SUPPLEMENTARY INFORMATION

Functional characterization of the meiosis-specific DNA double-strand break inducing factor SPO-11 from *C. elegans*

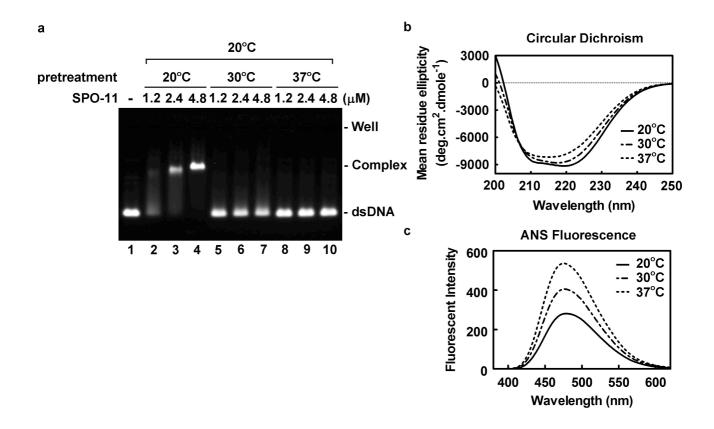
Hsin-Yi Yeh¹, Sheng-Wei Lin², Yi-Chun Wu³, Nei-Li Chan⁴, and Peter Chi ^{1,2,*}

- ² Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- ³ Institute of Molecular and Cellular Biology and Department of Life Science, National Taiwan University, NO. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan
- ⁴ Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, NO. 1, Sec.1, Ren-Ai Rd., 100, Taipei, Taiwan

* To whom correspondence should be addressed: Peter (Hung Yuan) Chi Address: Institute of Biochemical Sciences College of Life Science National Taiwan University NO. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan Email: peterhchi@ntu.edu.tw Phone: 886-2-23665573 Fax: 886-2-23635038

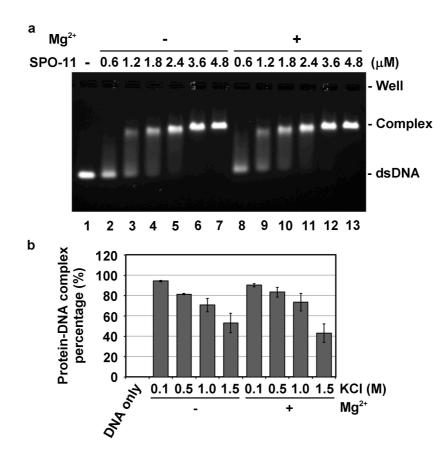
¹ Institute of Biochemical Sciences, National Taiwan University, NO. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan

Supplementary Methods

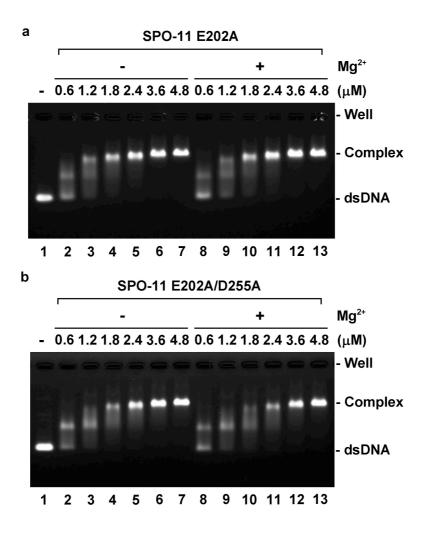

Circular dichroism analysis

Circular dichroism (CD) spectrometry was performed to analyze the conformational change of SPO-11 in a spectropolarimeter (JascoJ-815) under constant N2 flush. The far-UV CD spectra were measured at 200-250 nm with a 1.0 bandwidth and a 0.2 nm resolution at a scan speed of 20 nm/min using a 1 mm path length quartz cuvette. The SPO-11 was diluted with K buffer (20 mM K_2 HPO₄, pH 7.5, 0.5 mM EDTA, 10% glycerol, 0.01% Igepal, and 1 mM 2-mercaptoethanol) to the final 10 μ M and pre-incubated at 20, 30, or 37°C for 30 min. Then, all CD spectra were collected at 20°C. The spectra were corrected for their respective buffer blanks, and five repetitive scans were averaged.

ANS fluorescence analysis

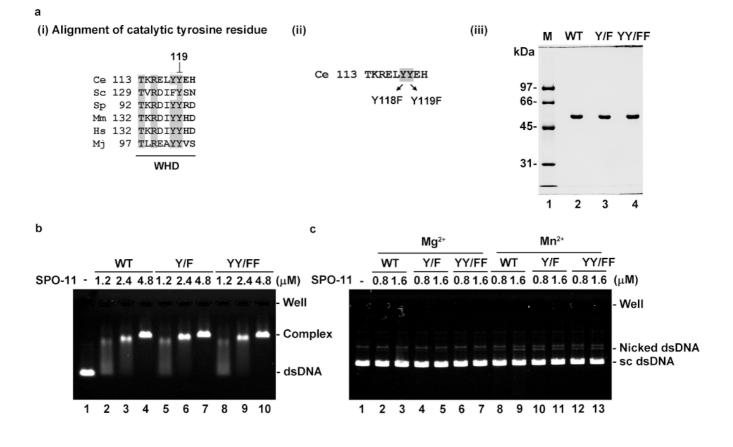

8-anilino-1-naphthalene sulfonate (ANS) fluorescence is used for analysis of protein structural properties. ANS exhibits intensive fluorescence upon interaction with the hydrophobic regions of a protein, but with low fluorescence intensity in solution. In order to analyze the conformational changes of SPO-11 at different temperatures, the ANS fluorescence was measured in a HITACHI F-4500 fluorescence spectrometer. SPO-11 was diluted with T buffer supplemented with 150 mM KCl to 0.3 mg/ml and pre-incubated with 0.1 mg/ml ANS at 20, 30, or 37°C for 30 min. Fluorescence of ANS was excited at 385 nm, and emission spectra were recorded between 400 and 600 nm at 20°C. The excitation and emission slits widths were fixed at 5 nm. For data evaluation, ANS emission spectra in buffer were subtracted from the corresponding ANS-protein spectra.

Supplementary Figures



Supplementary Figure S1. SPO-11 is heat labile.

(a) SPO-11 was pretreated at the indicated temperature for 30 min and then tested for DNA binding at 20° C using the 100 bp dsDNA as substrate. (b) Circular dichroism spectra of SPO-11 at 20, 30, or 37° C. The spectra revealed a significant structural change at the elevated temperatures. (c) The thermal denaturation of SPO-11 was monitored by 8-anilino-1-naphthalene sulfonate (ANS) fluorescence.



Supplementary Figure S2. The effect of magnesium on the DNA binding activity of SPO-11. (a) The indicated concentration of SPO-11 was incubated with the 100 bp dsDNA with or without 10 mM Mg^{2^+} . (b) SPO-11-dsDNA complex was challenged by the indicated concentration of KCl with or without Mg^{2^+} being present. Error bars represent the standard deviation (±SD) calculated based on at least three independent experiments.

Supplementary Figure S3. Lack of effect of magnesium on the DNA binding activity of SPO-11 mutant proteins.

The indicated concentration of SPO-11 E202A (a) or E202A/D255A (b) was tested for binding of the 100 bp dsDNA with or without the presence of Mg^{2+} .

Supplementary Figure S4. Purification and biochemical characterization of SPO-11 catalytically dead mutant variants.

(a) (i) Sequence alignment of catalytic tyrosine residues within the winged-helix DNA-binding (WHD) domain of SPO-11 from various species including *C.elegans* (Ce), *S. cerevisiae* (Sc), *S. pombe* (Sp), *M. musculus* (Mm), *H. sapiens* (Hs), and *M. janaschii* (Mj). (ii) *CeSPO-11* mutants generated in this study. (iii) Purified wild-type (WT), Y119F (Y/F) and Y118F/Y119F (YY/FF) SPO-11 proteins (1.5 μ g each) were analyzed by SDS-PAGE. (b) WT, YF, and YY/FF SPO-11 proteins were tested for DNA binding using the 100 bp dsDNA as substrate. (c) Wild-type and mutant SPO-11 proteins were tested for DNA cleavage with Mg²⁺ or Mn²⁺ present.