Supplementary Information

Autocatalytic Time-Dependent Evolution of Metastable Two-Component Supramolecular Assemblies to Self-Sorted or Coassembled State

Tomoya Fukui^{1,2}, Masayuki Takeuchi^{1,2,*}, and Kazunori Sugiyasu^{1,*}

¹National Institute for Materials Science 1-2-1 Sengen, Tsukuba, 305-0047 Ibaraki, Japan

²Department of Materials Science and Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577 Ibaraki, Japan

> TAKEUCHI.Masayuki@nims.go.jp SUGIYASU.Kazunori@nims.go.jp

Table of Contents

1.	Materials and Methods	page 2
2.	Supplementary Figures and Tables	page 3
3.	Supplementary References	page 13

1. Materials and Methods

Unless otherwise noted, reagents and solvents were purchased from commercial suppliers without further purification. Compound 2^1 , 5^2 , and 6^2 were prepared according to reported procedures. Ultraviolet–visible absorption spectra were recorded using a quartz cuvette of 1.0 or 0.1 cm path length on a Jasco V-630 spectrophotometer equipped with a Jasco ETCS-761 cell holder for temperature control. Atomic force microscopy (AFM) was performed on a Bruker model MultiMode 8 atomic force microscope under ambient conditions in the scan assist analysis. AFM images were analyzed with Bruker Nanoanalysis.

2. Supplementary Figures and Tables

Supplementary Figure S1.

Absorption spectra of J aggregate (pink), H aggregate (green), and short-slipping J aggregate (orange) of $\mathbf{6}$ in methylcyclohexane².

Supplementary Figure S2.

Time profile of changes in the degree of aggregation of **1** H aggregate¹.

Supplementary Figure S3.

Time profile of changes in the degree of aggregation of **6** short-slipping J aggregate².

Thermodynamic analysis of 2/6 J aggregate

Supplementary Figure S4.

(A) Temperature-dependent absorption spectra of 2/6 mixture (Q band) observed during the cooling process: $[2]+[6] = 50 \ \mu\text{M}$ in MCH; $[6]/\{[2]+[6]\} = 90\%$. (B) Change in the degree of aggregation of 2/6 J aggregate as a function of temperature obtained by fitting the apparent absorption coefficients at $\lambda = 561$ nm to the isodesmic model (Supplementary Equation 1)³ in which α_{Mono} is the degree of $2/6_{\text{Mono}}$ (monomeric 2/6 mixture), $\varepsilon_{\text{Mono}}$ and ε_{J} are the molar absorption coefficients of $2/6_{\text{Mono}}$ and 2/6 J aggregate, respectively, and ε (T) is the apparent absorption coefficient at the given temperature. The fitting to the isodesmic model yielded ΔH° and T_{m} as summarized in Supplementary Table 1 (correlation coefficient of 0.999). (C) Degree of polymerization number of 2/6 mixture as a function of the temperature obtained by the isodesmic model (Supplementary Equation 2)³. (D) Plot of the natural logarithm of K_{I} as a function of the reciprocal temperature (T^{-1}): van't Hoff plot showing a linear relationship (correlation coefficient of 0.997). The standard enthalpy change (ΔH°) and standard entropy change (ΔS°) for the formation of 2/6 J aggregate were determined using Supplementary Equation 3 in which R is the ideal gas constant.

$$\alpha_{J} = 1 - \alpha_{Mono} = 1 - \frac{\varepsilon(T) - \varepsilon_{J}}{\varepsilon_{Mono} - \varepsilon_{J}} = \frac{1}{1 + exp\left[-0.908\Delta H^{\circ} \frac{T - T_{m}}{RT_{m}^{2}}\right]}$$
(1)

$$DP_N = \frac{1}{\sqrt{1 - \alpha(T)}} = \frac{1}{2} + \frac{1}{2}\sqrt{4K_I(T)c_T + 1}$$
(2)

$$\ln K_I = \frac{-\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R}$$
(3)

Summary of thermodynamic analyses of 2/6 J aggregate

	isodesmic r	nodel ³	van't Hoff plot		
[6] /{ [2] + [6] }	ΔH°	T_m	ΔH°	ΔS°	ΔG° at 308 K
(%)	(kJ mol ⁻¹)	(K)	$(kJ mol^{-1})$	$(J mol^{-1} K^{-1})$	(kJ mol ⁻¹)
100	-81	322	-82	-176	-27.5
90	-83	323	-83	-183	-27.6
80	-83	322	-84	-185	-27.6
70	-83	323	-84	-184	-27.7

Supplementary Table S1. Thermodynamic parameters.

Time-dependent evolution of metastable two-component 2/6 J aggregate.

Supplementary Figure S5.

(A–C) Time-dependent absorption spectral changes of two-component 2/6 J aggregate : $[2]+[6] = 50 \ \mu\text{M}; [6]/\{[2]+[6]\} = (A) \ 90\%, (B) \ 80\%, \text{and} (C) \ 70\%.$

Thermodynamic analysis of 5/6 J aggregate

Supplementary Figure S6.

(A) Temperature-dependent absorption spectra of 5/6 mixture (Q band) observed during the cooling process: $[5]+[6] = 50 \ \mu\text{M}$ in MCH; $[6]/\{[5]+[6]\} = 50\%$. (B) Change in the degree of aggregation of 5/6 J aggregate as a function of temperature obtained by fitting the apparent absorption coefficients at $\lambda = 561$ nm to the isodesmic model (Supplementary Equation 1)³ in which α_{Mono} is the degree of 5/6_{Mono} (monomeric 5/6 mixture), $\varepsilon_{\text{Mono}}$ and ε_{J} are the molar absorption coefficients of 5/6_{Mono} and 5/6 J aggregate, respectively, and ε (T) is the apparent absorption coefficient at the given temperature. The fitting to the isodesmic model yielded ΔH and T_{m} as summarized in Supplementary Table 2 (correlation coefficient of 0.999). (C) Degree of polymerization number of 5/6 mixture as a function of the temperature obtained by the isodesmic model (Supplementary Equation 2)³.(D) Plot of the natural logarithm of K_1 as a function of the reciprocal temperature (T^{-1}): van 't Hoff plot showing a linear relationship (correlation coefficient of 0.997). The standard enthalpy change (ΔH°) and standard entropy change (ΔS°) for the formation of 5/6 J aggregate were determined using Supplementary Equation 3 in which *R* is the ideal gas constant. Summary of thermodynamic analyses of 5/6 J aggregate

	isodesmic r	nodel ³	van't Hoff plot		
[6]/{[5]+[6]}	ΔH°	T_m	ΔH°	ΔS°	ΔG° at 308 K
(%)	$(kJ mol^{-1})$	(K)	$(kJ mol^{-1})$	$(J mol^{-1} K^{-1})$	$(kJ mol^{-1})$
100	-81	322	-82	-176	-27.5
90	-82	322	-83	-178	-27.6
80	-82	322	-83	-181	-27.5
70	-82	322	-82	-176	-27.5
60	-82	322	-83	-181	-27.6
50	-83	322	-84	-184	-27.6
40	-81	323	-82	-176	-27.6
30	-82	322	-83	-179	-27.6
20	-81	323	-80	-172	-27.6
10	-81	323	-82	-176	-27.6

Supplementary Table S2. Thermodynamic parameters.

Time-dependent evolution of metastable two-component 5/6 J aggregate.

Supplementary Figure S7.

(A–D) Time-dependent absorption spectra changes of two-component 5/6 J aggregate : $[5]+[6] = 50 \ \mu\text{M}; \ [6]/\{[5]+[6]\} = (A) \ 0\%, \ (B) \ 10\%, \ (C) \ 50\%, \ and \ (D) \ 90\%.$

Supplementary Figure S8.

(A) Time-dependent absorption spectra changes of 5/6 H aggregate: $[5]+[6] = 50 \mu$ M; $[6]/\{[5]+[6]\} = 50\%$. (B) Time profile of changes in the absorbance at 400 nm and 444 nm. Absorbance at 400 nm and 444 nm are characteristic of the H aggregate and the short-slipping J aggregate, respectively.

The pseudo-self-sorted system of H aggregate and short-slipping J aggregate

Supplementary Figure S9.

(A) Time-dependent absorption spectra changes of mixture of 5 H aggregate and 6 short-slipping J aggregate: $[5]+[6] = 50 \ \mu\text{M}$; $[6]/\{[5]+[6]\} = 50\%$. (B) Time profile of changes in the absorbance at 400 nm and 444 nm. Absorbance at 400 nm and 444 nm are characteristic of the H aggregate and the short-slipping J aggregate, respectively.

Time-dependent evolution of 5/6 J aggregate.

Supplementary Figure S10.

(A) Time-dependent absorption spectra changes of two-component 5/6 J aggregate : $[5]+[6] = 50 \ \mu\text{M}, [6]/\{[5]+[6]\} = 95\%$. (B) Time profile of change in the absorbance at 561 nm, a wavelength that is characteristic of the H aggregate: $[5]+[6] = 50 \ \mu\text{M}, [6]/\{[5]+[6]\} = 95\%$.

3. Supplementary References

- Ogi, S., Fukui, T., Jue, M. L., Takeuchi, M. & Sugiyasu, K. Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design. *Angew. Chem. Int. Ed.* 53, 14363-14367 (2014).
- 2. Fukui, T. *et al.*, Control over metastable supramolecular assembly in one and two dimensions. *Nat. Chem.* (doi:10.1038/nchem2684).
- 3. Smulders, M. M. J. *et al.* How to distinguish isodesmic from cooperative supramolecular polymerisation. *Chem. Eur. J.* **16**, 362–367 (2010).