Supplementary Information for

Real-time imaging of the bacillithiol redox potential in the human pathogen *Staphylococcus aureus* using a genetically encoded bacilliredoxin-fused redox biosensor

Authors:

Vu Van Loi¹, Manuela Harms², Marret Müller³, Nguyen Thi Thu Huyen¹, Chris Hamilton⁴, Falko Hochgräfe², Pané-Farré³ and Haike Antelmann^{1*}

Departments & Institutions:

 ¹Institute for Biology-Microbiology, Freie Universität Berlin, D-14195 Berlin, Germany
 ²Junior Research Group Pathoproteomics and ³Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487 Greifswald, Germany
 ⁴School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK

Running title: Bacilliredoxin-fused redox biosensor in Staphylococus aureus

*Corresponding author:

Haike Antelmann, Institute for Biology-Microbiology, Freie Universität Berlin, Königin-Luise-Strasse 12-16, D-14195 Berlin, Germany, Tel.+49-(0)30-838-51221, Fax: +49-(0)30-838-451221 **E-mail: haike.antelmann@fu-berlin.de**

Supplemental Figure legends

Figure S1. Multiple protein sequence alignments of the YphP/YqiW bacilliredoxin homologs from *B. subtilis*, *S. aureus* COL and USA300 and *Staphylococcus epidermidis*. The bacilliredoxins YphP (BrxA) and YqiW (BrxB) of the UPF0403 family from *B. subtilis* were aligned with SACOL1464 and SACOL1558 from *S. aureus* COL, SAUSA300_1321 and SAUSA300_1463 from *S. aureus* USA300 and with SERP1006 and SERP1075 from *S. epidermidis*. The multiple sequence alignment was performed using ClustalW2 and presented using Jalview. Intensity of the blue color gradient is based on 50% identity. The conserved Cys residues are marked with asterisk (*) and highlighted in red.

Figure S2. The Brx-roGFP2 biosensor is not responsive to pH changes *in vitro*. Recombinant Brx-roGFP2 was diluted into 0.1 M potassium phosphate buffer with pH values ranging from 5.8-7.9. The 405/488 nm fluorescence excitation ratio of fully reduced and oxidized Brx-roGFP2 was calculated at different pH values, emission was measured at 510nm (n=4, P=0.0637 Brx-roGFP2 pH 5.8 versus 7.8). Error bars represent standard deviations from the mean. Data are representative of 4 replicates and *P*-values were calculated using a Students unpaired two-tailed t-Test by the graph prism software.

Figure S3. Western blot analysis of Brx-roGFP2 expression in S. aureus COL during the growth in LB medium. *S. aureus* COL Brx-roGFP2 was grown in LB medium and crude protein extracts were analyzed at different times along the growth for Brx-roGFP2 expression using GFP-specific Western blot analysis. Brx-roGFP2 expression increases during the stationary phase in *S. aureus* COL. The protein size marker indicates that the Brx-roGFP2 protein migrates at the correct molecular weight of 46 kDa in *S. aureus* COL *in vivo*.

Figure S4. Fluorescence excitation spectrum of Brx-roGFP2 expressed in *S. aureus* COL (A) and USA300 (B) at different growth phases (OD1, 3, 5) and the effect of the level of Brx-roGFP2 in COL and USA300 on OxD at OD=4 (C, D).

(A, B) Fluorescence intensity and Brx-roGFP2 expression is much lower in USA300 during the log phase at OD1-3 compared to COL (n=2; P=0.0001 at OD 2.5).

(C,D) Comparison of serial dilutions of COL and USA300 cells harvested at OD=4 (undiluted, 1:2-fold and 1:3-fold dilutions) showed that the OxD at OD=4 remains constant (C) and is not affected by the different Brx-roGFP2 expression level due to the dilutions. The Brx-roGFP2 level in the different dilutions was analyzed using roGFP2-specific Western blot analysis (D). Mean values are shown and error bars represent the *s.e.m* and *P*-values were calculated using a Students unpaired two-tailed t-Test by the graph prism software.

Figure S5. Comparison of the Brx-roGFP2 response in *S. aureus* COL and the natural *bshC* mutant strain RN4220 during the growth. The Brx-roGFP2 biosensor is constitutively oxidized in the *S. aureus* RN4220 strain due to the natural *bshC* mutation of the NCTC8325-4 lineage (*n*=4; P<0.0001 in all samples). The oxidation degree was calculated based on 405/488 nm excitation ratios with emission at 510 nm and related to the fully oxidized and reduced controls as described in the Methods section. Mean values are shown and error bars represent the *s.e.m* and *P*-values were calculated using a Students unpaired two-tailed t-Test by the graph prism software.

Figure S6. Quantification of Brx-roGFP2 amounts in *S. aureus* COL wild type and the *bshA* mutant during the growth in LB-medium. (A) The protein samples were harvested from the *S. aureus* COL Brx-roGFP2 wild type and the *bshA* mutant at different time point along the growth curves. (B) Brx-roGFP2 expression was analyzed using Western blot analyses. (C) Purified His-tagged Brx-roGFP2 protein was used standard for calibration. (D) Quantification of Brx-roGFP2 in the *S. aureus* strains revealed similar expression levels in the wild type and the *bshA* mutant (n=2; P=0.9346 for Brx-roGFP2 amounts in all samples of

WT/*bshA*). Mean values are shown and error bars represent the *s.e.m* and *P*-values were calculated using a Students unpaired two-tailed t-Test by the graph prism software.

Figure S7. BSH-specific non-reducing Western blot analysis of *S. aureus* COL, COL with empty vector pRB473 and COL Brx-roGFP2. *S. aureus* COL, COL-pRB473 and COL Brx-roGFP2 strains were grown in LB medium to an OD_{540} of 2.0, washed and transferred to Belitsky minimal medium and exposed to 100 μ M NaOCI for 30 min. The proteins were extracted and subjected to non-reducing SDS-PAGE and BSH-specific Western blot analysis. The *S*-bacillithiolated proteins are increased especially in the 40 kDa range in all strains by NaOCI stress indicating that the Brx-roGFP2 probe does not affect the pattern of *S*-bacillithiolation.

Figure S8. Responses of purified roGFP2 and Brx-roGFP2 proteins *in vitro* to H_2O_2 and NaOCI. Purified roGFP2 and Brx-roGFP2 proteins were exposed to 100 µM-10 mM H_2O_2 (A, B) and 20-100 µM NaOCI *in vitro* (C, D). The oxidation degree was calculated based on 405/488 nm excitation ratios with emission at 510 nm and related to the fully oxidized and reduced controls. Mean values are shown and error bars represent the *s.e.m* and *P*-values were calculated using a Students unpaired two-tailed t-Test by the graph prism software.

YphP	1	MSMA	YEE	<mark>M</mark> RQI	<u> </u>	MRRE	LTG	6 A <mark>G</mark> F	EEL	T T A	EEV	ENF	MEKA	λ Ε <mark>(</mark>	G <mark>T T L</mark>	VVV	NSV	CGC	AAGL	ARP	<mark>A A</mark> T	QAV	LQN <mark>I</mark>	ϽΚΤΙ	DNT	VTVF	82
YqiW	1	MNMD	FNLF	M N D	IVRQ	ARQE	ΙΤΑ	A <mark>G</mark> Y	ΤEL	ΚΤΑ	EEV	DEA	LTK	K	GTTL	VMV	NSV	CGC	AGG	ARP	<mark>A A</mark> Y	HS - '	VHY) K R I	DQL	VTVF	80
SACOL1464	1	- M N A	YDAY	Υ <mark>Μ</mark> ΚΕ	IAQQ	MRGE	LTQ	≀N <mark>G</mark> F	ΤSL	E T S	EAV	SEY	MNQ	/NADI	D <mark>TT</mark> F	V V I	NST	CGC	AAGL	ARP	<mark>A A</mark> V	AVA	TQN	EHR	ΤΝΤ	VTVF	83
SACOL1558	1	MDMN	FDLY	<mark>M</mark> NG ک	VVEQ	ARNE	IES	S A <mark>G</mark> Y	EQL	T T A	EDV	DKV	L K Q	D	GTTL	VM I	NSV	CGC	AGG	ARP	<mark>A A</mark> S	HA-	LHY		DRL	VTVF	80
SAUSA300_1321	1	- M N A	YDAY	(<mark>m</mark> ke	IAQQ	MRGE	LTQ	≀N <mark>G</mark> F	ΤSL	E T S	EAV	SEY	MNQ	/NADI	D <mark>TT</mark> F	V V I	NST	CGC	AAGL	ARP	<mark>a a</mark> v	AVA	TQN	EHR	ΤΝΤ	VTVF	83
SAUSA300_1463	1	MDMN	FDLY	<mark>M</mark> NG ک	VVEQ	ARNE	IES	S A <mark>G</mark> Y	EQL	T T A	EDV	DKV	L KQ ·	DO	GTTL	VM I	NSV	CGC	AGG	ARP	<mark>A A</mark> S	HA-	LHY <mark>I</mark>		DRL	VTVF	80
SERP1006	1	-MNG	YEAY	Υ <mark>Μ</mark> ΚΕΙ	_ AQ <mark>Q</mark>	MRAB	LTC	N <mark>G</mark> F	ΤSL	e <mark>t</mark> S	DDV	NQY	MQN	DND	D <mark>TT</mark> F	VVI	NST	CGC	AAGL	ARP	<mark>a a</mark> v	AVA	EQN	Ξνκ	DHK	VTVF	83
SERP1075	1	MDLN	FDL	ע א <mark>א א</mark>	VVEQ	ARNE	IE⊢	I A <mark>G</mark> Y	HQ <mark>L</mark>	тs <mark>а</mark>	EDV	DQV	LQQ	K	G <mark>t</mark> sl	V M V	NS V	CGC	AGG	ARP	<mark>A A</mark> A	HA-	LHY <mark>I</mark>		QRL	VTVF	80
																		* *									
YphP	83	AGQD	KEAT	акм	REYF	TGQE	PSS	PSM	ALL	<mark>K</mark> G K	EVV	HEL	Р <mark>к</mark> не	IEGI	H D M E	EIM	IKNL	ТΑА	FDAH	+ <mark>C</mark>	- 14	14					
YqiW	81	AGQD	KEAT	ARA	<mark>R</mark> D Y F	EGYF	PSS	PSF	ALL	<mark>K</mark> DG	ким	KMV	ERHE	IEG	HE PN	AVV	'AK <mark>L</mark>	QEA	FEEN	CEE'	V 14	15					
SACOL1464	84	AGQD	KEAT	атм	R <mark>efi</mark>	- QQ /	A P S S	PSY	A L F	<mark>K</mark> GQ	DLV	ΥFΜ	P <mark>R</mark> E F	IEG	R <mark>D</mark> I N	DIA	MDL	KDA	FDEN	NCK -	- 14	15					
SACOL1558	81	AGQD	KEAT	QRA	REYF	EGYA	A P S S	PSF.	A L V	<mark>K</mark> DG	кіт	EMI	E <mark>R</mark> H (H D V N	NVI	NQL	QTL	FNKY	CEEI	R 14	15					
SAUSA300_1321	84	AGQD	KEAT	атм	REFI	- QQ /	A P S S	PSY	A L F	<mark>K</mark> GQ	DLV	ΥFΜ	P <mark>R</mark> E F	IEG	R <mark>D</mark> I N	DIA	MDL	KDA	FDEN	NCK -	- 14	15					
SAUSA300_1463	81	AGQD	KEAT	QRA	REYF	EGYA	A P S S	PSF.	A L V	<mark>K</mark> DG	кіт	EMI	E <mark>R</mark> H (H D V N	NVI	NQL	QTL	FNKY	CEEI	R 14	15					
SERP1006	84	AGQD	KEAT	QTM	R D Y I	- QQ \	/ P S S	PSY	A L F	<mark>K</mark> GQ	HLV	HFI	P <mark>R</mark> E ł	IEGI	R <mark>D</mark> I N	DIA	MDL	KDA		VCQ -	- 14	15					
SERP1075	81	AGQD	KEAT	QQA	REYF	EGYA	PSS	PSF	ALI	<mark>K</mark> DG	кіт	EMI	E <mark>R</mark> H (H D V N	DVI	NQL	QAL	<mark>F</mark> DK ו	CEEI	R 14	15					
																				*							

*

Figure S5

Figure S6

Non-reducing BSH-Western blot

Reducing BSH-Western blot

SDS-PAGE (Loading control)

- 1: S. aureus COL control
- 2: S. aureus COL-pRB473 control
- 3: S. aureus COL-Brx-roGFP2 control
- 4: S. aureus COL 30' NaOCI
- 5: S. aureus COL-pRB473 30' NaOCI
- 6: S. aureus COL-Brx-roGFP2 30' NaOCI

Table S1: Bacterial strains

Strain	Description	Reference
Escherichia coli		
DH5α	F-φ80d <i>lacZ</i> ∆(<i>lacZ</i> YA-arαF) U169	1
	$deoR supE44 \Lambda lact 1169$	
	(f80/acZDM15) hsdR17 recA1	
	endA1 (rk- mk+) $supE44$ $avrA96$	
	thi1 avrA69 relA1	
BL21(DE3)p/vsS	F- ompT hsdS gal (rb- mb+)	1
	DE3(sam7 ∆nin5 lacUV5-T7 Gen1)	
Staphylococcus aureus		
RN4220	restriction negative strain/	2
	MSSA cloning intermediate derived	L
	from 8325-4	
USA300	CA-MRSA strain	3
COL	Archaic HA-MRSA strain	
COL-∆ <i>bshA</i>	COL bshA mutant	3
USA300-∆ <i>bshA</i>	USA300 bshA mutant	3
COL-Brx-roGFP2	COL	This study
	pRB473- <i>brx-roGFP</i> 2	-
COL-BrxAGC-roGFP2	COL	This study
	pRB473-brxAGC-roGFP2	
COL-BrxCGA-roGFP2	COL	This study
	pRB473-brxCGA-roGFP2	
COL-BrxAGA-roGFP2	COL	This study
	pRB473- <i>brxAGA-roGFP</i> 2	
COL-∆bshA-Brx-roGFP2	COL bshA mutant	This study
	pRB473- <i>brx-roGFP</i> 2	
USA300-Brx-roGFP2	USA300	This study
	pRB473- <i>brx-roGFP</i> 2	
USA300-∆ <i>bshA</i> -Brx-roGFP2	USA300 <i>bshA</i> mutant	This study
	pRB473-brx-roGFP2	
RN4220-Brx-roGFP2	RN4220 pRB473-brx-roGFP2	This study

Staphylococcus phage 80

4

Table S2: Plasmids

Plasmid	Description	Reference
pQE60-Grx1-roGFP2	pQE60-derivative for overexpression of His-tagged Grx1-roGFP2	5
pET11b	E. coli expression plasmid	Novagen
pRB473	pRB373-derivative, <i>E. coli/ S. aureus</i> shuttle vector, Amp ^r , Cm ^r	6
pRB473-XylR	pRB373-derivative, <i>E. coli/ S. aureus</i> shuttle vector, containing xylose- inducible P _{xyl} promoter Amp ^r , Cm ^r	7
pQE60-Brx-roGFP2	pQE60-derivative for overexpression of His-tagged Brx-roGFP2	This study
pQE60-BrxAGC-roGFP2	pQE60-derivative for overexpression of His-tagged BrxAGC-roGFP2	This study
pQE60- BrxCGA-roGFP2	pQE60-derivative for overexpression of His-tagged BrxCGA-roGFP2	This study
pET11b-roGFP2	pET11b-derivative for overexpression of His-tagged roGFP2	This study
pET11b-Brx-roGFP2	pET11b-derivative for overexpression of His-tagged Brx-roGFP2	This study
pET11b-BrxAGC-roGFP2	pET11b-derivative for overexpression of His-tagged BrxAGC-roGFP2	This study
pET11b-BrxCGA-roGFP2	pET11b-derivative for overexpression of His-tagged BrxCGA-roGFP2	This study
pET11b-BrxAGA-roGFP2	pET11b-derivative for overexpression of His-tagged BrxAGA-roGFP2	This study
pRB473-XylR-Brx-roGFP2	pRB473-derivative expressing Brx- roGFP2 under P _{Xvl}	This study
pRB473-XylR-BrxAGC-roGFP2	pRB473-derivative expressing BrxAGC- roGFP2 under Pxvl	This study
pRB473-XylR-BrxCGA-roGFP2	pRB473-derivative expressing BrxCGA- roGFP2 under P _{Xvl}	This study
pRB473-XylR-BrxAGA-roGFP2	pRB473-derivative expressing BrxAGA- roGFP2 under P _{xyl}	This study

Table S3. Oligonucleotide primers

Primer name	Sequence (5' to 3')
SAUSA300-1321yphP-FOR-BamHI- Ncol	GTGCCATGG <u>GGATCC</u> ATGAATGCATATGATGCTTATATG
SAUSA300-1321yphP-REV-Spel	GCG <u>ACTAGT</u> TTTACAATTTTCGTCAAAGGCA
SAUSA300-1321-yphP-C54A-REV	TAATCCAGCTGCACAGCC CGC TGTAGAGTTAATAACTAC
SAUSA300-1321-yphP-C54A-FOR	GTAGTTATTAACTCTACA GCG GGCTGTGCAGCTGGATTA
SAUSA300-1321-yphP-C56A-REV	TTGCTAATCCAGCTGC CGC GCCGCATGTAGAGTTAATAA
SAUSA300-1321-yphP-C56A-FOR	TAACTCTACATGCGGC GCG GCAGCTGGATTAGCAAGACC
1321-roGFP2-FOR-Nhel	CTA <u>GCTAGC</u> ATGAATGCATATGATGCTTATATGAAAG
1321-brx-C54A56A-REV	TAATCCAGCTGCCGCGCCCGCTGTAGAGTTAATAACTAC
1321-brx-C54A56A-FOR	GTAGTTATTACCTCTACA GCG GGC GCG GCAGCTGGATTA
roGFP2-REV-BamHI	CGC <u>GGATCC</u> TTAGTGATGGTGATGGTGATGCTTGTACAG
roGFP2-FOR-Nhel	CTA <u>GCTAGC</u> ATGGTGAGCAAGGGCGAGGAG
SAUSA300-1321-FOR-BamHI-2	TAG <u>GGATCC</u> GAACAATTTAATTGGAGGAATTAAATATGAA TGCATATGATGCTTATATG
roGFP2-REV-KpnI-3	CGG <u>GGTACC</u> TTACTTGTACAGCTCGTCCATGCCGAG

Restriction sites are underlined and bold bases indicate point mutations

Mode	Channel mode
Imaging setting	
Switch track	line
Track 1	Argon/2 (458, 477, 488 and
	514nm)+Transmitted light
Track 2	405nm
Light path	
Track 1+2	Emission filter BP 505-550nm
Acquisition	
Scan mode	Frame
Frame size	212 x 212
Averaging number	4
Scan time	6.15sec
Pixel Dwell	7.73µsec
Bit depth	12bit
zoom	4.4
Channel/ laser setting	
488nm line	
Maximum power	30mW
Laser line attenuator transmission	20%
Pinhole	1AU
Gain	948
405nm line	
Maximum power	30mW
Laser line attenuator transmission	8%
Pinhole	1AU
Gain	948

Table S4: Typical Zeiss LSM510meta settings for imaging of Brx-roGFP2 in S. aureus

	S. aureus C	OL	S. aureus USA300					
Time (h)	OD540	E _{вsн} (mV)	Time (h)	OD540	<i>Е</i> вsн (mV)			
3	0.86 ± 0.04	-292.71 ± 4.98	3	1.05 ± 0.05	nd			
4	1.97 ± 0.09	-301.60 ± 14.42	4.25	3.61 ± 0.44	-301.16 ± 18.19			
4.5	2.72 ± 0.30	-281.44 ± 2.05	5	5.1 ± 0.32	-276.14 ± 10.99			
5	3.31 ± 0.26	-280.29 ± 1.94	5.25	5.54 ± 0.05	-274.24 ± 10.72			
6	5.2 ± 0.86	-280.12 ± 5.73	6.3	6.2 ± 0.05	-227.88 ± 13.14			
7	5.3 ± 0.62	-271.94 ± 4.95	7	6.33 ± 0.04	-235.04 ± 19.18			

Table S5: BSH redox potential changes in *S. aureus* COL and *S. aureus* USA300 during growth

nd: not determined

	E _{BSH} (mV)										
Time	Control	Erythromicin	Rifampicin	Vancomycin	Ciprofloxacin	Gentamicin	Ampicillin	Fosfomycin	Lincomycin	Linezolid	Oxacillin
(h)		0.1µM	0.1µM	5μΜ	0.1µM	0.5µg/ml	10µM	50nM	5μΜ	2µg/ml	2mM
0	-286.22 ± 21.21	-282.75 ± 4.48	-280.53 ±6.40	-272.50 ± 1.21	-270.49 ± 4.24	-272.92 ± 4.91	-281.49 ± 1.57	-282.79 ± 4.53	-278.26 ± 4.87	-277.41 ± 3.86	-283.58 ± 0.96
1	-277.47 ± 4.15	-283.48 ± 1.44	-276.81 ± 5.88	-267.38 ± 6.31	-273.69 ± 3.34	-270.55 ± 1.21	-283.29 ± 0.49	-284.07 ± 8.32	-276.47 ± 2.32	-289.84 ± 6.34	-289.69 ±1.77
2	-279.24 ± 1.83	-272.96 ± 8.28	-273.98 ± 2.50	-267.69 ± 3.58	-273.70 ± 1.69	-271.45 ± 2.58	-275.37 ± 5.49	-282.13 ± 4.10	-280.24 ± 7.20	-286.12 ± 4.27	-284.90 ± 0.53
3	-277.10 ± 3.33	-271.00 ± 14.98	-268.47 ± 1.68	-269.00 ± 3.56	-274.00 ± 1.86	-265.97 ± 2.49	-273.14 ± 3.02	-275.65 ± 6.77	-272.51 ± 1.32	-278.92 ± 4.60	-280.22 ± 1.83
4	-265.45 ± 5.74	-244.30 ± 58.37	-267.72 ± 4.90	-255.50 ± 4.72	-267.24 ± 3.35	-269.54 ± 2.78	-263.87 ± 8.47	-269.55 ± 10	-282.31±1.32	-266.85 ±3.83	-270.80 ± 2.65

Table S6: Effects of antibiotics on the changes of BSH redox potential inside S. aureus COL

Table S7: Response of Brx-roGFP2 in S.	aureus COL during phagocytosis assa	vs with THP-1 macrophages.
		<i></i>

Excitation wavelength (nm)	MFI 100% Reduced	MFI Infected	MFI 100 % Oxidized
405	561.66 ± 21.73	663.11 ± 34.19	655.33 ± 23.35
488	2953 ± 172.98	2252.11 ± 106.06	2095.66 ± 88.69
405/488	0.19 ± 0.01	0.29 ± 0.02	0.31 ± 0.02

THP-1 cells were infected with S. aureus COL Brx-roGFP2 for 1 hour at MOI 25, blocked with 10 mM NEM and analyzed by flow cytometry.

Emission was measured at 515-545 nm after excitation at 405 and 488 nm. The 405/488 nm ratios of the average mean fluorescence intensities

(MFI) of infected macrophages was related to that of fully reduced and oxidized macrophages to calculate the oxidation degree during infection.

The Brx-roGFP2 biosensor is 90% oxidized in S. aureus COL during infection of THP-1 macrophages. The mean values of 3 experiments are

shown, error bars represent the *s.e.m* and P-values were calculated using a Students unpaired two-tailed t-Test by the graph prism software.

REFERENCES

- 1. Studier, F.W. & Moffatt, B.A. Use of Bacteriophage-T7 RNA-Polymerase to Direct Selective High-Level Expression of Cloned Genes. *Journal of Molecular Biology* **189**, 113-130 (1986).
- 2. Kreiswirth, B.N. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. *Nature* **305**, 709-12 (1983).
- 3. Posada, A.C. et al. Importance of bacillithiol in the oxidative stress response of Staphylococcus aureus. *Infect Immun* 82, 316-32 (2014).
- 4. Rosenblum, E.D. & Tyrone, S. Serology, Density, and Morphology of Staphylococcal Phages. *J Bacteriol* 88, 1737-42 (1964).
- 5. Gutscher, M. et al. Real-time imaging of the intracellular glutathione redox potential. *Nat Methods* 5, 553-9 (2008).
- 6. Bruckner, R., Wagner, E. & Gotz, F. Characterization of a sucrase gene from Staphylococcus xylosus. J Bacteriol 175, 851-7 (1993).
- 7. Pother, D.C. et al. Distribution and infection-related functions of bacillithiol in Staphylococcus aureus. *Int J Med Microbiol* **303**, 114-23 (2013).