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Stockpiling Ventilators for Influenza 
Pandemics 

Technical Appendix 

Materials and Methods 1: Forecasting Peak-Week Demand for Ventilators 

We describe here the mathematical and technical details of the model used to forecast 

influenza-like-illness (ILI) hospitalizations. The purpose of the dynamic linear model (DLM) 

that we formulate is to generate accurate estimates of ILI hospitalizations as, and when, new 

information on the predictor variables becomes available. Formally embedding this “learning 

from experience” notion into the mathematical framework is one of the key merits of the 

Bayesian updating of the stochastic parameters in a DLM. 

Forecasting of Hospitalizations 

The predictors we use for forecasting include ILINet weekly reports for the state of 

Texas, and 4 time-indicator variables to account for the seasonality effect on ILI hospitalizations. 

We group months as September–October (S–O), November–December (N–D), January–

February (J–F), and March–April (M–A). So, the corresponding indicator variable takes value 1 

or all indicator variables are 0 for May–August. We considered models that also included 

predictors of school calendars, a humidity index, and Google Flu Trends, but for the significant 

look-ahead period we require for stockpiling ventilators these variables did not add significant 

predictive power to the model. Before proceeding with the details of the forecasting model for 

ILI hospitalizations, we specify notation. 

Notation 

: dependent variable of ILI hospitalizations at time  (weeks) 

: independent variable of ILINet weekly reports at time  

: time indicators for season  at time ,  
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We could formulate a static multiple linear regression model to study ILI hospitalizations in the 

following manner:  

.          (1) 

However, to incorporate the evolution of the predictors over time, which has significant 

importance in forecasting of ILI hospitalizations, we instead posit a dynamic linear regression 

model:  

.         (2) 

The critical difference between equations (1) and (2) is that the regression parameters are no 

longer static, evidenced by introducing the time subscript  in equation (2). The estimation of 

the random parameters in equation (2) can be performed recursively using the Kalman filter (1). 

Let  be the time series of ILI hospitalizations influenced by the nonrandom regression 

parameters corresponding to the independent variables; i.e., the regression coefficients for ILINet 

reports and the 4 time-indicators. The independent variables form the regression vector  at 

time  while their coefficients are represented by the state vector . The state matrix  is the 

evolution of the state vector through time. By introducing Gaussian measurement errors, , and 

Gaussian state evolution errors, , the dynamic linear model is given by:  

,   

, . 

Here , , and  are univariate, while , , and  are -dimensional vectors where, in 

our setting,  = 6, including the intercept term. The matrices  and  are  in dimension. 
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State Estimation and Observation Forecasting 

The recursive procedure for updating the state vector  and forecasting the response 

variable  of the dynamic linear model now follows. At time , for some mean  and 

covariance matrix  the information about the state  is presented with the posterior 

distribution:  

. 

The recursive procedure starts at time 0 by choosing  and  to be the best guess regarding 

the mean and variance of the state vector. We use a subset of the data in the simple regression 

model (1) to construct the prior information about  and . Through direct application of 

Bayes’ theorem, we obtain that the prior distribution of  given  is Gaussian, i.e., 

, with  and  being:  

 

. 

Next, the 1-step-ahead predictive distribution of  given  is also Gaussian, i.e., 

, with  and  as follows:  

 

. 

After obtaining the observation , the filtering distribution of  is, again, Gaussian, i.e., 

. The parameters  and  can be computed as follows:  

 

, 

where  is the forecast error. Our discussion here follows the book (1), which we refer 

to for further details. 
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Multiple Steps Ahead Forecasting 

For the purpose of producing demand scenarios for our optimization model, we must 

forecast hospitalizations and in turn, ventilator demand, many weeks into the future. Suppose we 

wish to forecast  weeks ahead. With the observed values of , we can also forecast the future 

values of the state vector  and the observation . Let  and . Then, for 

, the distribution of  given  is Gaussian, i.e., , with  

and  being:  

 

. 

The distribution of  given  is also Gaussian, i.e., , with  

and  as follows:  

 

. 

We use 1 year of historical seasonal influenza data to construct the prior for  and , and we 

use 2009 pandemic data to fit the model and forecast  = 40 weeks into the future. 

From Hospitalizations to Peak-Week Demand for Ventilators 

We index the health service regions (HSRs) in Texas by . The DLM predicts 

hospitalizations on a weekly basis for each of the 8 HSRs in the form of a multivariate Gaussian 

distribution, providing the means ( ) and variances ( ) for each region. We estimate the 

region-to-region correlations ( ) using historical data, and we assume this correlation to be 

identical for each pair of regions. To estimate the peak-week demand for ventilators from the 

forecasted hospitalizations, we employ 4 additional parameters: 1) , the proportion of 

hospitalized ILI patients requiring ICU care; 2) , the proportion of ICU patients requiring 

ventilation; 3) , the proportion of ventilated patients requiring 2 weeks of ventilation, under 



 

Page 5 of 12 

the assumption that at most 2 weeks is needed; and, 4) , 1-week lagged temporal correlation 

in ILI hospital admission in region  at time  generated by the DLM. 

We calculate the mean weekly demand for ventilators in region  at time  as follows:  

.         (3) 

We obtain the corresponding variance of weekly demand for ventilators, involving 

temporal correlation ( ), as follows:  

. 

We choose the peak-week demand in a region as the week with the largest mean according to 

equation (3). With the estimated region-to-region correlation ( ), we employ a standard 

Monte Carlo sampling algorithm (2) to generate independent and identically distributed (i.i.d.) 

samples of peak-week demand for ventilators as input to the optimization model, which we 

describe next. 

Materials and Methods 2: Optimization Model for Stockpiling 

Two-Stage Optimization Model 

To optimize stockpiling decisions, we construct a 2-stage stochastic program. We index 

the regional sites by . The value of the central stockpile, , and the value of the stockpiles 

at each site, , must be selected before observing the demand for ventilators 

. The decision to ship ventilators from the central stockpile to site  is 

captured by decision variable , and this decision is made after observing the demand 

realization, indexed by . In addition, if  ventilators are shipped, then  

represents the number of ventilators wasted so that only  ventilators can be used at 

site . Hence, the model seeks a balance between 1) the flexibility permitted by holding 

ventilators centrally so that they can be distributed to where they are needed most, and 2) the fact 

that locally held ventilators are more effective than those shipped from the central stockpile after 

a pandemic begins. The optimization model for stockpiling is as follows: 
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          (4a) 

s.t.          (4b) 

       (4c) 

 .       (4d) 

The objective function we minimize in (4a) is the total stockpile of central and regional 

ventilators. Constraint (4b) says that the total number of ventilators distributed from the central 

stockpile to the sites cannot exceed the number of ventilators stockpiled centrally. We let 

 represent the amount by which peak demand for ventilators 

exceeds the existing supply at site  under scenario , and 

 represents the total shortfall of ventilators statewide after 

distributing the central stockpile under scenario . Thus constraint (4c) ensures that the 

expected shortfall of ventilators over all sites does not exceed the limit, . Constraint (4d) 

enforces non-negativity for each decision variable. Note that , , and  are input data, and 

 are decision variables. By prespecifying the values of , , or neither, 3 

variations of the model can be formulated with respect to stockpiling decisions: 

1. Given existing stockpiles at the regional sites, optimize the number of centrally 

held ventilators. 

2. Given an existing central stockpile, optimize the number of ventilators at each site. 

3. Jointly optimize the central and regional stockpiles, allowing us to assess the 

advantages of stockpiling ventilators centrally versus at the sites. 

Model (4) is stated in the form of the third variation above, but the first 2 variations can 

also be handled by fixing decision variables  or , respectively, to prespecified values. 

We cannot solve model (4) directly for the following reasons. The summed shortfall of 

ventilators, i.e., , is a nonstandard random variable due to 
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the 2 positive-part operators within the summation, even though  has the form of a 

multivariate normal distribution. More importantly, the decision variables, , representing 

shipments to the sites, adapt to the demand realization under scenario , increasing the model’s 

complexity. Hence, below we create a sampling-based variant of model (4), using a standard 

Monte Carlo sampling algorithm (2) to generate a set of i.i.d. samples of peak demands from the 

multivariate normal distribution we describe earlier. 

A Monte Carlo Approximation to the Optimization Model 

Let  index the sampled scenarios. Our sampling-based variant of model (4) is as 

follows:  

          (5a) 

s.t.          (5b) 

         (5c) 

        (5d) 

           (5e) 

 .     (5f) 

The objective function in (5a) is identical to that in (4a). Constraint (5b) is analogous to 

constraint (4b), where we add index  to variable  because shipments from the central 

stockpile to the sites occur after observing the demand realization. In constraint (5c), 

, are the samples of ventilator demands, and in constraint (5d),  is 

the proportion of centrally held ventilators dispatched to the site that can be used. These 2 

constraints take care of the 2 positive-part operators in constraint (4c) by using 2 new decision 

variables,  and . Given that these variables capture the positive parts, constraint (5e) is 

analogous to constraint (4c), and constraint (5f) again captures non-negativity of all decision 

variables. While we state models (4) and (5) for a fixed value of , we view this as a bi-criteria 

model in which we can explore the tradeoff between the cost of the total stockpile (which we 

assume is proportional to the number of ventilators) and the limit on expected shortfall ( ). 
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Technical Appendix Table 1. Existing regional stockpiles of ventilators in the state of Texas* 
Region No. of existing ventilators 
HSR 1 151 
HSR 2/3 1,233 
HSR 4/5N 247 
HSR 6/5S 742 
HSR 7 247 
HSR 8 458 
HSR 9/10 287 
HSR 11 365 
*HSR, health service region. 
 
 
Technical Appendix Table 2. Temporal correlation in the dynamic linear model between consecutive weeks, April–December 
2009* 
Region Minimum Peak week Median Maximum 
HSR 1 0.38 0.38 0.44 0.46 
HSR 2/3 0.08 0.11 0.28 0.28 
HSR 4/5N 0.19 0.19 0.23 0.24 
HSR 6/5S 0.32 0.34 0.64 0.65 
HSR 7 0.19 0.20 0.33 0.35 
HSR 8 0.16 0.16 0.29 0.30 
HSR 9/10 0.08 0.12 0.42 0.43 
HSR 11 0.07 0.07 0.20 0.21 
*When the peak-week correlation is not the minimum correlation over the 9 
months, the minimum instead occurs the week before the peak week. HSR, 
health service region. 
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Technical Appendix Table 3. Number of illnesses, healthcare utilization, and deaths associated with moderate and severe 
pandemic influenza scenarios* 

Characteristics 
Moderate 

(1957- and 1968-like), no. (%) 
Severe 

(1918-like), no. (%) 
Illness 90 million (30) 90 million (30) 
Outpatient medical care 45 million (50) 45 million (50) 
Hospitalization 865,000 9,900,000 
ICU care 128,750 1,485,000 
Mechanical ventilation 64,875 742,500 
Deaths 209,000 1,903,000 
*Source: (3). ICU, intensive care unit. 
 
 
Technical Appendix Table 4. Estimated regional peak-week demand for ventilators in the mild scenario* 
Region Mean, units ± SD, units Coefficient of variation 
HSR 1 8.59 3.09 0.36 
HSR 2/3 66.83 11.31 0.17 
HSR 4/5N 12.93 3.48 0.27 
HSR 6/5S 40.2 7.79 0.19 
HSR 7 25.14 6.01 0.24 
HSR 8 22.41 5.29 0.24 
HSR 9/10 17.55 4.66 0.27 
HSR 11 35.97 7.70 0.21 
*These estimates are based on April–December 2009 hospital discharge 
data in Texas. All the regional peak demands have a coefficient of variation 
<0.40, although the means range from 8.59 to 66.83. HSR, health service 
region. 
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Technical Appendix Figure 1. The 8 health service regions in Texas. Source: (4). 
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Technical Appendix Figure 2. The central stockpile versus EUD for various values of the wastage 

parameter ( ) for the mild influenza pandemic scenario, Texas, USA. The baseline result corresponds to 

 = 0.2, or 20%. A) Change in the percentage of the stockpile held centrally with the growth of EUD. B) 

Change in the number of ventilators held in the central stockpile. Mean peak-week demand, summed 

across all regions, is ≈230 ventilators in the mild scenario. EUD, expected unmet demand. 
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Technical Appendix Figure 3. The central stockpile versus EUD for various values of the region-to-

region correlation coefficient ( ) under the mild influenza pandemic scenario, Texas, USA. The 

baseline result corresponds to  = 0.70. A) Change in the percentage of the stockpile held centrally 

with the growth of EUD. B) Change in the number of ventilators held in the central stockpile. EUD, 

expected unmet demand. 
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