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ABSTRACT We present OpenRBC, a coarse-grained molecular dynamics code, which is capable of performing an unprece-
dented in silico experiment—simulating an entire mammal red blood cell lipid bilayer and cytoskeleton as modeled by multiple
millions of mesoscopic particles—using a single shared memory commodity workstation. To achieve this, we invented an
adaptive spatial-searching algorithm to accelerate the computation of short-range pairwise interactions in an extremely sparse
three-dimensional space. The algorithm is based on a Voronoi partitioning of the point cloud of coarse-grained particles, and is
continuously updated over the course of the simulation. The algorithm enables the construction of the key spatial searching data
structure in our code, i.e., a lattice-free cell list, with a time and space cost linearly proportional to the number of particles in the
system. The position and the shape of the cells also adapt automatically to the local density and curvature. The code implements
OpenMP parallelization and scales to hundreds of hardware threads. It outperforms a legacy simulator by almost an order of
magnitude in time-to-solution and >40 times in problem size, thus providing, to our knowledge, a new platform for probing
the biomechanics of red blood cells.
The red blood cell (RBC) is one of the simplest, yet most
important cells in the circulatory system due to its indis-
pensable role in oxygen transport. An average RBC assumes
a biconcave shape with a diameter of 8 mm and a thickness
of 2 mm.Without any intracellular organelles, it is supported
by a cytoskeleton of a triangular spectrin network anchored
by junctions on the inner side of the membrane. Therefore,
the mechanical properties of an RBC can be strongly influ-
enced by molecular level structural details that alter the
cytoskeleton and lipid bilayer properties.

Both continuum models (1–4) and particle-based models
(5–8) have been developed with the aim to help uncover
the correlation between RBC membrane structure and prop-
erty. Continuum models are computationally efficient, but
require a priori knowledge of cellular mechanical properties
such as bending and shear modulus. Particle models are use-
ful for extracting RBC properties from low-level descrip-
tions of the membrane structure and defects. However, it
is computationally demanding, if not prohibitive, to simu-
late the large number of particles required for modeling
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the membrane of an entire RBC. To the best of our knowl-
edge, a bottom-up simulation of the RBC membrane at
the cellular scale using particle methods remains absent.

Recently, a two-component coarse-grained molecular
dynamics (CGMD) RBC membrane model that explicitly
accounts for both the cytoskeleton and the lipid bilayer
was proposed (9). The model could potentially be used
for particle-based whole-cell RBC modeling because its
coarse-grained nature can drastically reduce computational
workload while still preserving necessary details from the
molecular level. However, due to the orders-of-magnitude
difference in the length scale between a cell and a single
protein, a total of about four million particles is still needed
to represent an entire RBC. In addition, the implicit treat-
ment of the plasma in this model eliminates the overhead
for tracking the solvent particles, but also exposes a notable
spatial density heterogeneity because all CG particles are
exclusively located on the surface of a biconcave shell.
The space inside and outside of the RBC membrane remains
empty. This density imbalance imposes a serious challenge
on the efficient evaluation of the pairwise force using con-
ventional algorithms and data structures, such as the cell
list and the Verlet list, which typically assume a uniform
spatial density and a bounded rectilinear simulation box.

In this article, we present OpenRBC—a new software
tailored for simulations of an entire RBC using the
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OpenRBC Whole Cell Molecular Dynamics
two-component CGMD model on multicore CPUs. As illus-
trated in Fig. 1, the simulator can take as input a triangular
mesh of the cytoskeleton of a RBC and reconstruct a CGMD
model at protein resolution with explicit representations
of both the cytoskeleton and the lipid bilayer. This type of
whole cell simulation of RBCs can thus realize an array of
in silico measurements and explorations of the following:
1) RBC shear and bending modulus, 2) membrane loss
through vesiculation in spherocytosis and elliptocytosis
(10), 3) anomalous diffusion of membrane proteins (11),
4) interaction between sickle hemoglobin fibers and RBC
membrane in sickle cell disease (12,13), 5) uncoupling be-
tween the lipid bilayer and cytoskeleton (14), 6) ATP release
due to deformation (15), 7) nitric oxide-modulated mechan-
ical property change (16), and 8) cellular uptake of elastic
nanoparticles (17).
Software overview

OpenRBC is written in Cþþ using features from the
Cþþ11 standard. To maximize portability and allow easy
integration into other software systems (18), the project
is organized as a header-only library with no external depen-
dencies. The software implements SIMD vectorization (19)
and OpenMP shared memory parallelization, and was spe-
cifically optimized toward making efficient use of large
numbers of simultaneous hardware threads.

As shown in Fig. 2 A, the main body of the simulator is a
time-stepping loop, where the force and torque acting on
each particle is solved for and used for the iterative updating
of the position and orientation according to a Newtonian
equation of motion. The time distribution of each task in a
CA

B

FIGURE 1 (A) A canonical hexagonal triangular mesh of a biconcave surfac

component CGMD RBC membrane model to reconstruct (C) a full-scale virtu

see this figure in color, go online.
typical simulation is given in Fig. 2 B. The majority of
time is spent in force evaluation, which is compute-bound.
This makes the code capable of utilizing the high thread
count of modern CPUs with the shared memory program-
ming paradigm.

Initial structure generation

As shown in Fig. 1, a two-component CGMD RBC system
can be generated from a triangular mesh, which resembles
the biconcave shape of a RBC at equilibrium. Note that the
geometry may be alternatively sourced from experimental
data using techniques such as optical image reconstruction
because the algorithm itself is general enough to adapt to
an arbitrary triangular mesh. This feature can be useful for
simulating RBCs with morphological anomalies. Actin and
glycophorin protein particles are placed on the vertices of
the mesh, whereas spectrin and immobile band-3 particles
are generated along the edges. The band-3-spectrin connec-
tions and actin-spectrin connections can bemodified to simu-
late RBCs with structural defects. Lipid and mobile band-3
particles are randomly placed on each triangular face by uni-
formly sampling each triangle defined by the three vertices
(20). Aminimum interparticle distance is enforced to prevent
clutter between protein and lipid particles. The system is then
optimized using a velocity quenching algorithm to remove
collision between the particles.

Spatial searching algorithm

Pairwise force evaluation accounts for >70% of the
computation time in OpenRBC as well as other molecular
dynamics softwares (21,22). To efficiently simulate the
e representing the cytoskeleton network is used together with (B) the two-

al RBC, which allows for a wide range of computational experiments. To
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FIGURE 2 Shown here is the (A) flow chart and

(B) typical wall time distribution of OpenRBC. To

see this figure in color, go online.
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reconstructed RBC model, we invented a lattice-free spatial
partitioning algorithm that is inspired by the concept of
Voronoi diagram. The algorithm, at the high level, can be
described as the following:

1. Group particles into a number of adaptive clusters,
2. Compute interactions between neighboring clusters, and
3. Update cluster composition after particle movement.

Then
4. Repeat from Step 2.

As illustrated in Fig. 3, the algorithm adaptively partitions
a particle system into a number of Voronoi cells that are
approximately equally populated. In contrast, a lattice-
based cell list leaves many cells vacant due to the density
heterogeneity. Thus, the algorithm can provide very good
performance in partitioning the system, maintaining data
locality and searching for pairwise neighbors in a sparse
three-dimensional space. It is implemented in our software
using a k-means clustering algorithm, which is, in turn,
enabled by a highly optimized implementation of the k-d
tree searching algorithm, as explained below.

A Voronoi tessellation (23) is a partitioning of an
n-dimensional space into regions based on distance to a
set of points called the ‘‘centroids’’. Each point in the space
is attributed to the closest centroid (usually in the L2 norm
sense). An example of a Voronoi diagram generated by
2032 Biophysical Journal 112, 2030–2037, May 23, 2017
12 centroids on a two-dimensional rectangle is given in
Fig. 4 A.

The k-means clustering (24) is a method of data partition-
ing that aims to divide a given set of n vectors into k clusters
in which each vector belongs to the cluster whose center is
closest to it. The result is a partition of the vector space into
a Voronoi tessellation generated by the cluster centers as
shown in Fig. 4 B. Searching for the optimal clustering
that minimizes the within-cluster sum of square distance
is NP-hard, but efficient iterative heuristics based on, e.g.,
the expectation-maximization algorithm (25), can be used
to quickly find a local minimum.

A k-d tree is a spatial partitioning data structure for orga-
nizing points in a k-dimensional space (26). It is essentially
a binary tree that recursively bisects the points owned by
each node into two disjoint sets as separated by an axial-par-
allel hyperplane. It can be used for the efficient searching of
the nearest neighbors of a given query point in O(logN)
time, where N is the total number of points, by pruning
out a large portion of the search space using cheap overlap
checking between bounding boxes.

The k-means/Voronoi partitioning of a point cloud
adapts automatically to the local density and curvature of
the points. As such, we exploit this property to create a
generalization of the cell list algorithm using the Voronoi
diagram. The algorithm can be described as a two-step
FIGURE 3 (Left) Only cells in dark gray are

populated by CG particles in a cell list on a recti-

linear lattice. This results in a waste of storage and

memory bandwidth. (Right) All cells are evenly

populated by CG particles in a cell list based on

the Voronoi diagram generated from centroids

located on the RBC membrane. To see this figure

in color, go online.



FIGURE 4 (A) Shown here is a Voronoi parti-

tioning of a square as generated by centroids

marked by the blue dots. (B) Shown here is a

k-means (k ¼ 3) clustering of a number of points

on a two-dimensional plane. (C) Shown here is a

vesicle of 32,673 CG particles partitioned into

2000 Voronoi cells. To see this figure in color, go

online.

OpenRBC Whole Cell Molecular Dynamics
procedure: 1) clustering all the particles in the system using
k-means, followed by an online expectation-maximization
algorithm that continuously updates the system’s Voronoi
cells centroid location and particle ownership; and 2) sort-
ing the centroids and particles with a two-level data
reordering scheme, where we first order the Voronoi cen-
troids along a space-filling curve (a Morton curve, specif-
ically) and then reorder the particles according to the
Voronoi cell that they belong to. The pseudocode for the
algorithm can be found in the Supporting Material. The re-
ordering step in updating the Voronoi cells ensures that
neighboring particles in the physical space are also statisti-
cally close to each other in the program memory space.
This locality can speed up the k-d tree nearest-neighbor
search by allowing us to use the closest centroid of the
last particle as the initial guess for the next particle. This
heuristic helps to further prune out most of the k-d tree
search space and essentially reduces the complexity of
a nearest-neighbor query from O(logN) to O(1). In prac-
tice, this brings �100 times acceleration when searching
through 200,000 centroids. As shown by Fig. 4 C, the Vor-
onoi cells generated from a k-means clustering of the CG
particles are uniformly distributed on the surface of the
lipid membrane.
Force evaluation

Lipid particles accounts for 80% of the population in the
whole-cell CGMD system. The Voronoi cells can be used
directly for efficient pairwise force computation between
lipids with a quad loop that ranges over all Voronoi cell vi,
all neighboring cells vj of vi, all particles invi, and all particles
in vj, as shown in the Supporting Material. Because the cyto-
skeleton of a healthy RBC is always attached to the lipid
bilayer, its protein particles are also distributed following
the local curvature of the lipid particles. This means that
we can reuse the Voronoi cells of the lipid particles, but
with a wider searching cutoff, to compute both the lipid-pro-
tein and protein-protein pairwise interactions. For diseased
RBCs with fully or partially detached cytoskeletons, a sepa-
rate set ofVoronoi cells can be set up for the cytoskeleton pro-
teins to compute the force. A list of bonds between proteins is
maintained and used for computing the forces between pro-
teins that are physically linked to each other.
Biophysical Journal 112, 2030–2037, May 23, 2017 2033
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Tang et al.
A commonly used technique in serial programs to speed
up the force computation is to take advantage of the New-
ton’s third law of action and reaction. Thus, the force be-
tween each pair of interacting particles is only computed
once and added to both particles. However, this generates
a race condition in a parallel context because two threads
may end up simultaneously computing the force on a parti-
cle shared by two or more pairwise interactions.

Our solution takes advantage of the strong spatial locality
of the particles as maintained by the two-level reordering al-
gorithm, and decomposes the workload both spatially and
linearly-in-memory into patches by splitting the linear range
of cells indices among OpenMP threads. Each thread will be
calculating the forces acting on the particles within its own
patch. As shown in Fig. 5, force accumulation without trig-
gering racing condition can be realized by only exploiting
the Newton’s third law on pairwise interactions where
both Voronoi cells belong to a thread’s own patch. Interac-
tions involving a pair of particles from different patches
are calculated twice (once for each particle) by each thread.
The strong particle locality minimizes the shared contour
length between two patches, and hence also minimizes the
number of interpatch interactions.

Validation and benchmark

In this section we present validation of our software by
comparing simulation and experimental data. We also
compare the program performance against that of the legacy
CGMD RBC simulator used in Li and Lykotrafitis (9). The
legacy simulator, which performs reasonably well for a
small number of particles in a periodic rectangular box,
was written in C and parallelized with the message passing
interface using a rectilinear domain decomposition scheme
and a distributed memory model. Three computer systems
were used in the benchmark, each equipped with a different
mainstream CPU microarchitecture, i.e., the Intel Haswell,
the AMD Piledriver, and the IBM Power8 (27). The ma-
chine specifications are given in Table 1.
FIGURE 5 Thanks to the spatial locality ensured by reordering particles

along the Morton curve (dashed line), we can simply divide the cells be-

tween two threads by their index into two patches each containing five

consecutive Voronoi cells. The force between cells from the same patch

is computed only once using Newton’s third law, whereas the force between

cells from different patches is computed twice on each side. To see this

figure in color, go online. T
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A

B

FIGURE 6 (A) Shown here is the vesiculation

procedure of a miniature RBC. (B) The instanta-

neous fluctuation of a full-size RBC in OpenRBC

compares to that from experiments (28–30). Mi-

croscopy image is reprinted with permission from

Park et al. (28). To see this figure in color, go

online.

OpenRBC Whole Cell Molecular Dynamics
To compare performance between OpenRBC and the leg-
acy simulator, the membrane vesiculation process of a mini-
aturized RBC-like sphere with a surface area of 2.8 mm2 was
simulated. The evolution of the dynamic process is visual-
ized from the simulation trajectory and shown in Fig. 6 A.
OpenRBC achieves almost an order-of-magnitude speedup
over the legacy solver in this case on all three computer sys-
tems, as shown in Table 1.

Furthermore, OpenRBC can efficiently simulate an entire
RBC modeled by 3,200,000 particles and correctly repro-
duce the fluctuation and stiffness of the membrane as shown
in Fig. 6 B. The legacy solver was not able to launch the
simulation due to memory constraint. The simulation was
carried out by implementing the experimental protocol of
Park et al. (28), which measures the instantaneous vertical
fluctuation Dh(x,y) along the upper rim of a fixed RBC.
In addition, a harmonic volume constraint is applied to
maintain the correct surface-to-volume ratio of the RBC.
We measured a membrane root-mean-square displacement
of 33.5 nm, whereas previous experimental observations
and simulation results range between 23.6 and 58.8 nm
(28–31).

A scaling benchmark for the whole cell simulation on the
three computer systems is given in Fig. 7. It can be seen that
compute-bound tasks such as pairwise force evaluation
can scale linearly across physical cores. Memory-bound
tasks benefit less from hardware threading as expected,
but thanks to thread pinning and a consistent workload
decomposition between threads, there is no performance
degradation from side effects such as cache and bandwidth
contention.

It is also worth noting that Fu et al. (32) recently pub-
lished an implementation of a related RBC model in
LAMMPS, which can simulate 1.15 � 106 particles for
105 time steps on 864 CPU cores in 2761 s. However, the
use of explicit solvent particles in their model generates dif-
ficulty in establishing a direct performance comparison be-
tween their implementation and OpenRBC. Nevertheless, as
a rough estimate and assuming perfect scaling, their timing
result can be translated into simulating 8.34 � 106 particles
for 0.41 � 105 time steps per day on 864 cores. OpenRBC
can complete roughly the same amount of time steps on
20 CPU cores. We do recognize that the explicit solvent
model carries more computational workload, and that im-
plementing nonrectilinear partitioning schemes may not be
straightforward within the current software framework of
LAMMPS. Nonetheless, this comparison does serve to
demonstrate the potential of shared-memory programming
Biophysical Journal 112, 2030–2037, May 23, 2017 2035



FIGURE 7 Shown here is the scaling of OpenRBC across physical cores

and NUMA domains when simulating an RBC of 3,200,000 particles. To

see this figure in color, go online.

Tang et al.
paradigm on fat compute nodes with large numbers of
strong cores and amounts of memory.

Summary

We presented a from-scratch development of a coarse-
grained molecular dynamics software, OpenRBC, which
exhibits exceptional efficiency when simulating systems
of large density discrepancy. This capability is supported
by an innovative algorithm that computes an adaptive par-
titioning of the particles using a Voronoi diagram. The pro-
gram is parallelized with OpenMP and SIMD vector
instructions, and implements threading affinity control,
consistency loop partitioning, kernel fusion, and atomics-
free pairwise force evaluation to increase the utilization
of simultaneous hardware threads and to maximize mem-
ory performance across multiple NUMA domains. The
software achieves an order-of-magnitude speedup in terms
of time-to-solution over a legacy simulator, and can handle
systems that are almost two orders-of-magnitude larger in
particle count. The software enables, for the first time
ever to our knowledge, simulations of an entire RBC
with a resolution down to single proteins, and opens up
the possibility for conducting many in silico experiments
concerning the RBC cytomechanics and related blood
disorders (33).
2036 Biophysical Journal 112, 2030–2037, May 23, 2017
SUPPORTING MATERIAL

SupportingMaterials andMethods, one figure, and one table are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(17)30436-8.
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The CGMD RBC model

Figure 1: A schematic illustration of the CGMD model. Blue: lipid; red: actin junctional complex, silver: spectrin, black: glycophorin,
yellow: mobile band-3, green: immobile band-3.

Here we briefly introduce the two-component CGMD RBC membrane model. For more detailed description see Refeference [1, 2].
As illustrated in Figure 1, the model describes the RBC as a two-component system, comprised of a cytoskeleton and a lipid bilayer. The
cytoskeleton consists of spectrin filaments connected at actin junctional complexes forming a hexagonal network. The actin junctional
complexes, as represented by the red particles, have a diameter of approximately 15 nm and are connected to the lipid bilayer via
glycophorin. Spectrin is a protein tetramer formed by head-to-head association of two identical heterodimers. Each spectrin filament
is represented by 19 spectrin particles connected by unbreakable springs. Spectrin chains are linked to band-3 particles via a spring
potential. The two ends of the spectrin chains are also connected to the actin junctional complexes via the spring potential. Spectrin
particles that are not connected by the spring potential interact with each other via a Lennard-Jones potential.

The CG particles, which form the lipid bilayer and transmembrane proteins, carry both translational and rotational degrees of freedom
(xi, ni), where xi and ni are the position and the orientation (direction vector) of particle i, respectively. The rotational degrees of
freedom obey the normality condition |ni| = 1.

The lipid particles interact with each other through a pairwise addtive potential:

uij(ni, nj , xij) = uR(rij) +A(α, a(ni, nj , xij))uA(rij) (1)

uR(r) =
{
ε( rc−r

rc−req
)8
, r < rc

0, otherwise
(2)

uA(r) =
{
−2ε( rc−r

rc−req
)4
, r < rc

0, otherwise
(3)

A(α, a(ni, nj , xij)) = 1 + α(a(ni, nj , x̂ij)− 1) (4)
a(ni, nj , x̂ij) = (ni × x̂ij) · (nj × x̂ij) = ni · nj − (ni · x̂ij)(nj · x̂ij) (5)

where xij = xj − xi is the distance vector between particles i and j, rij = ‖xij‖ is the distance between i and j, uR(rij) and uA(rij)
are the repulsive and attractive components of the pair potential, respectively. α is a tunable linear amplification factor. The function
A(α, a(ni, nj , xij)) = 1 + α(a(ni, nj , xij) − 1) tunes the energy well of the potential, through which the fluid-like behavior of the
membrane is regulated.

The translational motion of the particles is governed by the Newtonian equation of motion (EOM) of force, velocity, and position

ẍ = v̇ = −∇U/m (6)

while the rotational motion for the CG particles forming the lipid bilayer and proteins in the lipid bilayer is governed by

m̃in̈i = −
∂(

∑N
j=1 umem,ij)
∂ni

+ (
∂(

∑N
j=1 umem,ij)
∂ni

· ni)ni − m̃i(ṅi · ṅi)ni (7)
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where m is the mass of each particle, m̃ is a pseudo-mass with dimension of energy · time2, and the right-hand side of Eq. 7 obeys
the normality constraint |ni| = 1. The Verlet algorithm combined with a Langevin thermostat is used to update the particle’s position
and orientation according to the EOMs.

Voronoi Cell List
A pseudocode demonstrating the algorithm for building a Voronoi cell list, as detailed in the main text, is shown in Algorithm 1.

Algorithm 1 The Voronoi cell list construction algorithm.
Class Voronoi_Celllist
Ncell = SIMULATION CASE-SPECIFIC VALUE
centroids = EMPTY
bin_start = EMPTY
cell_list = EMPTY
tree = KDTree()

# find k centroids to minimize the within-cluster sum of squares
Method KMeans( k: integer,

N: integer,
points: real[N][3] )

...

Method UpdateCentroids( coord: real[Np][3] ):
for i = 0:Ncell
com = (0, 0, 0)
n = bin_start[i+1] - bin_start[i]
for j = 0:n
com = com + coord[ bin_start[i] + j ]

centroids[i] = com / n

Method BuildCelllist( Np: integer, coord: real[Np][3] ):
if centroids = EMPTY
centroids = KMeans( Ncell, Np, coord )

else
Update_Centroids( coord )

local_seq = integer[N]
cid = integer[N]
# Calculate the Voronoi cell that particles fall in
# Compute cell size and local indices for particles
tree.rebuild( centroids )
previous = ( id = 0, dist = Infinity )
for i = 0:N
nearest = tree.find_nearest( coord[i], previous )
cid[i] = nearest.id
local_seq[i] = bin_size[ nearest.id ]
++bin_size[ nearest.id ]
previous = nearest

# O(N) prefix sum for the starting index of each cell
bin_start = zeros[Ncell]
for i = 1:Ncell
bin_start[i] = bin_start[i-1] + bin_size[i-1]

# Scatter particle indices into corresponding cell
cell_list = integer[N]
for i = 0:N
cell_list[ bin_start[cid[i]] + local_seq[i] ] = i

destroy cid, local_seq , bin_size
return cell_list , bin_start

The Voronoi cells can be used directly for efficient pairwise force computation between lipids with a quad loop that ranges over all
Voronoi cell vi, all neighboring cells vj of vi, all particles in vi, and all particles in vj as shown in Algorithm 2. The cell-wise neighbors
for each cell v is determined by the criterion:

dij ≤ ri + rj + rc

where dij is the centroid-to-centroid distance between the Voronoi cell vi and vj , ri is maxk∈vi ‖xk − ci‖, and rj is maxk∈vj ‖xk − cj‖.

Particle Storage
The layout of particle storage has an effect on the performance of our OpenRBC simulator. The data of the lipid and protein particles

are stored separately in two containers for the following reasons. First, the protein-protein and protein-lipid potentials are much more

3



Algorithm 2 Algorithm for pairwise force evaluation using the Voronoi cell list.
Method ComputePairwise( x : real[N][3], # coordinate

f : real[N][3], # force
o : real[N][3], # orientation
t : real[N][3], # torque
tree : KDTree,
voronoi_cell )

for i = 0 : voronoi_cell.n_cells
for each j in tree.find_around( i )
for p1 in voronoi_cell[i]
for p2 in voronoi_cell[j]

if dist( x[p1], x[p2] ) < cutoff
f, tau = pairwise_force( x[p1], x[p2],

o[p1], o[p2] )
f[p1] += f
f[p2] -= f
t[p1] -= tau
t[p2] -= tau

complicated than the lipid-lipid potential. Thus, frequently choosing between the corresponding force kernels by particle type will incur
a lot of branching instructions which may hurt the processor’s front end performance. This can also be solved by working separately on
the two classes of particles. Second, protein particles carry more information, e.g. type, tag, and bonds, than lipid particles. Hence a
separation between the two classes of particles can save 2 arrays of size O(N), which can be significant in terms of cache performance
when millions of particles are present in the system.

Time Stepping
The Verlet integration algorithm coupled with the Langevin thermostat consists of embarrassingly parallel loops that iterates over

particles to update their position, velocity, orientation and angular momentum. The implementation of the algorithm is divided into 2
stages, one before force evaluation and one after. Each of the stages consists of 3 passes that perform different tasks such as position
updating, bounce back, orientation renormalization, force and torque reset, temperature calculation and temperature adjustment. Naively,
each of the passes can be trivially parallelized with a single line of OpenMP parallel for directive. However, this will invoke a
total of 12 parallel regions per time step to process both the lipid and protein container. Due to the low computation/transfer ratio of
the arithmetics within each pass, the entire workload is largely memory bound. As a consequence, the software initially displayed a
performance degradation when going from 4 to 8 hardware threads on Power8 CPUs.

We implemented a fused version of the time stepping algorithm by extracting the core algorithm inside each pass as functors that
resemble GPU kernels. A fusion can then be performed to the greatly simplified kernels. A C++11 variadic driver function is then used
to start a single parallel region, within which an arbitrary number of containers can be processes by the kernels. This effectively reduced
the total number of parallel regions encountered per time step to 2, and maximizes cache line reuse without compromising program
readability. The new time stepping scheme can benefit from using all the hardware threads available on the physical cores.

Memory Access
Non-uniform memory access (NUMA) / Non-uniform cache access (NUCA) are the prevalent memory system design in current

processor architectures, where the latency of memory access depends on the link topology between the memory location relative to the
processing elements. To maximize local memory access, the code will pin OpenMP threads to hardware threads in a depth-first manner
such that consecutive threads reside on the same physical core. The scheduling of most OpenMP loops that operate on array-like objects
are done with a central work scheduler which controls the range processed by each thread. This ensures consistency in the memory access
footprint to each array object across different functions. The two most frequently accessed and performance-critical data structures in the
program are the particle container and the Voronoi cell list. Thanks to the data locality as provided by the particle reordering algorithm,
the partitions of the two structures can be aligned naturally with a simple linear split. Overall, in most of the parallel regions each thread
will only need to work on its own partition without the need to touch data owned by other hardware cores. The non-local, pairwise nature
of the particle interaction makes it inevitable for threads in OpenRBC to access part of the particle array which may be far away from its
physical location. However, most of the non-local access is read-only and hence does not incur as much penalty as that in a read-write
scenario.

Source Code Overview
To maximize customizability and reusability, we strive to decompose the source code into functionally independent modules. The

structure of OpenRBC in terms of the source file organization is given in Table 1.
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Table 1: List of source files relevant to customization

File Functionality

openrbc.cpp Main program loop
orbc-util.cpp Utility program for file format conversion etc.
config_static.h Compile-time options mostly relevant to performance optimization
forcefield_*.h CGMD particles definition and interaction parameters
container.h CGMD particle container
init_*.h Initial structure generation algorithm
compute_*.h Force evaluation driver (outer loop among adaptive cells)
pairwise_kernel_*.h Pairwise force evaluation (inner loop between particles)
integrate_*.h Time integrators, substeps, etc.
kdtree.h k-d tree algorithm
math_vector_*.h Vector operation support, SIMD wrapper
reorder_*.h Sorting algorithm to improve data locality
runtime_parameter.h Options controlling program behavior at run time
voronoi.h Voronoi cell list
trajectory.h, topology.h File I/O
util_*.h, service.h, timer.h Miscellaneous utilities
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