is given below. QCF: data flagged for quality control issue during image processing. **C** Plots from selected individual MBA columns showing effects of titrations of individual factors (HS8, FGF-2 and SU5402) on total and Ki67⁺ nuclei. Bars represent mean of all 10 chambers in the relevant column ± SEM.

А

Supplementary Figure 6 - MBA Combinatorial Screening of HS8, FGF-2 and SU5402 in hMSC Donor C. **A** Experimental time course. **B** Top panel: compositions of media in each column of the MBA (HS8, μ g/mL; FGF-2, ng/mL; SU5402, μM). Lower panels: Heatmaps of absolute numbers of Ki67⁺ nuclei, and total nuclei for each chamber in the MBA, corresponding to above compositions. Medium flow was from top (Row 1) to bottom (Row 10) down a column. Mean for each column is given below. QCF: data flagged for quality control issue during image processing. C Plots from selected individual MBA columns showing effects of titrations of individual factors (HS8, FGF-2 and SU5402) on total and Ki67+ nuclei. Bars represent mean of all 10 chambers in the relevant column \pm SEM.

С

Supplementary Figure 7 – Paracrine profiles of cell responses in replicate runs and donors. A-C Plots for Donor A, Run 2, of Ki67⁺ nuclei in each chamber versus downstream position (Row coordinate of the chamber) for **A** increasing concentrations of HS8, **B** increasing concentrations of FGF-2, and **C** combinations of HS8 and FGF-2. **A'-C'** Corresponding plots for Donor B, Run 1.

SUPPLEMENTARY TABLES

Gene Symbol	Gene Name	Assay ID	Reference Sequence
ALPL	alkaline phosphatase,	Hs01029144_m1	NM_000478.4
	liver/bone/kidney		NM_001127501.2
			NM_001177520.1
IBSP	integrin-binding	Hs00173720_m1	NM_004967.3
	sialoprotein		
PPARG	peroxisome	Hs01115513_m1	NM_005037.5
	proliferator-activated		NM_015869.4
	receptor gamma		NM_138711.3
			NM_138712.3
CEBPA	CCAAT/enhancer	Hs00269972_s1	NM_004364.3
	binding protein		
	(C/EBP), alpha		
SOX9	SRY (sex determining	Hs01001343_g1	NM_000346.3
	region Y)-box 9		
COL2A1	collagen, type II, alpha	Hs00264051_m1	NM_001844.4
	1		NM_033150.2
ACAN	aggrecan	Hs00153936_m1	NM_001135.3
			NM_013227.3
ACTB	actin, beta	Hs01060665 g1	NM 001101.3