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SUPPORTING MATERIALS

1 Solvent subtraction

Fig. S1 shows that using Eq. 4 to subtract the displaced volume of the solvent did not improve the fit to our data. Hence Eq. 2
was used in subsequent models.
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Figure S1: Radially integrated scattering intensity from SJW1660 strain (empty square symbols) and the computed form-
factor of a flagella filament, averaged over all orientations in ~q-space, using Eqs.2 and 7 (red solid curve) and after taking into
account the contribution of the displaced solvent, using Eq. 7 and Eq. 4 with solvent mean electron density of ρ0 = 333 e/nm3

(blue broken curve) or with ρ0 = 303 e/nm3 (dotten violet curve).
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2 2 VARYING FORM-FACTOR PARAMETERS

2 Varying form-factor parameters

The flagella model (Fig. 3) is supported by the following considerations. The helical character of the structure is supported by
looking at the aligned sample shown in Fig. 9. In this figure, the form factor features are governed by the helical shape of the
filament at q > 1 nm−1, indicating that the subunit packing must be considered in the form-factor model. Figs. S2-S4 show
the high sensitivity of the calculated form-factor model to small changes in the helix diameter (Fig. S2), the helical pitch (Fig.
S3), and the filament tilt angle (Fig. S4).
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Figure S2: A comparison between two form-factor models with a 0.1 nm difference in the helix diameter. The main differ-
ences between the two models are the location of the first minimum and the amplitude of the following local maximum. The
inset, shows these features on an expanded scale.
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Figure S3: A comparison between two form-factor models with a 0.2 nm difference in the size of the two turn pitch. The main
difference between the two models is the shift of the two layer-line peaks at q ' 1.4 nm−1 and q ' 2.4 nm−1.

Biophysical Journal 00(00) 1–7



3

0 . 8 1 . 6 2 . 4
1 0 9

1 0 1 0

1 0 1 1

1 0 1 2

Int
en

sity
 [A

.U.
]

q  [ n m - 1 ]

Figure S4: A comparison between two form-factor models with a 1◦ difference in the angle of the filament tilt. The tilt angle
mainly changes the separation between the two layer-line peaks at q ' 1.4 nm−1 and q ' 2.4 nm−1.

Figs. S2-S4 clearly show that each of these parameters predominantly affects different features in the form-factor, allowing
them to be optimized (or fit) independently. This fact increase our confidence level in the model.

Fig. S5 shows the calculated I(q) derived from the model of flagellar filaments, arranged in a hexagonal lattice with
no thermal fluctuations. The lattice-sum peaks dominates this model and there are almost no form-factor features at
q >∼ 0.5 nm−1.

3 Instrument resolution function

Fig. S5 shows that the intensity of the flagellar bundle model has sharp correlation peaks that were invisible in the SAXS
results (Fig. 5). We attribute this observation to the resolution function of our measurement setups, defined by the monochro-
mator, detector pixel size, beam size, sample-to-detector distance, etc. To account for these effects, each of the calculated
model intensities was convoluted with a Gaussian function with a standard deviation, σ = 0.03 nm−1, which is the measured
resolution of our setup. Fig. S5 (red curve) shows that fewer measurable peaks are expected when the resolution function is
taken into account.
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Figure S5: The calculated intensity (as a function of q) of a 15 × 15 bundle of filaments in a hexagonal lattice with no fluc-
tuations(blue curve). The red curve results from the a convolution between the blue curve and a Gaussian resolution function
with a standard deviation of σ = 0.03 nm−1.
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4 4 VARYING STRUCTURE-FACTOR PARAMETERS

4 Varying Structure-factor parameters

The SAXS results (Fig. 5) show that both the structure factor peaks and the form-factor principle features can be observed. Fig.
S6 compares between the calculated intensity models of flagellar filament hexagonal bundles with different degrees of thermal
fluctuations. The extent of fluctuations was determined by the elastic constant between neighbours’, κ, which determines the
lattice-sum contribution to the calculated intensity. A sufficiently high κ value, significantly limits thermal fluctuations and
the intensity resembles the calculated intensity assuming no thermal fluctuations (Fig. S5, blue curve). If, however, the value
of κ is too low, the hexagonal lattice is unstable and the lattice-sum peaks become unclear (Fig. S6, blue curve).

0 . 8 1 . 6 2 . 4
1 0 1 1

1 0 1 2

1 0 1 3

1 0 1 4

1 0 1 5
Int

en
sity

 [A
.U.

]

q  [ n m - 1 ]

Figure S6: A comparison between the lattice sum contribution to the calculated intensity of three models with different κ
values. κ = 8 mN ·m−1 (black curve), κ = 0.8 mN ·m−1 (red curve), and κ = 0.08 mN ·m−1 (blue curve).

The hexagonal lattice constant, a, affects the location of the peaks in the calculated intensity. Fig. S7 shows models with
a small difference in the value of a. The figure clearly shows that the model is very sensitive to the value of a, hence a can be
accurately determined.
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Figure S7: A comparison between the calculated scattering intensities of two models of bundles with a small difference in
their lattice constants. The blue curve is with a = 23.4 nm and the red curve with a = 23.8 nm. As the lattice constant
increases the correlation peaks shift to lower q values.

Fig. 8 shows how the calculated intensity, I(q), is affected by the size of the bundle. Here the main feature that is affected
is the width of the peaks. To clearly see that, the results before and after applying the convolution with the experimental
resolution function are shown.
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Figure S8: A comparison between the calculated intensity of two models with different sizes of bundles. The red curve corre-
sponds to a bundle of 6 × 6. The blue curve corresponds to a bundle of 15 × 15. The difference in the width of the peaks is
less clear after applying the resolution function (black for the 6× 6 bundle and green for the 15× 15 bundle) Note that after
applying the resolution function, in the smaller bundle model the peaks at high q and are more distinct.

Unlike the form-factor parameters, the lattice-sum parameters are more dependent of each other and it is possible to attain
similar fits by fine tuning κ or the bundle size. These parameters should therefore be considered more carefully. It is, however,
clear that the model provides the correct order of magnitude of these parameters.

5 Osmotic stress experiments

Fig. S9 provides additional SAXS curves from flagellar bundles formed under different osmotic pressures, as in Fig. 5.
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6 6 EQUATION OF STATE
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Figure S9: Additional SAXS measurements of SJW1660 in 100 mM NaCl and 10 mM K2HPO4 under different PEG
(Mw = 20, 000 Da) concentrations (in wt%), as indicated (black symbols) with the corresponding computed models (red
curve).

6 Equation of state

The equation-of-states for a bundle of long semi-flexible chains in solution is:
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where G is the free energy, d = a−D is the spacing between filaments, κs is the bending stiffness, H0 is:
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and its second derivative is:
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The last term of the equation of state is then:
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In a hexagonal lattice, the relation between the free energy and the osmotic pressure is:

−∂G
∂d

(d) =
√

3Πd. (9)
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