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ABSTRACT Bacterial mobility is powered by rotation of helical flagellar filaments driven by rotary motors. Flagellin isolated
from the Salmonella Typhimurium SJW1660 strain, which differs by a point mutation from the wild-type strain, assembles
into straight filaments in which flagellin monomers are arranged in a left-handed helix. Using small-angle x-ray scattering and
osmotic stress methods, we investigated the structure of SJW1660 flagellar filaments as well as the intermolecular forces
that govern their assembly into dense hexagonal bundles. The scattering data were fitted to models, which took into account
the atomic structure of the flagellin subunits. The analysis revealed the exact helical arrangement and the super-helical twist
of the flagellin subunits within the filaments. Under osmotic stress, the filaments formed two-dimensional hexagonal bundles.
Monte Carlo simulations and continuum theories were used to analyze the scattering data from hexagonal arrays, revealing
how the bundle bulk modulus and the deflection length of filaments in the bundles depend on the applied osmotic stress. Scat-
tering data from aligned flagellar bundles confirmed the theoretically predicated structure-factor scattering peak line shape.
Quantitative analysis of the measured equation of state of the bundles revealed the contributions of electrostatic, hydration,
and elastic interactions to the intermolecular forces associated with bundling of straight semi-flexible flagellar filaments.
INTRODUCTION
Bacterial locomotion is powered by rotating long
(~10� 15 mm), helical flagellar filaments,which are attached
to the bacterial surface through a molecular motor embedded
in the bacterial membrane. The complete flagellum-motor
complex contains ~25 proteins. The flagellin homopolymer,
however, comprises>99% of the flagellum length, providing
the structural stiffness necessary to generate the thrust that
powers bacterial motility (1,2). Each flagellar filament can
be described as a helical assembly of flagellin protein mono-
mers, with nearly 11 subunits per two turns of a one-start he-
lix, or as a hollow cylinder comprising 11 protofilaments
staggered in a nearly longitudinal helical arrangement (2,3).
Each protofilament is a linear structure consisting of flagellin
monomers stacked onto each other.

The flagellin monomers can exist in two distinct confor-
mational states denoted as left-handed (L) or right-handed
(R). Within each protofilament, all the monomers switch
in a highly cooperative fashion, and thus, each protofilament
also has either an L or an R configuration. If all the protofila-
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ments within a single flagellum have the same conforma-
tional state, the entire assemblage assumes the shape of a
straight hollow cylinder made of an L or R helical arrange-
ment of the flagellin monomers (4). In many cases, however,
a flagellum contains a mixture of L and R protofilaments,
leading to a packing frustration that is resolved by the for-
mation of a helical super-structure along the entire flagellum
length, a unique feature that is essential for bacterial
motility. Depending on the ratio of R to L filaments, there
are a number of distinct structures of varying pitch and
radius. In addition, point mutations in the flagellin amino
acid sequence affect the helical structure (5). Flagellin mu-
tants, in which all the protofilaments assume an L or an R
conformational state, have been isolated and were shown
to assemble into straight flagellar filaments (6,7). Another
unique feature of flagella is that they can switch between
different helical states in response to external stimuli,
including ionic strength, pH, external forces, or temperature
(3,8,9). Besides their obvious biological importance, their
unique helical structure and intriguing stimuli-induced poly-
morphic transitions make flagella a highly promising, yet
poorly explored, building block for assembly of soft mate-
rials and biologically inspired nano/micro machines (10).

To better understand bacterial taxis, which is driven by
hydrodynamically bundled flagellar filaments, as well as
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to assemble flagellum-based soft materials, it is essential to
elucidate the structure, as well as the intermolecular forces
between flagellar filaments (11,12). Using small-angle x-ray
scattering (SAXS), we investigated the behavior of L-type
straight flagellar filaments isolated from the SJW1660
strain, which differs from the wild-type SJW1103 flagellin
strain by the point mutation G426A. The structure of the
flagellar filament was determined in solution. Under os-
motic stress, the filaments formed bundles. To quantitatively
model scattering patterns from flagellar bundles, we per-
formed Monte Carlo simulations that accounted for the ef-
fect of thermal fluctuations on the arrangement of the
filaments within the bundles. The line shape of the struc-
ture-factor correlation peak and the measured osmotic pres-
sure-distance curves were consistent with theoretical
predications (13,14). These experiments and models al-
lowed us to determine the contributions of hydration, elec-
trostatic, and elastic interactions to the equation of state
describing the lateral forces acting between the flagellar fil-
aments within the bundles and the bending stiffness of the
filaments.
MATERIALS AND METHODS

Experimental

The L-type straight filament SJW1660, with flagellin point mutation

G426A, was isolated from a mutant strain of the wild-type SJW1103 puri-

fied from Salmonella enterica serovar Typhimurium (15) according to a

previously published protocol (10). Briefly, bacteria were grown to a log

phase, sedimented at 8000 � g, and redispersed in a minimal volume by

repeated pipetting with a 1 mL pipette. A very dense foamy bacterial solu-

tion was vortex mixed at the highest power setting for 5 min to separate

flagella from the bacterial bodies (Genie 2 Vortex, Scientific Industries,

Bohemia, NY). Subsequently, this suspension was diluted with a buffer

and centrifuged at 8000 � g for 20 min to sediment bacterial bodies.

The supernatant contained flagellar filaments, which were then concen-

trated by two centrifugation/resuspension steps at 100,000 � g for 1 h.

For all experiments the flagella were resuspended in 100 mM NaCl and

10 mM K2HPO4 at pH 7, adjusted with a few mM of NaOH. To apply os-

motic stress to the flagellar filaments and induce bundle formation, we used

polyethylene glycol (PEG) of molecular mass 20 kDa (purchased from

Sigma-Aldrich (St. Louis, MO) and used as received). Osmotic stress sam-

ples were prepared by mixing PEG and flagellar filament solutions, as

described elsewhere (16–19). The osmotic pressure, P, of each polymer

solution was measured using a vapor pressure osmometer (Vapro 5520,

Wescor, Pittsburgh, PA) and verified against the well-established (20)

expression log p ¼ aþ b� ðwt%Þc, where a ¼ 1:57, b ¼ 2:75, and

c ¼ 0:21. Samples were first prepared in Eppendorf tubes, in which they

were vortex mixed. Before SAXS measurements, each sample was trans-

ferred to a quartz capillary that was flame sealed and centrifuged at

6000 � g, using a Sigma 1-15PK centrifuge and rotor no. 11024, suitable

for capillaries. The structural changes at each osmotic pressure were

measured by SAXS.
FIGURE 1 A 3D representation of the flagellin monomer, based on PDB:

3A5X (15). The coordinate system used in our computation model is indi-

cated by the origin and the x and y axes, and the scale bar represents 5 nm.

To see this figure in color, go online.
Solution x-ray scattering data analysis

Most of the solution SAXS measurements were performed using our in-

house setup. The x-ray source was a rotating anode MicroMax-007 HF (Ri-

gaku, Tokyo, Japan) with a copper target, whose wavelength is 1.54 Å. The
optics was a Confocal Max-Flux, CMF-12-100Cu8 focusing unit (Osmic,

Rigaku). The detector was a MAR345 image plate (MarXperts, Norder-

stedt, Germany), the sample-to-detector distance was 1.8 m, and the expo-

sure time was 2 h. The setup also includes scatterless slits (Forvis

Technologies, Santa Barbara, CA) (21). More details about the setup are

described in our earlier publication (22). Some of the data were measured

at ID02 beamline at the European Synchrotron Radiation Facility. ID02

beamline optics consist of a cryogenic cooled Si-111 channel-cut mono-

chromator and a focusing toroidal mirror. The beam size was 200 � 400

mm2 (vertical and horizontal, respectively), with divergence of 20 � 40

mrad. The photon energy was 12.4 keV. The detector was a FReLoN 16M

Kodak CCD, the sample-to-detector distance was 2 m, and the exposure

time was 0.1 s. A more detailed description of the beamline characteristics

is provided elsewhere (23).

To analyze the data, we simulated the real-space structure of the flagellar

bundle and the interactions between neighboring filaments, and calculated

the bundle’s scattering intensity, I, as a function of q, which is the magni-

tude of the momentum transfer vector (or scattering vector), ~q (24–28).

By comparing the simulation results with the data, we determined the struc-

tural parameters and physical properties of the bundles.

The initial estimate of structural parameters by the model was taken from

electron cryo-microscopy data (29). The atomic structure (at 4 Å resolution)

of an L-type flagellin monomer was taken from the Protein Data Bank

(PDB: 3A5X) (15,30) and placed in a Cartesian coordinate system

(Fig. 1). The origin was not placed at the subunit center of mass, but rather

between the two a-helices at the z axis which points along the filament’s

long axis. This choice allowed a simpler relation between translations

and rotations of the monomer with the filament axes. In particular, the scat-

tering amplitude of atom i was calculated using the International Union of

Crystallography (IUCR) atomic form factor:

f 0i ðqÞ ¼
X4
j¼ 1

ajexp

 
� bj

�j~q j
4p

�2
!

þ c; (1)

where aj; bj, and c are the Cromer-Mann coefficients, given in Table 2.2B of

the International Tables for X-ray Crystallography (31) and its subsequent

corrections (32).

The scattering amplitude of the entire flagellin monomer is given by

FMonomerð~qÞ ¼
X
j

f 0j ðqÞ , exp
�
i~q ,~rj

�
; (2)

where~rj is the location of the jth atom in the monomer with respect to the

origin, and ~q is the momentum transfer vector in reciprocal space. To
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account for the contribution of the solvent, its displaced volume should be

estimated (33–35). A uniform sphere (dummy atom) with a mean solvent

electron density, r0, and atomic radius, rsj , could have been placed at the

center of each atom j in the PDB file. This approach, however, may generate

errors at low q (36). Therefore, the uniform spheres were replaced by

spheres with Gaussian electron density profiles (36),

rjð~rÞ ¼ r0exp

"
�
 
~r

rsj

!2#
;

where r0 is the mean electron density of the solvent ðrwater0 ¼ 333ðe=nm3ÞÞ,
and the rsj radii were published previously (33). When absent, empirical

radii (37) were used. The scattering amplitude contribution of the Gaussian

dummy atom is

Fjð~qÞ ¼

Z 2p Z p Z N
"  !2#
0

dfr
0

dqr
0

r0exp � r

rsj
exp½i~q ,~r�r2sin qrdr:

The result depends on the radius and q, owing to the spherical symmetry,

and is given by

FjðqÞ ¼ r0p
3
2

�
rsj

�3
exp

"
�
�
rsj q

2

�2
#
: (3)

In this approach, the overall excluded volume, VGaussian
ex is pð3=2Þðrsj Þ3, and it

is larger by a factor of ð3 ffiffiffi
p

p
=4Þz1:33 than the volume of the uniform

sphere, VUniform
ex ¼ ð4p=3Þðrsj Þ3, in agreement with previous work (36). To

better fit the data, the value of the mean electron density, r0, was adjusted

to some extent (Fig. S1). When the solvent contribution was taken into ac-

count, the scattering amplitude from a monomer became:

FMonomerð~qÞ ¼
X
j

h
f 0j ðqÞ � FjðqÞ

i
, exp

�
i~q ,~rj

�
: (4)

To describe the entire filament, we first translated the ith monomer, with

respect to its origin reference point (Fig. 1), by the translation vector
~Riðxi; yi; ziÞ. The monomer was then rotated by its Tait-Bryan (38) rotation

angles, ai; bi; and gi, around the x, y, and z axes, respectively, using the

rotation matrix
Aða; b;gÞ ¼
24 cos b cos g �cos b sin g sin b

cos a sin gþ cos g sin a sin b cos a cos g� sin a sin b sin g �cos b sin a

sin a sin g� cos a cos g sin b cos g sin aþ cos a sin b sin g cos a cos b

35:
The location and orientation of the ith subunit were described as

ai ¼ bi ¼ 0; gi ¼ i � 4p

NU

xi ¼ RcosðgiÞ; yi ¼ RsinðgiÞ; zi ¼ i � P

NU

; (5)
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where R is the radius of the reference point, P is the two-pitch distance,

and NU is the number of subunits in a two-pitch turn. Our model assumes

that thermal fluctuations within each flagellum are negligible. Fig. 2

shows a two-dimensional (2D) projection of the helical lattice of the

filament.

Using the reciprocal-grid (RG) algorithm (28), the flagella scattering

form factor, FF, was numerically calculated,

FFð~qÞ ¼
Xn
i¼ 1

FMonomer

�
A�1

i ðai; bi;giÞ ,~q
�
, exp

�
i~q , ~Ri

�
;

(6)

and orientationally averaged to give the solution scattering intensity,

IðqÞ ¼
R 2p

0
dfq

R p

0

		FF�q; qq;fq

� 		 2sin qqdqqR 2p

0
dfq

R p

0
sin qqdqq

; (7)

where Ai and ~Ri are the rotation matrix and the translation vector, respec-

tively, of the ith monomer.

Osmotic stress exerted by non-adsorbing polymers induced bundling of

straight flagellar filaments. The scattering intensity owing to the packing

of the flagellar filaments was computed using the form factor of a single

filament, FF, as a unit cell. The form factor was multiplied by a structure

factor (lattice sum), SFð~qÞ, of a 2D lattice and orientationally averaged,

ðFFð~qÞ,SFð~qÞÞ, in~q-space. We assumed a perfect hexagonal 2D lattice as

our starting point (Fig. S5). This assumption is equivalent to assuming

that the chains are very stiff. The fitting parameters of a hexagonal lattice

were the spacing between the centers of neighboring filaments, a, and the

domain size (the distance over which two lattice points maintain posi-

tional correlation). These parameters determined the position and width

of the correlation peaks in the scattering intensity. Since samples were

in solution at room temperature, the lattice exhibited significant thermal

fluctuations, which washed away the sharp peaks of the structure factor

(Fig. S5).

In real space, a finite 2D lattice, at zero temperature, is described by

SFrð~rÞ ¼ dðzÞ
XM
i

dðx � xiÞdðy� yiÞ; (8)

where~ri ¼ ðxi; yi; ziÞ is the location of the ith point in a lattice with M unit

cells. At a finite temperature, thermal fluctuations work against the intermo-

lecular forces, affecting the lattice structure. Assuming a harmonic potential

between nearest neighbors, we calculated the pairwise energetic cost, DEi,
for a small displacement, D~r, of the ith lattice point from its mean location,

~ri, at a given temperature:

3DEi ¼ 1
2
k
P
j˛nn

h�
~rti þ D~rt �~rtj

�2 � �~rti �~rtj

�2i
:

(9)



FIGURE 3 Azimuthally integrated scattering intensity as a function of q

(the magnitude of the momentum transfer vector, q!), from isotropic solu-

tion of the SJW1660 strain in 100 mMNaCl (black solid squares). The form

FIGURE 2 A projection of the helical lattice showing the monomer axial

rise, z (0:4850:01 nm per monomer), and the packing arrangement at the

radius of the reference point (R ¼ 2:4250:02 nm). The dotted red line shows

the shift between monomers that are on top of one another. The dotted blue

line shows theaxial rise betweenadjacentmonomers.fr ¼ gi mod 2p,where

gi is defined in Eq. 5. To see this figure in color, go online.
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Here,~rti ¼ ðxi; yi; 0Þ and nn denote nearest neighbors and k is the lattice

elastic constant between neighbors. The factor of 3 accounts for the fact

that on average, each chain has six neighbors and the interaction is shared

between the interacting pairs (39). The probability of a deviation, DEi, in

the energy is

PiðDEiÞ � exp

�
� DEi

kBT

�
; (10)

where kB is the Boltzmann constant and T is the absolute temperature. To

estimate the effect of thermal fluctuations, we performed Monte Carlo sim-

ulations. In each iteration, we tested the probability of a random displace-

ment at a random lattice point against a random number between 0 and 1. If

the random number was smaller than the calculated probability, PiðDEiÞ,
the displacement was accepted. Repeating this process for ~109 iterations,

using periodic boundary conditions, converged into a stable, slightly (de-

pending on the value of k) disordered 2D hexagonal lattice. Fig. S6 shows

how the value of k affected the calculated intensity in this model.

In real space, the total electron density is a convolution of the electron

density of a filament, rfilamentð~rÞ, and the 2D bundle lattice, SFrð~rÞ. In recip-
rocal space, the convolution becomes a multiplication; hence, the total scat-

tering amplitude is

Fð~qÞ ¼ FFð~qÞ , SFð~qÞ; (11)

where

SFð~qÞ ¼
XM
i¼ 1

expði~q ,~riÞ: (12)

To obtain the scattering intensity, IbundleðqÞ, we calculated the square of the
scattering amplitude,

		Fðq; qq;fqÞ
		 2, and averaged over all the orientations

in reciprocal space (qq and fq), as in Eq. 7 (28). IbundleðqÞ was then

compared with the experimental SAXS data.

factor (red curve) of a flagellar filament was computed using Eqs. 2 and 7

and fitted to experimental data yielding the following essential flagellar

structural parameters: filament diameter, D ¼ 23:1 nm; two-turn pitch,

p ¼ 5:2 nm; 10.96 flagellin subunits per two-turn pitch; and the radius of

the reference point, R ¼ 2:42 nm. The blue curve corresponds to the

same form factor when multiplied by the structure factor of a 2D hexagonal

phase with a lattice constant, a, of 30.0 nm. The structure factor and its peak

indexes are shown in the inset. To see this figure in color, go online.
RESULTS AND DISCUSSION

Scattering from flagellar suspensions

The x-ray scattering 2D pattern from a dense solution of
straight flagella, isolated from strain SJW 1660, was
azimuthally averaged, yielding an experimental scattering
intensity curve (Fig. 3). The experimental data were
compared with the scattering curve computed from a
flagellar model in which the atomic structure of flagellin
monomers (Fig. 1) was arranged on a flagellar one-start
left-handed helical lattice. The relevant microscopic param-
eters in Eq. 5 (R, P, and NU) were varied to obtain the best fit
of our theoretical computed curve to the experimental scat-
tering data and to estimate the error in the form-factor fitting
parameters (Figs. S2–S4). During this procedure, the atomic
structure of the flagellin subunit, obtained from PDB: 3A5X
(15), was preserved and the subunits were not allowed to
overlap.

In our experiments, the average length of flagellar fila-
ments was 4 5 2 mm (10). The SAXS measurements, how-
ever, were insensitive to objects longer than a few hundred
nanometers; hence, in our theoretical computations, the fila-
ment length, L, was fixed at 300 nm (in other words, the fila-
ment contained n ¼ 660 monomers). Models with longer
filaments required more computational resources and did
not change the scattering intensity profile, or better fit the
data, in the q-range of our data. A quantitative comparison
of experimental measurements to the theoretical model
Biophysical Journal 112, 2184–2195, May 23, 2017 2187
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revealed a filament diameter, D, of 23.1 5 0.1 nm, a two-
turn pitch, P, of 5.2 5 0.1 nm, NU ¼ 10:9650:01 flagellin
subunits/two-turn pitch, and a radius of the reference point,
R, of 2.42 5 0.02 nm (Fig. 4). These values are consistent
with electron cryo-microscopy and x-ray fiber diffraction
data (D ¼ 23� 24 nm (30,40), P ¼ 5:27 nm, NU ¼ 11:26
(15,40), and R ¼ 2:5 nm (15)).

Using Gaussian dummy atoms (Eqs. 4 and 7) to account
for the contribution of the solvent with reasonable values
for the solvent electron density, r0 (in Eq. 3), did not
significantly improve the fit of our form-factor model to
the experimental data (Fig. S1). The contribution of the
solvent was therefore not computed in subsequent models
(in other words, Eqs. 2 and 7 were used). By varying the
model parameters, we determined the effect of each param-
eter on the locations and magnitudes of various features in
the calculated intensity. The first minimum was mainly
controlled by the flagellar filament diameter (see
Fig. S2), the peak at q ¼ 1:4 nm�1 was closely associated
with the helical pitch (see Fig. S3), and the peak at
q ¼ 2:4 nm�1 was attributed to the axial rise (Fig. S4).
The high sensitivity of our model to these structural param-
FIGURE 4 3D atomic model of a two-turn pitch (11 flagellin subunits).

(A) Top view. (B) Side view of a three-pitch filament along the filament

long axis. The blue subunit is the first monomer (at z ¼ 0), and the red sub-

unit is the monomer unit of the second two-turn pitch, which is slightly

shifted (see Fig. 2). To see this figure in color, go online.
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eters and their weak interdependency is demonstrated in
Figs. S2–S4.

To obtain high signal/noise scattering patterns, we used a
27 5 0.1 mg/mL (or 0.524 5 0.002 mM) flagellar suspen-
sion. Based on the structure of the flagellar filaments,
the mean filament volume fraction, f, in this sample was
x0:062. Previous work has demonstrated that rigid rods
form a nematic phasewhen ðfL=DÞ> 4. This relationship be-
comes quantitatively valid in the Onsager limit in which
L=D> 100 (41,42). Consequently, because our flagellar fila-
ments were >2 mm, and thus satisfied the Onsager criterion,
the filament suspension formed nematic liquid crystals. We
note that inherently, polydispersity of flagellar filaments
significantly widens isotropic-nematic co-existence. This
makes it possible that shorter filaments partitioned into an
isotropic phase (43). Furthermore, rigorous analysis would
have to account for the contribution of electrostatic repulsion,
which leads to an effective diameter that can be significantly
larger than the bare one. The high ionic strength of our suspen-
sion, however, significantly reduced this contribution (44).

Although the majority of the measured scattering pattern
from flagellar filaments is owing to the form factor, the signal
also contained weak structure-factor correlation peaks, at
qð1;0Þ ¼ 0:24 nm�1 and its higher harmonics (Fig. 3). The
presence of these peaks suggests that a fraction of the fila-
ments within our sample formed hexagonal bundles with
a lattice constant, a, of 30:050:1 nm (Fig. 3, inset).
Within such bundles, the volume per chain is ð ffiffiffi

3
p

La2=2Þ,
where L is the mean filament length. The volume of a
chain is ðLpD2=4Þ; hence, the volume fraction of the fila-
ments in our lattice, given by the ratio of the two,
f ¼ ðpD2=2

ffiffiffi
3

p
a2Þ, was x0:54. The average volume frac-

tion of the filaments, however, was x0:062, suggesting
that a low-density nematic liquid crystal coexisted with a
low fraction of filaments that formed high-density hexagonal
bundles.

Lindemann stability criterion asserts that the root mean-
square displacement (RMSD), hj~u j 2ið1=2Þ, in a lattice should
be small compared with the lattice constant ð<0:1aÞ. In a
lattice with purely steric interactions (13),


j~u j 2�12 ¼ 3
1
2ða� DÞ: (13)

The lattice is expected to melt when amaxz1:2D, which in
the case of our flagellar filaments corresponds to az28 nm
(13). For the filaments in the hexagonal phase, a was
z1:3D, suggesting that the van der Waals attractive interac-
tions between the filaments were not negligible and stabi-
lized the bundle structure. The structure-factor peaks were
relatively wide (with a full width at half-maximum of
z0:06 nm�1), suggesting that the hexagonal bundles had
small lateral dimensions. Applying Warren’s approximation
revealed that, on average, there were only� 3 filaments that
maintained positional correlation in the lattice (45).
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Measuring the equation of state for flagellar
solutions using the osmotic stress technique

To induce large-bundle formation, we applied osmotic stress
to the flagellar filaments by adding increasing concentra-
tions of an inert polymer (PEG: molecular mass, 20 kDa)
to our SJW 1660 flagellar filament solution (Fig. 5). We
then determined the structure of the forming flagellar fila-
ment bundles and the interactions between filaments in the
bundles. To obtain the mean interfilament lateral separation,
a, and the average coherence length, along which the posi-
tional order of filaments within the bundle is maintained, we
modeled the scattering from a filamentous bundle and
compared it with experimental measurements (Fig. 5 B).
We multiplied the single-filament form factor (Eq. 6) by a
FIGURE 5 Scattering from an isotropic suspension containing bundles of

SJW1660 straight flagellar filaments in 100 mM NaCl. The bundles were

assembled using a 5 wt % PEG (molecular mass, 20 kDa) concentration,

corresponding to an osmotic pressure of 47 kPa (20). (A) Two-dimensional

x-ray scattering image. (B) Azimuthally integrated scattering intensity as a

function of q. The experimental measurements (black squares) were fitted

to our computational hexagonal lattice model (red curve) with a lattice con-

stant of a ¼ 23:5 nm. Good agreement can be seen over a wide q-range in

both the location and magnitude of the peaks, whose indexes are indicated

in brackets. To see this figure in color, go online.
hexagonal lattice sum (Eqs. 11 and 12) and orientation aver-
aged the product in~q-space (Eq. 7). To take into account the
effect of thermal fluctuations, we assumed a harmonic po-
tential between nearest-filament neighbors and calculated
the energetic cost of random small displacements in the hex-
agonal lattice (Eq. 9). We performed Monte Carlo simula-
tion (using Eq. 10) that equilibrated the lattice structure.
A lattice of 40� 40 with k ¼ 1:250:1 mN,m�1 ¼
0:2950:02 kBT,nm�2 (k is defined in Eq. 9) was kept con-
stant. Based on the locations of the filament centers that
were obtained from the simulations, we calculated the struc-
ture factor (Eq. 12) and IbundleðqÞ (Eq. 7), and compared
these predictions with the experimental SAXS data.

Three lattice parameters affected the scattering intensity,
IbundleðqÞ: 1) the 2D hexagonal lattice size, a, which deter-
mined the locations of the structure-factor correlation-
peak centers (Fig. S7); 2) the lattice coherence length (i.e.,
the positional correlation length of the lattice), which
mainly influenced the width of the structure-factor correla-
tion-peaks (Fig. S8); and 3) the elastic constant, k, which
affected the intensity and number of structure-factor peaks
(Fig. S6). High k values correspond to weaker thermal
fluctuations and, hence, sharper correlation peaks. Our
computational model quantitatively fitted the experimental
scattering curve over a wide range of q values (Fig. 5 B).
Results for other osmotic pressures, which show comparable
agreement with the computational model, are shown
in Fig. S9. From the equipartition theorem and the value
of k, we can estimate the RMSD of a single flagellar
chain confined in the hexagonal lattice to be (39)
hj~u j 2ið1=2Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkBT=kÞ

p ¼ 1:8550:08 nm:
Taking into account hydration repulsion, the bending

stiffness, ks, of the flagellar filaments, and the electrostatic
interactions between them, the equation of state for a bundle
of long semi-flexible chains like DNA in solution is (14)

vG

vd
ðdÞ ¼ vH0

vd
ðdÞ þ ckBTk

�1
4

s

v

vd

ffiffiffiffiffiffiffiffiffiffi
v2H0

vd2
4

s
; (14)

where G is the free energy, d ¼ a� D is the spacing be-
tween filaments, ks is the bending stiffness, H0 is

H0ðdÞ ¼ ah
e�d=lHffiffiffiffiffiffiffiffiffiffi
d=lH

p þ b
e�d=lDffiffiffiffiffiffiffiffiffiffi
d=lD

p ; (15)

where lH and lD are the hydration and electrostatic
screening lengths, respectively. The explicit expression of
ðvG=vdÞðdÞ is given in Section S6 in the Supporting
Material.

In a hexagonal lattice, the relation between the free en-
ergy and the osmotic pressure is (14)

PðdÞ ¼ � 1ffiffiffi
3

p
d

vG

vd
ðdÞ: (16)
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As expected, the lateral filament spacing, a, obtained from
fitting the scattering data to our model (as demonstrated in
Fig. 5) decreased with increasing osmotic pressure (Fig. 6).
The experimental pressure-distance curve could be quantita-
tively fitted to the theoretical equation of state (Eqs. 14–16).
We fixed the filament hard-core diameter, D, to the
value obtained from the form-factor analysis (23 nm)
when performing the fit. The fit yielded the parameters
ah ¼ 4055 Pa,nm2, b ¼ 4055 Pa,nm2, c ¼ 1:750:1,
ks ¼ 2:950:4,10�15 J,nm, lH ¼ 0:2650:03 nm, and
lD ¼ 0:8250:03 nm. lH is close to the expected value of
~3 Å (46). lD can be calculated from the calculated ionic
strength of the sample, 0.84 nm (47). The small difference be-
tween the calculated and the measured lD could be explained
by the small amount of NaOH that was added to the solution
to maintain natural pH. We kept the value of the prefactor c
close to unity, as obtained in an earlier study (14). ah and b
were first fitted to the high-pressure data, where the contribu-
tion of the hydration and electrostatic forces should dominate.

The bending stiffness, ks, terms dominated the lower
pressure data and are associated with the persistence length
of the filaments (13): P ¼ ðks=kBTÞ ¼ 7005100 mm. This
value is significantly higher than the persistence length of
actin (18 mm), which has a smaller cross section, and com-
parable to the persistence length of a taxol-free microtubule
(700–1500 mm), which has a slightly larger cross section
(48). A taxol-stabilized microtubule has, as expected, a
longer persistence length (5200 mm) (48). The latter values
were measured from thermal fluctuations in the shape of the
FIGURE 6 The equation of state of bundled straight filaments shows how

the lattice constant, a, of a hexagonal bundle (see inset for a schematic top

view) of straight filaments depends on the applied osmotic pressure. The

blue curve indicates the fit of the theoretical model (Eq. 14) to the data.

To see this figure in color, go online.
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filaments. Note that the persistence length that we found
is higher than the value determined from electron micro-
graphs of isolated, negatively stained filaments (41 mm)
(11). Finally, a constant weak negative effective pressure
of 37 Pa was added to account for the contribution of the
van der Waals interaction, which led to the hexagonal phase
when no osmotic stress was applied (Fig. 3).

Whereas the theoretical model quantitatively fits the data
over a wide range of applied osmotic pressures, when the fil-
aments were far apart, the model (Eq. 14) predicted a slightly
more repulsive interaction than measured. At very high pres-
sures (490 kPa or higher), the filaments assumed lattice-
spacing values, a, that were smaller than the unstressed
filament diameter. Our data, however, show that at these
high pressures, the first minimum of the azimuthally inte-
grated scattering curve moves toward higher q values, sug-
gesting that the form factor has changed owing to
deformation of the filaments (Fig. 7). This change is consis-
tentwith a tightermonomer packing resulting in a smaller fila-
ment diameter,D. From the structure of the flagellar filaments
we can calculate the cross-section geometrical moment of
inertia, Izðp=4Þ½ðD=2Þ4 � R4� ¼ 1:4� 104 nm4. The fila-
ment Young’s modulus, E, is then given by (48)

E ¼ P

I
z0:205 0:03 GPa;

where we have assumed that P ¼ 7005100 mm. Table 1
summarizes the parameters determined in this study.
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FIGURE 7 At high osmotic pressures, the scattering profiles exhibited a

discontinuous change indicating a structural change of the constituent

flagella. A comparison between SAXS patterns measured for moderate

(30 kPa; red solid symbols; hexagonal lattice spacing, 23.3 nm) and high

(490 kPa; blue open symbols; hexagonal lattice spacing, 21 nm) osmotic

pressures. To see this figure in color, go online.



TABLE 1 Summary of the Parameters Determined In This

Study

Parameter Name, Symbol Value Error Units

Filament diameter, D 23.1 0.1 nm

Two-turn pitch, P 5.2 0.1 nm

Radius of the reference point, R 2.42 0.01 nm

Number of flagellin subunits per

two-turn pitch, NU

10.96 0.01

Hexagonal lattice elastic constant

between neighbors, k

1.2 0.1 mN , m�1

RMSD of a flagellar chain in the

hexagonal lattice, hj u!j 2ið1=2Þ
1.85 0.08 nm

Flagellar bending stiffness, ks 2.9 0.4 10�15 J , nm

Flagellar Young’s modulus, E 0.20 0.03 GPa

A

B

C

FIGURE 8 Elastic constants of the hexagonal phase as a function of the

lattice spacing, a. (A) The bulk modulus, calculated based on the osmotic

stress data (solid curve) or on the Monte Carlo simulation results (solid sym-

bols). (B) The deflection length (the average displacement between succes-

sive collisions along the chain within the confined lattice). (C) The

fluctuations in the nematic director. To see this figure in color, go online.

Flagellar Structure and Interactions
Within the hexagonal lattice, semi-flexible flagellar fila-
ment chains are confined to an effective ‘‘tube’’ within the
hexagonal lattice. It has been argued that fluctuations of
this type of confined filaments can be described by a single
characteristic length scale, which points along the long
axis, bz, direction of the filaments. This length scale is the
Odijk deflection length, ldef , which is the average displace-
ment between successive collisions along the chain within
the confined lattice and is given by (49,50)

ldefzP
1
3d

2
3: (17)

Equation 17 is based on scaling theory and agrees well with
Monte Carlo simulations up to a prefactor of order 2 (51).
The mean fluctuations in the nematic director can then be
estimated from the deflection length (13):


jnt j 2�z� d

ldef

2
: (18)

Therefore, it follows that the measurement of d directly
yields the Odijk deflection length.

The bulk modulus,

Bh� V
dP

dV
; (19)

can be computed from the theoretical PðdÞ (Eq. 16). The
compressed volume, V, is taken to be the volume of solution
per chain inside the hexagonal lattice (52) and is given
by V=L ¼ ð ffiffiffi

3
p

a2=2Þ � pðD2=4ÞhAc, where L is the
chain length and Ac is the compressed area per chain.
Assuming that L remained unchanged under the osmotic
pressures applied in our experiment, dV ¼ L,dAc,
B ¼ �AcðdP=dAcÞ and is independent of L. Using the
above formula we can determine how the calculated bulk
modulus, deflection length, and mean fluctuations in the
nematic director vary with the lattice spacing, a (Fig. 8).
The bulk modulus decreased with a, whereas the deflection
length and the mean fluctuations in the nematic director
increased with a.
The bulk modulus can also be estimated from k by scaling
analysis. To obtain units of pressure, k should be divided by
a length scale. The relevant length scale in this case is the
deflection length, ldef , which is the length scale over which
the displacement of the filament is kept within the tube
around the filaments, which is in the original lattice site.
Hence, we obtain

Bz
k

ldef
: (20)

Fig. 8 confirms that the bulk modulus, which was estimated
from the Monte Carlo simulations by scaling analysis (Eq.
20), yields bulk moduli that are of the same order of magni-
tude as those obtained from the osmotic stress data (Eq. 19).
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When a was smaller than ~23.5 nm, the scaling analysis
deviated from the bulk modulus, which was computed
from the osmotic stress data. The deviation might be attrib-
uted to the fact that as a gets shorter, k might change (13);
hence, Eq. 20 does not provide a good estimate of B at
low a values.

Twist of the flagellar bundle could have contributed to
disorder in the bundles (53). Twist distortions, however,
are expected to occur on length scales of the filament curva-
ture, which in our case was much longer than the accessible
length scale in our SAXS experiments.
Scattering from aligned flagella samples

In most of our samples, the solutions were isotropic,
as demonstrated in the 2D scattering pattern shown in
Fig. 5 A. In a few samples, however, without any special
treatment (54–56), we accidentally obtained 2D scattering
images from partially aligned bundles of SJW1660 fila-
ments. These data were taken at the ID02 beamline, Euro-
pean Synchcrotron Radiation Facility (Grenoble, France).
The 2D scattering data showed local bundle alignment,
owing to the flow of the high bundle concentration in the
narrow (~2 mm) quartz flow-cell capillary (Fig. 9). The
2D structure-factor peaks, associated with lateral packing,
were located along the perpendicular axis, qt. The peak
at 1:4 nm�1, attributed to the two-turn helical pitch, was
along a diagonal line situated between the vertical ðqzÞ
and horizontal ðqtÞ axes, and the peak at 2:4 nm�1, which
shows the helical axial rise, was along the vertical, qz, axis,
as expected.
FIGURE 9 2D x-ray scattering image from a partially aligned bundle

of straight filaments. The filaments were aligned along their long, z, axis.

Using Cartesian coordinates in reciprocal space, the scattering vector, q!,

has three components, qx; qy, and qz. On a 2D detector, we can observe

the qz component and the qt component, which is the projection of the

scattering vector on the ðqx; qyÞ plan and is given by qt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y

q
. To

see this figure in color, go online.
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To calculate the structure factor, Sðqt; qzÞ, both the den-
sity, rð~rÞ, and the local displacement field, uð~rÞ, should be
evaluated. uð~rÞ was calculated from the elastic free energy
for fluctuations in the hexagonal phase (13). hj~u j 2ið1=2Þ is
directly related to the stability of the hexagonal bundle
(in other words, the lattice is unstable when hj~u j 2ið1=2Þ
diverges).

By alignment of the filaments in the flow-cell capillary we
obtained 2D scattering data from the hexagonal flagellar bun-
dles that we could comparewith the theoretical structure fac-
tor calculated for semi-flexible long chains (13). The model,
which takes into account the elastic free energy of undula-
tions in a hexagonal phase of chains, predicts that the line
shape of the hexagonal structure-factor peaks should decay
as power laws in the tails of the peaks. In particular, for the
ð1; 0Þ and ð0; 1Þ peaks, the data contained enough points to
confirm the predicted power lows. Fig. 10 A presents a
log-log plot of the ð1; 0Þ peak along the perpendicular direc-
tion, qt, with a linear fit, using a slope of �2:050:1, con-
firming the predicated (13) structure-factor line shape of:
SFðqt � Gð1;0Þ; qz ¼ 0Þfq�2

t , where Gð1;0Þ is the ð1; 0Þ
peak center. Fig. 10 B presents a log-log plot of the ð0; 1Þ
peak along the vertical, qz, axis using a linear fit with a slope
of �4:050:1, confirming the predicted structure-factor line
shape of SFðqt ¼ 0; qz � Gð0;1ÞÞfq�4

z , where Gð0;1Þ is the
center of the ð0; 1Þ peak. Similar structure-factor line shapes
can be expected for other semi-flexible filament bundles,
including microtubule or neurofilament bundles (57).
CONCLUSIONS

We have used solution SAXS to determine the structure of
the L-type straight flagellar filament strain SJW 1660. Using
the atomic model of the flagellin subunit, we calculated the
scattering curve from the helical lattice of the entire filament
and compared with our scattering data. We found that the
helix had a diameter of 23:150:1 nm, a two-turn pitch of
5:250:1 nm, and 10:9650:01 flagellin subunits/two-turn
pitch. Under osmotic stress, the filaments formed 2D hexag-
onal bundles. To fit the solution x-ray scattering curves of
2D hexagonal bundles, Monte Carlo simulations were
used to account for thermal fluctuation effects and the inter-
actions between filaments in the bundles, assuming har-
monic pairwise potentials between neighboring filaments
with an elastic constant, k, of 1:250:1 mN,m�1. We deter-
mined the distance between the semiflexible flagellar fila-
ments in the bundles as a function of osmotic stress. We
could fit the resulting pressure-distance curve to the equa-
tion of state of hexagonal bundles of semi-flexible chains
like DNA (14), from which the parameters associated with
the electrostatic, hydration, and undulation interactions
were determined. The undulation energy was associated
with a bending stiffness, which corresponds to a chain
persistence length of z7005100 mm. Table 1 summarizes
the parameters determined in this study.
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FIGURE 10 (A) A log-log plot of the (1,0) peak tail (solid symbols) along

qt, showing a linear tail. G1;0 is the peak center. The broken line is a linear

fit with a slope of �2:050:1, as theoretically predicted (13). The inset

shows the shape of the peak on a log-linear scale. (B) A log-log plot of

the (0,1) peak tail (solid symbols) along qz, averaged over 5 pixels in qt,

showing a linear tail. The center of the peak is at G0;1. The broken line is

a linear fit with a slope of �4:050:1, as theoretically predicted (13). The

inset shows the shape of the peak on a log-linear scale. To see this figure

in color, go online.

Flagellar Structure and Interactions
We then computed the bundle bulk modulus, the deflec-
tion length of the filaments within the bundle, and the
mean fluctuations in the nematic director, as well as the vari-
ation of these parameters with the hexagonal lattice spacing.
Using scaling arguments, we confirmed that the bundle bulk
modulus obtained from the Monte Carlo simulations is in
agreement with the bulk modulus obtained from the osmotic
stress data. Furthermore, the tails of the bundle structure-
factor peak line shapes followed the theoretically predicted
(13) power-law behavior (for semi-flexible chains) with ex-
ponents of �2 and �4 in the perpendicular and axial direc-
tions, respectively. The persistence length of flagellar
filaments is similar to that of a microtubule. However, owing
to the larger microtubule lumen, osmotic stress deforms
the microtubule at low pressures. Higher pressures lead to
2D hexagonal bundles like those of DNA and flagella
(14,17,18). The stiffness of the flagellar filaments is impor-
tant for bacteria to swim efficiently using propeller-like
beating motions of these filaments.
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SUPPORTING MATERIALS

1 Solvent subtraction

Fig. S1 shows that using Eq. 4 to subtract the displaced volume of the solvent did not improve the fit to our data. Hence Eq. 2
was used in subsequent models.
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Figure S1: Radially integrated scattering intensity from SJW1660 strain (empty square symbols) and the computed form-
factor of a flagella filament, averaged over all orientations in ~q-space, using Eqs.2 and 7 (red solid curve) and after taking into
account the contribution of the displaced solvent, using Eq. 7 and Eq. 4 with solvent mean electron density of ρ0 = 333 e/nm3

(blue broken curve) or with ρ0 = 303 e/nm3 (dotten violet curve).
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2 2 VARYING FORM-FACTOR PARAMETERS

2 Varying form-factor parameters

The flagella model (Fig. 3) is supported by the following considerations. The helical character of the structure is supported by
looking at the aligned sample shown in Fig. 9. In this figure, the form factor features are governed by the helical shape of the
filament at q > 1 nm−1, indicating that the subunit packing must be considered in the form-factor model. Figs. S2-S4 show
the high sensitivity of the calculated form-factor model to small changes in the helix diameter (Fig. S2), the helical pitch (Fig.
S3), and the filament tilt angle (Fig. S4).
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Figure S2: A comparison between two form-factor models with a 0.1 nm difference in the helix diameter. The main differ-
ences between the two models are the location of the first minimum and the amplitude of the following local maximum. The
inset, shows these features on an expanded scale.
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Figure S3: A comparison between two form-factor models with a 0.2 nm difference in the size of the two turn pitch. The main
difference between the two models is the shift of the two layer-line peaks at q ' 1.4 nm−1 and q ' 2.4 nm−1.
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Figure S4: A comparison between two form-factor models with a 1◦ difference in the angle of the filament tilt. The tilt angle
mainly changes the separation between the two layer-line peaks at q ' 1.4 nm−1 and q ' 2.4 nm−1.

Figs. S2-S4 clearly show that each of these parameters predominantly affects different features in the form-factor, allowing
them to be optimized (or fit) independently. This fact increase our confidence level in the model.

Fig. S5 shows the calculated I(q) derived from the model of flagellar filaments, arranged in a hexagonal lattice with
no thermal fluctuations. The lattice-sum peaks dominates this model and there are almost no form-factor features at
q >∼ 0.5 nm−1.

3 Instrument resolution function

Fig. S5 shows that the intensity of the flagellar bundle model has sharp correlation peaks that were invisible in the SAXS
results (Fig. 5). We attribute this observation to the resolution function of our measurement setups, defined by the monochro-
mator, detector pixel size, beam size, sample-to-detector distance, etc. To account for these effects, each of the calculated
model intensities was convoluted with a Gaussian function with a standard deviation, σ = 0.03 nm−1, which is the measured
resolution of our setup. Fig. S5 (red curve) shows that fewer measurable peaks are expected when the resolution function is
taken into account.
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Figure S5: The calculated intensity (as a function of q) of a 15 × 15 bundle of filaments in a hexagonal lattice with no fluc-
tuations(blue curve). The red curve results from the a convolution between the blue curve and a Gaussian resolution function
with a standard deviation of σ = 0.03 nm−1.
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4 4 VARYING STRUCTURE-FACTOR PARAMETERS

4 Varying Structure-factor parameters

The SAXS results (Fig. 5) show that both the structure factor peaks and the form-factor principle features can be observed. Fig.
S6 compares between the calculated intensity models of flagellar filament hexagonal bundles with different degrees of thermal
fluctuations. The extent of fluctuations was determined by the elastic constant between neighbours’, κ, which determines the
lattice-sum contribution to the calculated intensity. A sufficiently high κ value, significantly limits thermal fluctuations and
the intensity resembles the calculated intensity assuming no thermal fluctuations (Fig. S5, blue curve). If, however, the value
of κ is too low, the hexagonal lattice is unstable and the lattice-sum peaks become unclear (Fig. S6, blue curve).
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Figure S6: A comparison between the lattice sum contribution to the calculated intensity of three models with different κ
values. κ = 8 mN ·m−1 (black curve), κ = 0.8 mN ·m−1 (red curve), and κ = 0.08 mN ·m−1 (blue curve).

The hexagonal lattice constant, a, affects the location of the peaks in the calculated intensity. Fig. S7 shows models with
a small difference in the value of a. The figure clearly shows that the model is very sensitive to the value of a, hence a can be
accurately determined.
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Figure S7: A comparison between the calculated scattering intensities of two models of bundles with a small difference in
their lattice constants. The blue curve is with a = 23.4 nm and the red curve with a = 23.8 nm. As the lattice constant
increases the correlation peaks shift to lower q values.

Fig. 8 shows how the calculated intensity, I(q), is affected by the size of the bundle. Here the main feature that is affected
is the width of the peaks. To clearly see that, the results before and after applying the convolution with the experimental
resolution function are shown.
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Figure S8: A comparison between the calculated intensity of two models with different sizes of bundles. The red curve corre-
sponds to a bundle of 6 × 6. The blue curve corresponds to a bundle of 15 × 15. The difference in the width of the peaks is
less clear after applying the resolution function (black for the 6× 6 bundle and green for the 15× 15 bundle) Note that after
applying the resolution function, in the smaller bundle model the peaks at high q and are more distinct.

Unlike the form-factor parameters, the lattice-sum parameters are more dependent of each other and it is possible to attain
similar fits by fine tuning κ or the bundle size. These parameters should therefore be considered more carefully. It is, however,
clear that the model provides the correct order of magnitude of these parameters.

5 Osmotic stress experiments

Fig. S9 provides additional SAXS curves from flagellar bundles formed under different osmotic pressures, as in Fig. 5.

Biophysical Journal 00(00) 1–7



6 6 EQUATION OF STATE
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Figure S9: Additional SAXS measurements of SJW1660 in 100 mM NaCl and 10 mM K2HPO4 under different PEG
(Mw = 20, 000 Da) concentrations (in wt%), as indicated (black symbols) with the corresponding computed models (red
curve).

6 Equation of state

The equation-of-states for a bundle of long semi-flexible chains in solution is:

∂G

∂d
(d) =

∂H0

∂d
(d) + ckBTκ

− 1
4

s
∂

∂d

4

√
∂2H0

∂d2
(1)

where G is the free energy, d = a−D is the spacing between filaments, κs is the bending stiffness, H0 is:

H0(d) = ah
e−d/λH√
d/λH

+ b
e−d/λD√
d/λD

, (2)

where λH and λD are the hydration and electrostatic screening lengths. The first derivative of H0 is:
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2
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and its second derivative is:
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The last term of the equation of state is then:

∂

∂d

4

√
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− d
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γ
(5)
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In a hexagonal lattice, the relation between the free energy and the osmotic pressure is:

−∂G
∂d

(d) =
√

3Πd. (9)
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