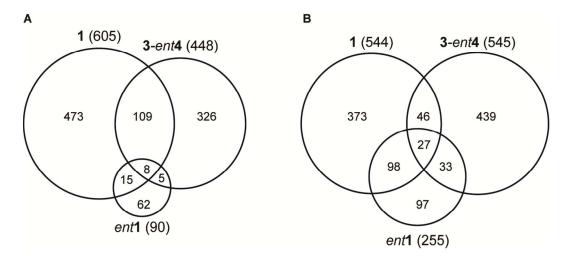
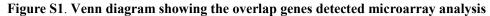
Supporting information for

Non-canonical function of a small-molecular virulence factor coronatine against plant immunity: An *In vivo* Raman imaging approach

Minoru Ueda,^a Syusuke Egoshi,^a Kosuke Dodo,^{b,c,d} Yasuhiro Ishimaru,^a Hiroyuki Yamakoshi,^b Takeshi Nakano,^{c, e} Yousuke Takaoka,^a Shinya Tsukiji,^f Mikiko Sodeoka^{b, c, d}

^aDepartment of Chemistry, Tohoku University, 6-3 Aramaki-Aza Aoba, Aoba-ku, Sendai 980-8578, Japan


^bSynthetic Organic Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan ^cRIKEN Center for Sustainable Resource Science, Hirosawa, Wako, Saitama 351-0198, Japan ^dAMED-CREST, Japan Agency for Medical Research and Development, Wako, Saitama 351-0198, Japan


^eCore Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.

^fFrontier Research Institute for Materials Science (FRIMS), Department of Life Science and Applied Chemistry, Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.


Table of Contents:

Figures S1-S10	2
Scheme S1	12
Table S1-S3	13
SI Materials and Methods	18
¹ H- and ¹³ C-NMR spectra	24
SI References	36

(A) The numbers of upregulated gene expressions (more than twofold) by the treatment with 1, *ent*1 or 3-*ent*4, compared to mock treatment are presented (1, *ent*1 or 3-*ent*4 respectively). (B) The numbers of downregulated gene expressions (more than twofold) with 1, *ent*1 or 3-*ent*4, compared to mock treatment are presented (1, *ent*1 or 3-*ent*4 respectively).

Figure S2. Diyne Raman signal of 5 and ent5.

Averaged Raman spectra of **5** and *ent***5** as crystal forms. The light intensity at the sample plane was calculated as $6.2 \text{ mW}/\mu\text{m}^2$ from the ratio of the measured laser power between the sample position and the area of the illumination line. The exposure time for each line was 10 s.

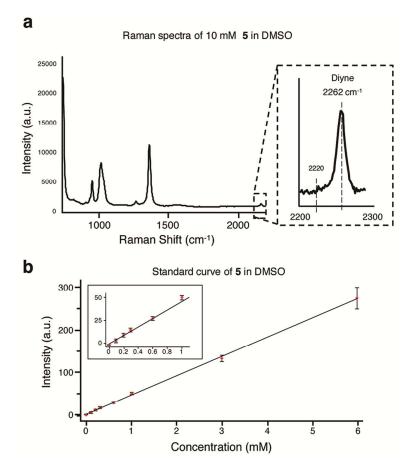
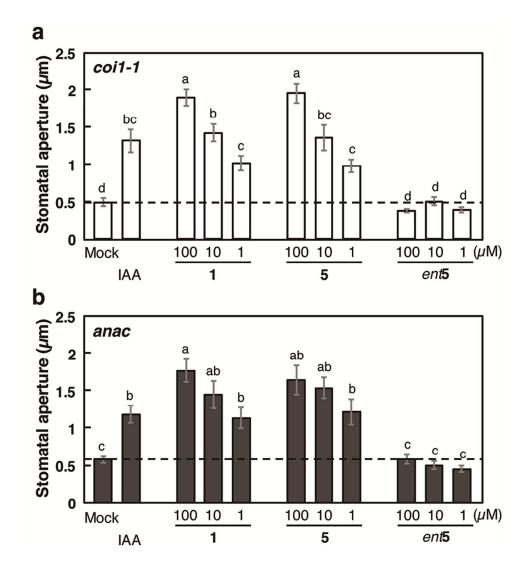
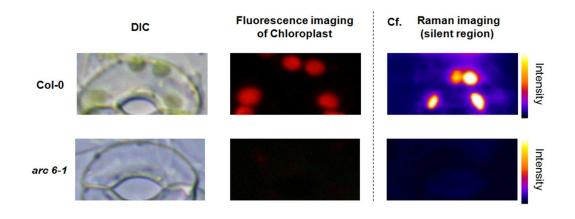
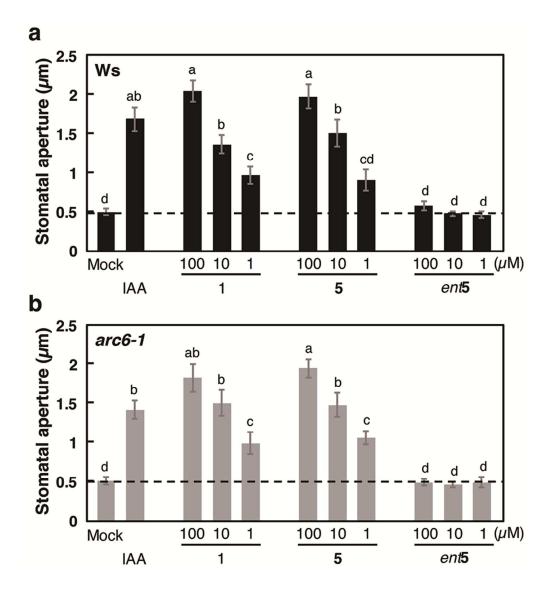


Figure S3. Diyne Raman signal of 10 mM of 5 in DMSO (a) and Standard curve for estimation of concentration (b).

The light intensity at the sample plane was calculated as 6.0 mW/ μ m² from the ratio of the measured laser power between the sample position and the area of the illumination line. The exposure time for each line was 120 s. (a) The averaged Raman spectrum obtained from 1×9 pixel region of the DMSO solution of diyne 5. Sample concentration was 10 mM. (b) Standard curve for estimation of concentration. The plotted intensity was based on the peak height calculated by subtracting the background at 2220 cm⁻¹ from the peak intensity at 2262 cm⁻¹ and averaged from a 9×1 pixel region of the DMSO solution of diyne 5. Bars represent mean and SE (n = 4).


Figure S4. Effects of 1, 5, and *ent*5 on stomatal reopening using closed stomata of *coi1-1* (a) and *anac* (b).

IAA was used as a positive control. Dashed line indicates the mean stomatal aperture in the control experiment without test compound in which *Arabidopsis* leaf peels with closed stomata were incubated in MES buffer (pH 6.2) containing 2% EtOH. Bars represent the mean stomatal aperture with SE (n = 20 stomata). Different letters indicate significant differences between means (ANOVA: P < 0.05).

Figure S5. Low background autofluorescence from chloroplast was observed for *arc-6* guard cell.

DIC images (left), fluorescence images of chloroplast (>510 nm with 460-495 nm excitation light, center), and background Raman images (average of silent region: 1985-2315 cm⁻¹, right) of *A. thaliana* wild-type (Col-0) and *arc6-1*.

IAA was used as a positive control. Dashed line indicates the mean stomatal aperture in the control experiment without test compound. Bars represent the mean stomatal aperture with SE (n = 20 stomata). Different letters indicate significant differences between means (ANOVA: P < 0.05).

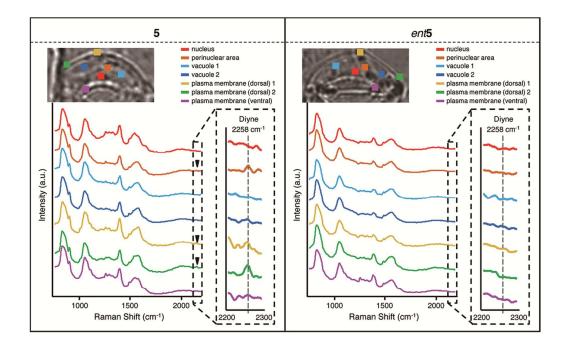
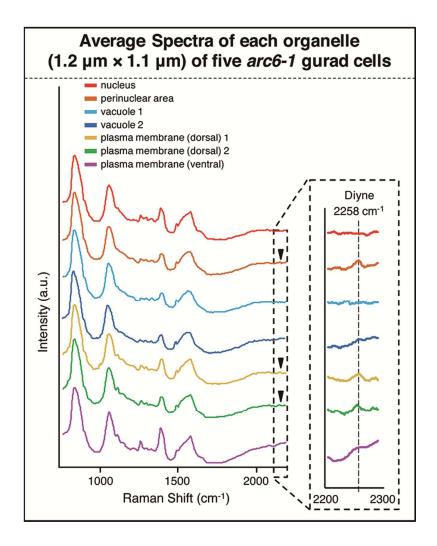
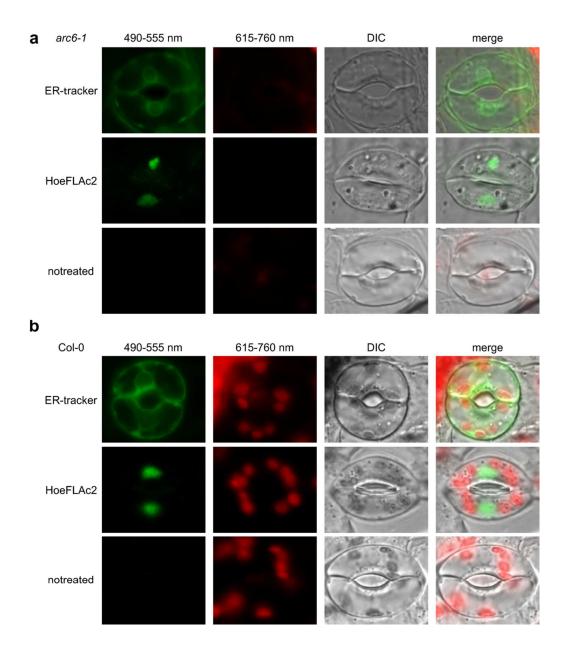
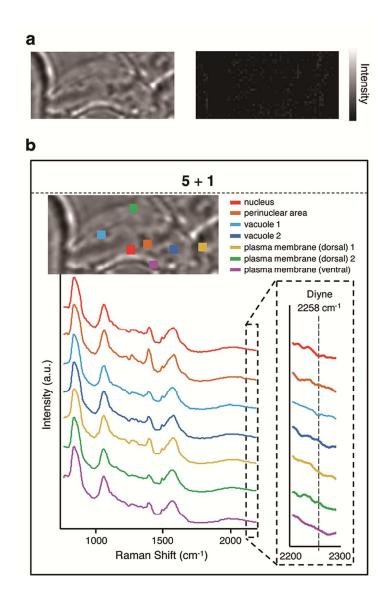
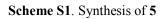



Figure S7. Raman spectra in each area of *arc6* guard cell indicating subcellular localization of 5.

Raman spectra in living guard cells of *arc6-1* were obtained after 3-hour treatment by 100 μ M **5** (left)/*ent***5** (right). Averaged Raman spectra were presented for each subcellular area (1.2 μ m× 1.1 μ m: 3 × 3 = 9 pixels), nuclear region in red, perinuclear region in orange, vacuole in cyan or blue, plasma membrane (dorsal) in yellow or green and plasma membrane (ventral) in purple of the guard cell. The light intensity at the sample plane was calculated as 6.2 mW/ μ m² from the ratio of the measured laser power between the sample position and the area of the illumination line. The exposure time for each line was 120 s. Spectra were vertically offset for ease viewing.

Figure S8. Statistical analysis of five arc6-1 guard cells treated with 5

Average Raman spectra of each organelle region (1.2 μ m × 1.1 μ m: 3 × 3 = 9 pixels) of five *arc6-1* guard cells treated with 100 μ M of **5**. The light intensity at the sample plane was calculated as 6.0-6.2 mW/ μ m² from the ratio of the measured laser power between the sample position and the area of the illumination line. The exposure time for each line was 120 or 150 s. Spectra were vertically offset for ease viewing.

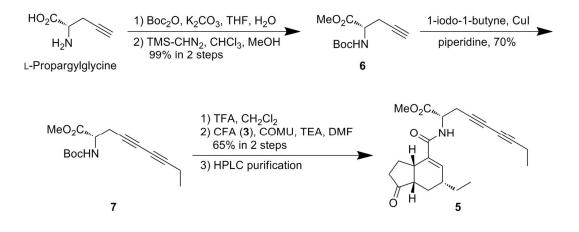

Figure S9. Fluorescent images of nucleus and ER in living guard cells of Col-0 and *arc6-1*. Fluorescence images and DIC images of *arc6-1* (a) and Col-0 (b). ER was stained by ER tracker, and nucleus was stained by HoeFLAc₂⁴³. Excitation wavelength was fixed at 488 nm, and images detected at 490-555 nm (left, green), at 610-735 nm (second left, red), DIC images (second right), merged images (right) were shown.

Figure S10. Competitive inhibition of 5 with 1 in Raman Imaging.

(a) Raman imaging in living guard cells of *A. thaliana arc6-1* after three hours of co-treatment with 1 (100 μ M) and 5 (100 μ M). Diyne Raman signal of 5 was not detected. The light intensity at the sample plane was calculated as 6.0 mW/ μ m² from the ratio of the measured laser power between the sample position and the illumination line. Exposure time for each line was 120 s. Spectra were vertically offset for ease viewing. (b) Raman spectra of each organelle region (1.2 μ m × 1.1 μ m: 3 × 3 = 9 pixels) of (a).

Table S1. Summary of the microarray analysis.

The ratios of inducible or suppressed genes treated with 1, *ent*1 or 3-*ent*4, compared to mock treatment, are presented (1/mock, *ent*1/mock, 3-*ent*4/mock).

Accession No.	UniGeneID	GeneSymbol	1/mock	ent1/mock	3-ent4/mock
NM_114356	At.36095	AT3G44870	205.8	1.4	11.3
NM_114355	At.10101	FAMT	135.2	1.4	8.9
NM_102753	At.40613	JAZ8	100.3	-1.2	11.6
NM_001124015	At.74131	AT1G53903	81.9	1.5	14.2
NM_121325	At.26324	JAZ10	81.5	1.2	6.4
NM_203046	At.26324	JAZ10	72.8	-1.1	6.1
NM_106314	At.51311	AT1G76640	68.2	1.6	8.9
NM_001085035	At.28382	MAPKKK21	62.7	-2.6	4.5
NM_118304	At.32596	MSRB8	59.2	-1.4	3.6
NM_123658	At.55327	AT5G42930	35.2	1.6	3.4
NM_106579	At.34141	<i>MC7</i>	33.5	1.9	2.6
NM_125740	At.28998	CYP94B1	33.0	1.1	3.9
NM_129014	At.37783	JAZ7	27.8	1.2	9.0
NM_111830	At.49602	AT3G09950	24.8	1.1	2.1
NM_124611	At.29623	<i>CYP96A4</i>	20.8	1.3	4.4
NM_102616	At.11829	GRX480	20.4	1.0	9.7
NM_119606	At.48936	RRTF1	20.3	-1.6	4.0
NM_101599	At.27828	JAZ5	20.2	-1.2	3.3
NM_128328	At.13273	CYP94C1	17.7	1.4	9.2
NM_127138	At.13860	AT2G15760	15.4	1.7	2.6
NM_118303	At.25145	MSRB7	15.2	1.2	2.5
NM_001084589	At.75339	AT2G44578	15.2	1.4	3.1
NM_128498	At.12687	GSTU6	15.0	1.5	2.3
NM_124095	At.29907	NUDT8	14.7	1.2	8.1
NM_101580	At.10364	GSTU26	14.6	1.3	2.0
NM_121755	At.31541	RGL3	14.2	1.8	2.7
NM_104167	At.28621	NAC019	14.1	-2.0	4.9
NM_126108	At.49431	MAPKKK19	14.1	1.2	5.9
NM_001125571	At.48901	AT4G24350	14.0	1.4	2.5
NM_119946	At.31223	AT4G37850	13.9	1.6	2.0

Inducible genes both in 1/mock and 3-ent4/mock

BX813389	At.28621	NAC019	13.9	-1.5	5.3
NM_001036150	At.71985	AT1G64195	13.6	1.4	2.3
NM_121915	At.65529	AT5G19100	13.1	1.2	2.6
NM_129433	At.11759	ANNAT3	12.9	1.1	2.7
NM_001085002	At.44068	AT4G29930	12.9	1.1	2.9
NM_125071	At.49801	AT5G56880	12.7	-1.2	2.2
NM_121272	At.65507	AT5G12340	12.7	1.6	5.5
NM_101823	At.19779	CLH1	12.3	1.2	2.1
NM_114888	At.53871	AT3G50280	12.1	1.3	2.5
NM_112418	At.20460	NAC3	11.2	1.3	7.7
NM_115220	At.49399	AT3G53600	10.9	1.8	5.1
NM_120770	At.20009	PGIP2	10.6	1.1	2.7
NM_129837	At.36972	AT2G42760	10.0	1.6	2.1
NM_129432	At.20551	ANNAT4	9.8	-1.1	2.5
NM_106153	At.19896	JAZ2	9.7	1.4	3.5
NM_202133	At.22658	JAZ1	9.2	1.8	5.0
NM_117855	At.23185	ERF-1	8.5	1.9	4.4
AK221732	At.73177	AT2G43540	8.5	1.4	3.7
NM_125136	At.7483	XTH25	8.5	-1.7	3.0
AI995133	At.22648	MYC2	8.3	1.4	3.1
NM_125255	At.29268	AT5G58680	7.7	-1.1	2.9
NM_001035928	At.700	ESLI	7.6	1.1	2.2
CD530941	At.67560	MSRB7	7.6	1.2	2.7
NM_102998	At.22648	MYC2	7.3	1.5	2.9
NM_120642	At.8725	AT5G05600	7.2	1.2	2.8
NM_124093	At.19731	ERF2	7.1	1.7	4.9
NM_115837	At.54008	AT3G59750	7.0	1.6	6.4
NM_179700	At.43434	NAII	6.7	1.2	2.6
NM_101603	At.20467	LOX3	6.7	1.1	2.5
NM_202143	At.15241	OPCL1	6.5	1.1	2.7
NM_106329	At.28236	AT1G76790	6.5	-1.0	2.3
NM_101507	At.11316	CYP79F1	6.3	1.3	2.2
NM_202111	At.11316	CYP79F1	6.2	1.3	2.0
NM_179009	At.47204	RAP2.9	6.2	1.2	2.6
NM_001084415	At.1135	OPR3	6.1	1.0	2.3
NM_128290	At.13633	AT2G27310	5.7	1.4	2.7

NM_124454	At.29715	AT5G50760	5.6	1.9	2.2
NM_106732	At.28188	WRKY40	5.6	-1.0	2.2
NM_105738	At.23705	JAZ9	5.6	1.3	2.4
NM_124172	At.29871	AT5G47980	5.5	1.6	3.1
NM_129313	At.37407	AT2G37580	5.1	1.2	3.6
NM_105604	At.24346	CM3	5.0	1.4	2.1
NM_105657	At.43696	AT1G69890	4.9	-1.2	6.0
NM_106569	At.10915	MYB63	4.7	1.5	3.5
NM_119904	At.22792	CYP81F4	4.3	1.1	2.5
DQ108691	At.8519	PGIP1	4.3	1.4	2.5
NM_129917	At.48587	AT2G43550	4.2	-1.1	2.4
DR381439	At.68141	ERF-1	4.2	1.3	2.6
NM_117550	At.23929	APS3	4.2	1.3	3.1
NM_128952	At.53026	AT2G34010	4.2	1.7	2.4
NM_202070	At.42241	RBOHB	3.9	1.2	2.5
NM_201808	At.64947	AT2G26695	3.9	1.7	3.0
NM_113475	At.26518	AOCI	3.8	1.2	2.1
NM_113476	At.6411	AOC2	3.7	1.4	2.8
NM_121892	At.54911	AT5G18870	3.6	1.6	2.0
NM_101427	At.28674	IAA5	3.5	1.3	2.2
BX814993	At.15581	AT1G03440	3.4	1.2	2.3
NM_001203302	At.285	ASA1	3.3	1.0	2.0
NM_203005	At.48988	PAI2	3.3	1.6	2.2
NM_148158	At.45475	FLS4	3.2	1.7	3.3
NM_119813	At.43740	AT4G36500	3.1	1.5	2.3
NM_127881	At.23258	GH3.3	3.1	1.3	2.5
BX820064	At.67889	AT1G20520	3.0	-1.1	2.7
NM_102256	At.10514	UGT74B1	2.9	1.4	2.3
NM_119047	At.3405	AT4G29030	2.7	1.8	2.1
NM_105366	At.35712	PDR11	2.6	1.1	2.4
NM_106309	At.19392	AT1G76590	2.6	1.2	2.8
NM_119299	At.24671	CYP83B1	2.6	1.2	2.2
NM_113478	At.37325	AT3G25790	2.5	2.0	2.1
NM_129921	At.24529	AT2G43590	2.4	1.1	2.2
NM_112507	At.1206	AHP4	2.3	1.3	2.2
NM_103224	At.39607	MLP165	2.3	1.3	2.0

NM_118903	At.32081	AT4G27654	2.3	-1.3	2.8
NM_104106	At.49487	AT1G52270	2.3	1.8	4.3
NM_115025	At.35368	AT3G51660	2.2	1.1	2.0
NM_120162	At.23161	DHS1	2.1	-1.1	2.2
NM_129195	At.43047	PDR6	2.1	-1.0	2.1
NM_114886	At.1423	CEJI	2.0	-1.1	2.7
NM_127708	At.27499	XK-1	2.0	1.4	3.3

Suppressed genes both in 1/mock and 3-ent4/mock

Accession No.	UniGeneID	GeneSymbol	1/mock	ent1/mock	3-ent4/mock
NM_128001	At.39164	AT2G24400	-5.4	-1.2	-2.6
NM_105562	At.26571	bZIP	-3.7	-1.2	-2.6
NM_122241	At.71067	AT5G23350	-3.7	-1.2	-2.2
NM_101897	At.69772	AT1G20470	-3.3	-1.8	-4.1
NM_119296	At.65443	AT4G31470	-3.2	1.3	-2.1
NM_123196	At.30414	AT5G38350	-3.2	-1.5	-2.2
NM_115373	At.35048	EXO70H1	-3.1	-1.1	-2.1
NM_105031	At.50800	AT1G63530	-3.0	-1.8	-2.4
NM_115310	At.53931	AT3G54530	-2.9	1.4	-2.0
NM_120233	At.49414	LECRKA4.2	-2.7	1.3	-4.0
NM_001123738	At.49840	MPK11	-2.6	1.3	-3.2
NM_148384	At.25207	AT4G29905	-2.6	-1.4	-2.1
NM_125015	At.29394	EXPA14	-2.6	-1.1	-2.4
NM_102442	At.51777	AT1G26790	-2.5	-1.3	-14.1
NM_113085	At.37979	AT3G21890	-2.5	-1.6	-6.6
NM_123329	At.19755	AT5G39670	-2.5	-1.7	-2.8
NM_113102	At.6152	AT3G22060	-2.4	1.3	-2.0
NM_114694	At.50254	AT3G48240	-2.4	-1.4	-2.6
NM_120232	At.28701	LECRKA4.1	-2.4	-1.9	-2.2
NM_001085091	At.72152	IDL3	-2.4	-1.6	-2.9
NM_122316	At.9177	WRKY30	-2.4	1.2	-2.4
NM_106211	At.34755	AT1G75590	-2.4	1.2	-2.2
NM_101756	At.41768	AT1G18990	-2.4	-1.9	-2.0
Z35201	At.71158	AT1G80000	-2.3	-1.8	-2.4
NM_123433	At.55282	AT5G40680	-2.3	-1.5	-2.1
NM_001085043	At.48962	AT4G38560	-2.3	-1.3	-2.1

NM_125360	At.55626	AT5G59680	-2.3	1.5	-2.6
NM_001126029	At.28918	AT5G65140	-2.3	-2.0	-2.2
NM_104866	At.66073	AT1G61840	-2.2	-1.3	-2.1
NM_103127	At.51926	AT1G34050	-2.2	-1.4	-2.7
NM_124803	At.9168	MYB49	-2.2	1.0	-2.4
NM_001125961	At.49174	AT5G54130	-2.2	-1.9	-3.8
NM_001123865	At.50783	AT1G23110	-2.2	1.1	-2.0
NM_179969	At.50123	AT2G38823	-2.2	1.1	-2.0
NM_001125881	At.69128	AT5G41761	-2.2	-1.9	-2.0
NM_122435	At.30922	AT5G25260	-2.2	-1.8	-2.2
NM_116474	At.34304	AT4G02410	-2.2	-1.2	-2.2
NM_111779	At.53235	AT3G09450	-2.1	-1.4	-9.4
NM_124134	At.29885	AT5G47610	-2.1	-1.5	-2.2
NM_113088	At.48689	AT3G21920	-2.1	1.2	-2.2
NM_111928	At.27986	AT3G10910	-2.1	1.2	-2.8
NM_128058	At.28320	WRKY60	-2.1	-1.6	-2.1
NM_117436	At.33355	AT4G13620	-2.0	1.1	-2.1
NM_113777	At.53543	AT3G28570	-2.0	1.5	-2.1
NM_117199	At.3654	ACS6	-2.0	-1.2	-3.0
NM_128762	At.38127	AT2G32020	-2.0	1.3	-2.3

Table S2 Sequences of all primers used for quantitative PCR

Allene oxide synthase	5' CTCCGTTAATTTCTCGTC 3'
(AOS: AT5G42650)	3' GCAGCAACAGATTATACAAC 5'
Vegetative Storage Protein 2	5' AGATCAATGGGCTGATTTGG 3'
(VSP2: AT5G24770)	3' GTGTATACAAGGGGACAATGCG 5'
Tubulin-alpha 5	5' GGTGAGTATGATGTTGAAGA 3'
(<i>TUA</i> : AT5G19780)	3' AGAGATTTCCAAGAGTCGT 5'

Jasmonate ZIM domain protein 9	5' CACCATGGAAAGAGATTTTCTGG 3'
(JAZ9: AT1G70700)	3' TGAGAAGATGAAGAGGATGTATT 5'
Coronatine Insensitive 1	5' CACCATGGAGGATCCTGATATC 3'
(COII: AT2G39940)	3' TCAGGACTTCCTCGGTTATACT 5'

SI Materials & Methods

Microarray analysis

Total RNA was extracted from roots from 7-day-old seedlings using RNeasy Plant Mini Kit (QIAGEN, Germany). cDNAs were synthesized using 1.0 µg of total RNA and labeled with one color (Cy3) using a Quick Amp labeling kit (Agilent Technologies, USA), followed by fragmentation and hybridization to the *Arabidopsis* Oligo 44K DNA microarray (Ver. 4.0, Agilent Technologies, USA). Following fragmentation, 1.65 ug of cRNA were hybridized to the Agilent expression microarray according to the protocols provided by the manufacturer. All arrays were scanned with a microarray scanner (G2505B, Agilent Technologies, USA) and analyzed using Agilent Feature Extraction v11 (Agilent Technologies, USA). For microarray analysis, raw data were first filtered by a flag signal detected in all samples. Filtered raw data were processed using the Limma Bioconductor package (http://www.bioconductor.org/) in the R statistical environment (http://www.r-project.org/). After quantile normalization of data, miRNAs with twofold or greater differential expression were identified, with *P*-values of <0.05 being considered statistically significant.

Experimental Procedures for Raman Imaging and Spectroscopy

Experimental procedures used for **Figure S3**: Raman spectra obtained with a RAMAN-11 slit-scanning Raman microscope (Nanophoton, Japan) at 532 nm excitation. Samples were placed on a quartz substrate during the measurements. The laser output was focused into the sample by a 60X/1.2 NA UPLSAPO 60XW water immersion objective lens (Olympus Corp., Japan). The slit width of the spectrograph was 70 μ m. The light intensity at the sample plane was calculated as 6.0 mW/ μ m² from the ratio of the measured laser power between the sample position and the area of the illumination line. The exposure time for each line was 120 s/line. Each sample solution was measured at 4 times.

Experimental procedures used for **Figure 4**: The abaxial leaf epidermis of 6- to 8-week-old Col-0 or *coi1-16s* was peeled and cut to about 2 mm². The peels were submerged in buffer (10 mM MES-KOH, pH 6.2, 50 mM KCl) at 22 °C for 3 h in the dark to close the stomata. After incubation for 3 h with 100 μ M **5**/*ent***5** at 22 °C in the dark, peels were washed and then used for observation of bright-field images and Raman spectra obtained with a RAMAN-11 slit-scanning Raman microscope at 532 nm excitation. Samples were placed on a quartz substrate during the measurements. The laser output was focused into the sample by a 60X/1.2 NA UPLSAPO 60XW water immersion objective lens. The slit width of the spectrograph was 50 μ m. The exposure time for each line was 120s/line. The laser intensity was calculated from the ratio of the measured laser power at the sample position and the illumination line. The light intensity at the sample plane was calculated as 6.2 mW/ μ m² (Col-0 with **5**), 6.1

mW/ μ m² (Col-0 with *ent***5**), 5.9 mW/ μ m² (*coi1-16s* with **5**), and 5.8 mW/ μ m² (*coi1-16s* with *ent***5**). Each Raman Spectra was Smoothed using a moving average method.

Experimental procedures used for **Figure S5**: The abaxial leaf epidermis of 6- to 8-week-old Col-0 or *arc6-1* was peeled and cut to about 2 mm². The peels were submerged in buffer (10 mM MES-KOH, pH 6.2, 50 mM KCl) at 22 °C for 3 h in the dark to close the stomata. After incubation for 3 h with 100 μ M 5/*ent5* at 22 °C in the dark, peels were washed and then used for observation of bright-field images and Raman spectra obtained with a RAMAN-11 slit-scanning Raman microscope at 532 nm excitation. Samples were placed on a quartz substrate during the measurements. The laser output was focused into the sample by a 60X/1.2 NA UPLSAPO 60XW water immersion objective lens. The slit width of the spectrograph was 50 μ m. The exposure time for each line was 120 s/line. The laser intensity was calculated from the ratio of the measured laser power at the sample position and the illumination line. The laser intensity of Col-0 was 6.2 mW/ μ m², *arc6-1* was 5.8 mW/ μ m². For Raman images in Fig. S3, the Raman spectral data set was un-processed Raman images were reconstructed using the peak intensity of average intensity of silent region (1985-2315 cm⁻¹). The final Col-0 images consist of 79 × 37 pixels and the final *arc6-1* images consists of 69 × 31 pixels.

Experimental procedures used for **Figure 5** and **Figures S7 and S8**: The abaxial leaf epidermis of 6- to 8-week-old *arc6-1* was peeled and cut to about 2 mm². The peels were submerged in buffer (10 mM MES-KOH, pH 6.2, 50 mM KCl) at 22 °C for 3 h in the dark to close the stomata. After incubation for 3 h with 100 μ M 5/*ent*5 at 22 °C in the dark, peels were washed and then used for observation of bright-field images and Raman spectra obtained with a RAMAN-11 slit-scanning Raman microscope at 532 nm excitation. Samples were placed on a quartz substrate during the measurements. The laser output was focused into the sample by a 60X/1.2 NA UPLSAPO 60XW water immersion objective lens. The slit width of the spectrograph was 50 μ m. The exposure time for each line was 120-150 s/line. The laser intensity was calculated from the ratio of the measured laser power at the sample position and the illumination line. The light intensity at the sample plane was calculated as 6.0-6.2 mW/ μ m² (*arc6-1* with *5*), 6.2 mW/ μ m² (*arc6-1* with *ent5*).

For Raman Spectra in Figures S7 and S8, each Raman Spectra was smoothed using a moving average method.

Experimental procedures used for **Figure S10**: The abaxial leaf epidermis of 6- to 8-week-old *arc6-1* was peeled and cut to about 2 mm². The peels were submerged in buffer (10 mM MES-KOH, pH 6.2, 50 mM KCl) at 22 °C for 3 h in the dark to close the stomata. After co-incubation for 3 h with 100 μ M **1** and 100 μ M **5** at 22 °C in the dark, peels were washed and then used for observation of bright-field images and Raman spectra obtained with a RAMAN-11 slit-scanning Raman microscope at 532 nm excitation. Samples were placed on a quartz

substrate during the measurements. The laser output was focused into the sample by a 60X/1.2 NA UPLSAPO 60XW water immersion objective lens. The slit width of the spectrograph was 70 μ m. The exposure time for each line was 120 s/line. The laser intensity was calculated from the ratio of the measured laser power at the sample position and the illumination line. The light intensity at the sample plane was 6.0 mW/ μ m². Each Raman Spectra was smoothed using a moving average method.

For Raman images in **Figures 5 and S10**, the Raman spectral data set was further processed using the singular value decomposition (SVD) technique for noise reduction ⁴⁴. Then we used a narrow spectral region (1985-2315 cm⁻¹) in the calculation procedure for SVD to avoid artifacts in constructed images. A modified polyfit technique ⁴⁵ was then used at each pixel to determine the autofluorescence baseline signal, which was subtracted from the original Raman spectrum. After SVD processing. Raman images were reconstructed using the peak intensity of diyne at 2,258 cm⁻¹. The final **5** images consist of 58×28 pixels and the final *ent***5** images consists of 78×34 pixels (**Figure 5**). The final **1** and **5** co-incubated images consist of 57×27 pixels (**Figure S10**).

Experimental Procedures for Fluorescence Imaging

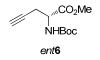
Experimental procedures used for **Figure S5**: To examine nuclear and ER localization, the abaxial leaf epidermis of 6- to 8-week-old Col-0 or *arc6-1* was peeled and cut to about 2 mm². Light micrographs and fluorescent images were taken using an IX71 microscope (Olympus Corp., Japan) equipped with DP72 CCD camera (Olympus Corp., Japan) and WIB filter (Olympus Corp., Japan).

Experimental procedures used for **Figures 5** and **S9**: To examine nuclear and ER localization, the abaxial leaf epidermis of 6- to 8-week-old Col-0 or *arc6-1* was peeled and cut to about 2 mm². The peels were incubated with test compounds in buffer (10 mM MES-KOH, pH 6.2, 50 mM KCl) containing 0.5% DMSO at 22 °C in the dark a) for 90 min without compounds b) for 90 min with 5 μ M of HoeFLAc₂ ⁴³ and c) for 90 min with 5 μ M ER-Tracker Green (Thermo Fisher Scientific, Inc., USA). Light micrographs and fluorescent images were taken using or an LSM-710 confocal microscope system (Carl Zeiss, Germany).

General Experimental Procedures for Chemical Synthesis

¹H NMR and ¹³C NMR spectra in CDCl₃ were recorded on a JNM-ECS-400 NMR spectrometer (JEOL Inc., Japan). High-resolution electrospray ionization mass spectrometry was carried out on a micrOTOF II mass spectrometer (Bruker Daltonics Inc., Germany). Chemical reagents and solvents were purchased from Kanto Chemical Co. Ltd. (Japan), Wako

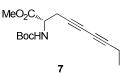
Pure Chemical Industries Co. Ltd. (Japan), and Nacalai Tesque, Inc. (Japan). All anhydrous solvents were dried by standard techniques and freshly distilled before use or purchased in anhydrous form. Flash chromatography was carried out using dry-packed Chromatorex PSQ 100B silica gel (Fuji Silysia Chemical Ltd., Japan). All reactions were carried out under air unless stated otherwise. FT/IR spectra were recorded on a JASCO FT/IR-4100 spectrometer (JASCO Inc., Japan). Optical rotation was measured by a JASCO DIP-1000 polarimeter. High performance liquid chromatography was carried out with a combination of a JASCO PU-2086 Plus pump and JASCO UV-2075 detector equipped with a Develosil RP-AQUEOUS ϕ 20 × 250 mm column (Nomura Chemical, Co., Ltd., Japan). Freeze-drying was performed using a EYELA FDU-830 freeze dryer system (Tokyo Rikakikai Co., Ltd., Japan).


Experimental Procedures for Synthesis and compound data

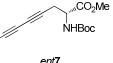
Methyl (S)-2-((*tert*-butoxycarbonyl)amino)pent-4-ynoate (6)

MeO₂C_{M,} BocHN

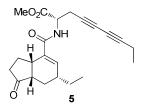
To a solution of L-propargylglycine [CAS No.23235-01-0] (113.1 mg, 1.00 mmol) in THF/DMF/H₂O (1/1/1, 12.0 mL) was added di-tert-butyl dicarbonate (250 µL, 1.09 mmol) and K_2CO_3 (139 mg, 1.00 mmol) at room temperature under argon atmosphere. After the reaction mixture was stirred for 2 h, the mixture was extracted by saturated aqueous NaHCO₃. (3 \times 30 mL). The aqueous layer was mixed with 5% aqueous KHSO4 (150 mL) and extracted with EtOAc (3 \times 50 mL). The organic layer was dried over Ns₂SO₄, and filtered. After evaporation, the residue was dissolved in CHCl₃/MeOH (3/1, 8.0 mL) and mixed with 1.6 M trimethylsilyldiazomethane in *n*-hexane (2.0 mL) at room temperature under argon atmosphere. After the reaction was stirred for 10 min, the reaction was guenched by acetic acid and then the mixture was evaporated. The residue was purified by silica gel column chromatography (*n*-hexane/EtOAc = 15/1) to give 6 (225.3 mg, 0.991 mmol, 99%) as a colorless oil. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta_{\text{H}}$: 5.35 (d, J = 8.4, 1H), 4.48 (dt, J = 8.4, 4.8, 1H), 3.78 (s, 3H), 2.78–2.68 (m, 2H), 2.04 (t, J = 2.8, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 171.1, 155.1, 80.2, 78.5, 71.6, 52.6, 51.9, 28.2(3C), 22.8; IR (film) cm⁻¹: 3294, 2978, 2958, 2123, 1750, 1713, 1506, 1439, 1358, 1064, 1025, 994; HRMS (ESI, positive) m/z [M+Na]⁺ calcd. for C₁₁H₁₇NO₄Na : 250.1050, Found : 2501059; $[\alpha]_D^{21}$ +57.8° (c = 0.89, CHCl₃)


Methyl (R)-2-((tert-butoxycarbonyl)amino)pent-4-ynoate (ent6)

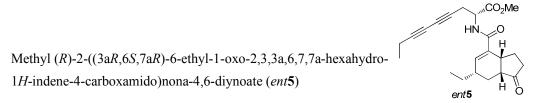
Ent6 was prepared from D-propargylglycine [CAS No. 23235-03-2] according to the same


method as **6**. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 5.35 (d, J = 8.4, 1H), 4.48 (dt, J = 8.4, 4.8, 1H), 3.78 (s, 3H), 2.78–2.68 (m, 2H), 2.04 (t, J = 2.8, 1H), 1.46 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 171.1, 155.1, 80.2, 78.5, 71.6, 52.6, 51.9, 28.3(3C), 22.8; IR (film) cm⁻¹: 3294, 2978, 2958, 2123, 1750, 1713, 1506, 1439, 1358, 1064, 1025, 994; HRMS (ESI, positive) m/z [M+Na]⁺ calcd. for C₁₁H₁₇NO₄Na : 250.1050, Found : 250.1042; [α]_D²¹ –58.9° (c = 0.77, CHCl₃)

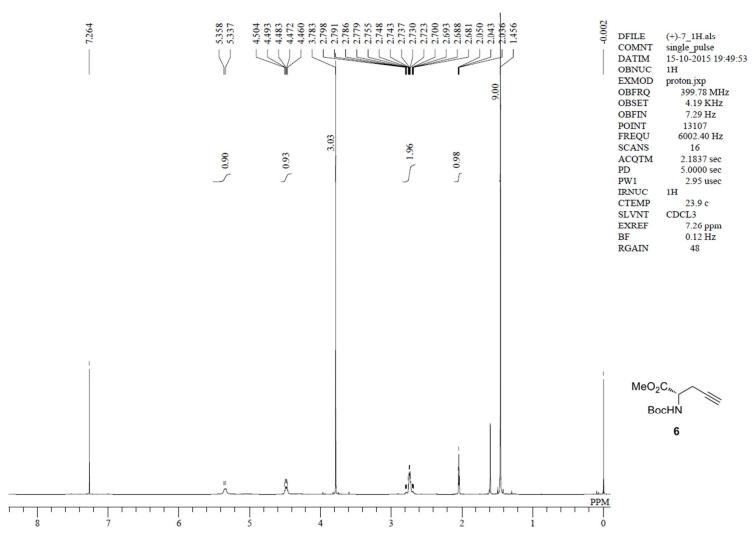
Methyl (S)-2-((tert-butoxycarbonyl)amino)nona-4,6-diynoate (7)

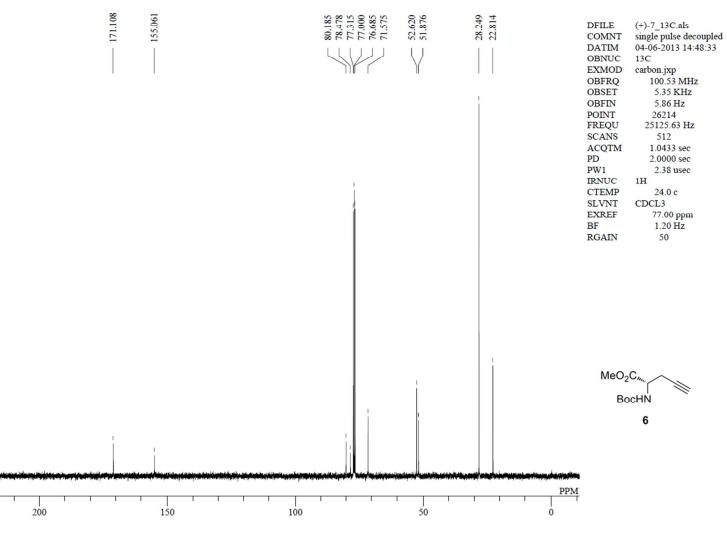

To a solution of **6** (132.1 mg, 0.581 mmol) in piperidine (2.5 mL) was added 1-butynyl iodide [CAS No.66794-29-4] (100 μ L, 0.966 mmol) and copper (I) iodide (57 mg, 29.9 μ mol) at 0 °C under argon atmosphere. After 4 h stirring, the reaction was quenched with 5 % aqueous KHSO₄ (30 mL). The reaction mixture was extracted with EtOAc (3 × 20 mL), and then the organic layer was dried over Na₂SO₄ and filtered. After evaporation, the residue was purified by silica gel column chromatography (*n*-hexane/EtOAc = 15/1) to give 7 (111.4 mg, 0.408 mmol, 70%) as a white solid. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 5.33 (d, *J* = 8.4, 1H), 4.46 (dt, *J* = 8.4, 4.8, 1H), 3.78 (s, 3H), 2.86–2.75 (m, 2H), 2.26 (q, *J* = 7.2, 2H), 1.46 (s, 9H), 1.15 (t, *J* = 7.2, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 170.9, 155.0, 80.2, 79.9, 71.0, 68.3, 64.2, 52.7, 52.0, 28.2(3C), 23.7, 13.2, 12.8.; IR (film) cm⁻¹: 3366, 2980, 2939, 2260, 1749, 1715, 1508, 1436, 1267, 1251, 1218, 1168, 1062, 778; HRMS (ESI, positive) *m*/*z* [M+Na]⁺ calcd. for C₁₅H₂₁NO₄Na : 302.1363, Found : 302.1360; [α]_D²¹ +94.5° (c = 0.78, CHCl₃).

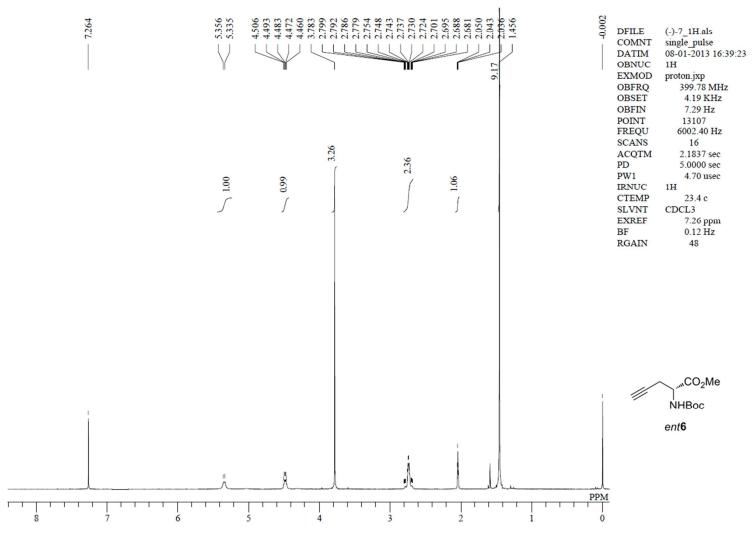
Methyl (*R*)-2-((*tert*-butoxycarbonyl)amino)nona-4,6-diynoate (*ent*7)

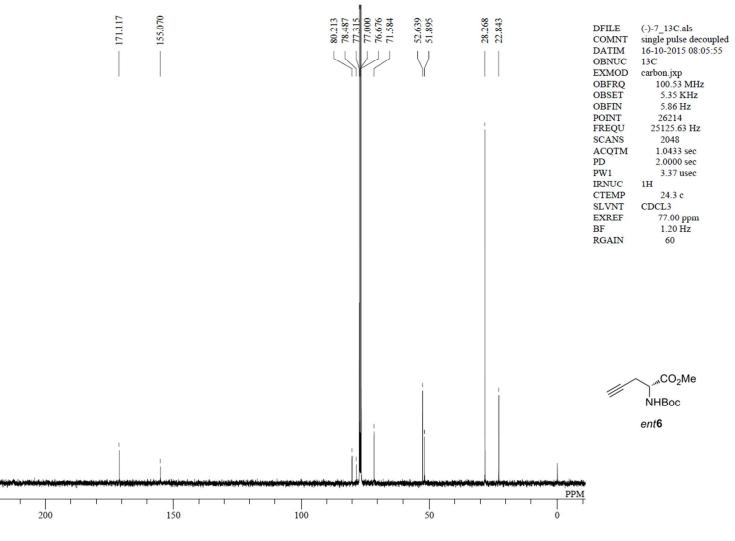


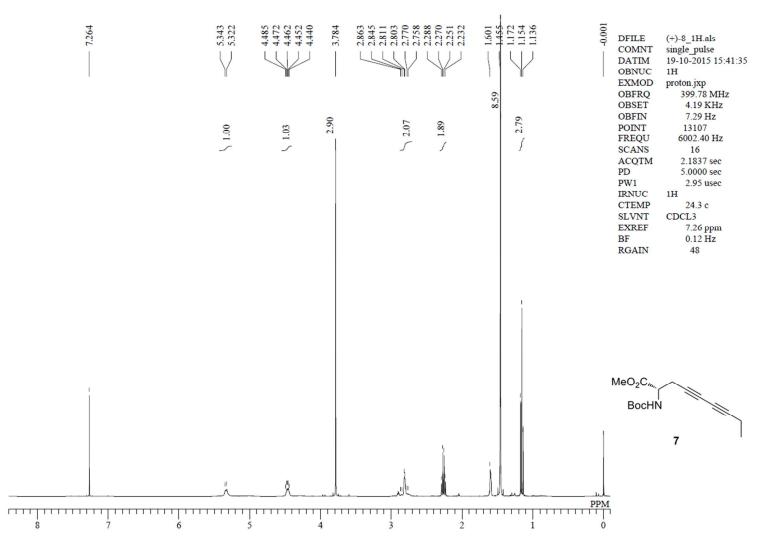
*Ent***7** was prepared from *ent***6** according to the same method as **7**. ¹H NMR (400 MHz, CDCl₃) δ_{H} : 5.33 (d, J = 8.4, 1H), 4.46 (dt, J = 8.4, 4.8, 1H), 3.78 (s, 3H), 2.86–2.75 (m, 2H), 2.26 (q, J = 7.2, 2H), 1.46 (s, 9H), 1.15 (t, J = 7.2, 3H); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 170.9, 155.0, 80.2, 79.9, 71.0, 68.3, 64.3, 52.7, 52.0, 28.3(3C), 23.7, 13.2, 12.8; IR (film) cm⁻¹: 3366, 2980, 2939, 2260, 1749, 1715, 1508, 1436, 1267, 1251, 1218, 1168, 1062, 778; HRMS (ESI, positive) *m/z* [M+Na]⁺ calcd. for C₁₅H₂₁NO₄Na : 302.1363, Found : 302.1351; $[\alpha]_{\text{D}}^{21}$ –94.5° (c = 0.90 in CHCl₃)

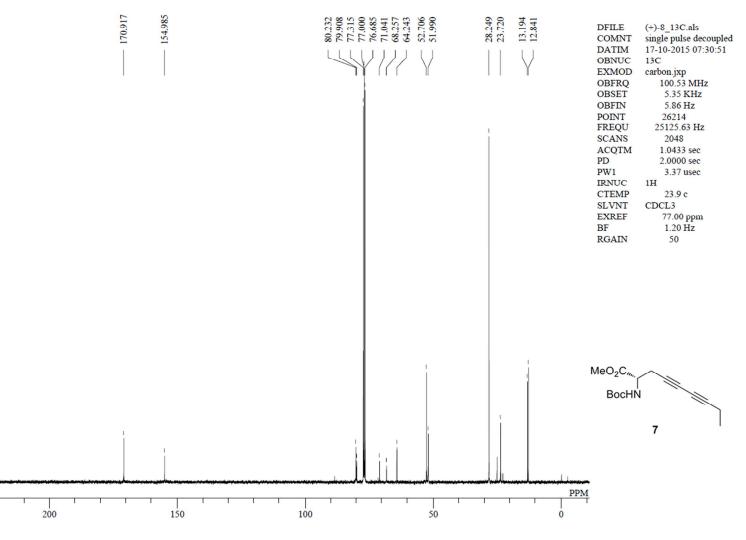

Methyl (*S*)-2-((3*aS*,6*R*,7*aS*)-6-ethyl-1-oxo-2,3,3*a*,6,7,7*a*-hexahydro-1*H*-indene-4-carboxamido)nona-4,6-diynoate (**5**)

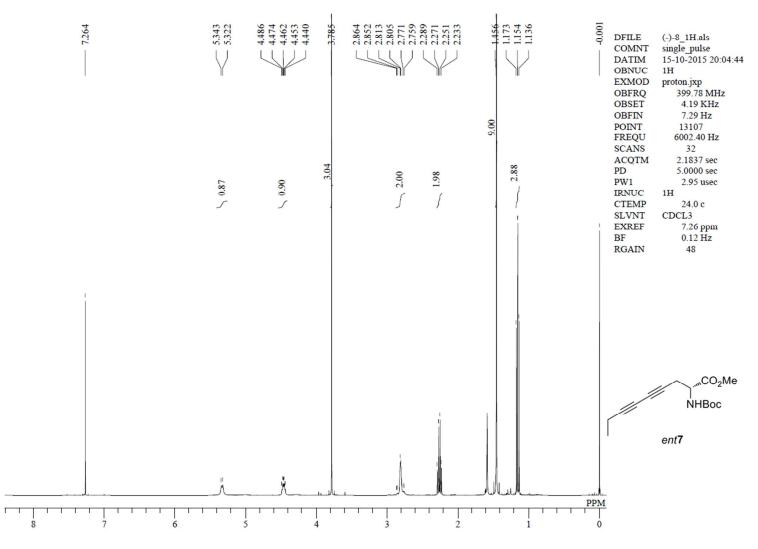


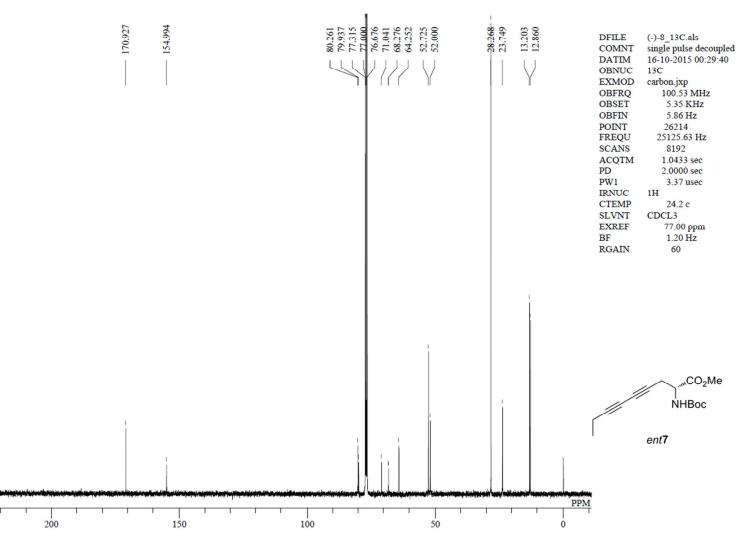

To a solution of 7 (6.6 mg, 23.6 μ mol) in CH₂Cl₂(0.8 mL) was added TFA (0.2 mL) at room temperature under argon atmosphere. After 30 min stirring, the reaction mixture was evaporated and the residue was dissolved in DMF (1.0 mL). To this solution, CFA (3) ²² (5.2 mg, 25.0 µmol), COMU (12.9 mg, 30.1 µmol) and TEA (7.26 mg, 71.7 µmol) were added at room temperature under argon atmosphere. After overnight stirring, the reaction was quenched by 5% aqueous KHSO₄ (5 mL), and then the mixture was extracted with EtOAc (10 mL). The organic layer was washed with 5% aqueous KHSO₄ (2 \times 3 mL), saturated aqueous NaHCO₃ (2 \times 3 mL), and brine (3 mL), and then dried over Na₂SO₄ and filtered. After evaporation, the residue was purified by silica gel column chromatography (*n*-hexane/EtOAc = 4/1) to give 5 (6.0 mg, 15.3 μ mol, 65%). Moreover, the 5 (3.9 mg) was purified by HPLC (mobile phase: CH₃OH / H₂O = 60 / 40, flow rate: 8.0 mL/min) on Develosil RPAQUEOUS (\$20 × 250 mm, Nomura Chemicals Co. Ltd., Japan) to give 5 (3.6 mg, Rt = 71-75 min) as a colorless crystal. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta_{\text{H}}$: 6.59 (d, J = 7.6 Hz, 1H), 6.49 (s, 1H), 4.80 (dt, J = 7.6, 4.4 Hz, 1H), 3.93 (s, 3H), 3.17 (dt, J = 11.6, 6.8 Hz, 1H), 2.90 (dd, J = 17.2, 4.4 Hz, 2H), 2.52–2.12 (m, 7H), 1.90 (dt, J = 13.2, 4.8 Hz, 1H), 1.69-1.36 (m, 3H), 1.15 (t, J = 7.6 Hz, 3H), 1.08 (td, J = 13.2, 10.8 (td, J = 13.2Hz, 1H), 1.01 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ_{C} : 220.2, 170.9, 167.5, 139.1, 135.0, 80.1, 70.9, 68.6, 64.1, 53.0, 50.7, 46.5, 39.2, 37.4, 36.1, 28.0, 27.8, 26.0, 23.3, 13.2, 12.9, 11.3.; IR (film) cm⁻¹: 3335, 2961, 2939, 2879, 2858, 2260, 1741, 1654, 1624, 1521, 1457, 1437, 1350, 1317, 1262, 1219, 1148, 1069; HRMS (ESI, positive) m/z [M+Na]⁺ calcd. for $C_{22}H_{27}NO_4Na$: 392.1832, Found: 392.1825; $[\alpha]_D^{21}$ +115° (c = 0.18 in CHCl₃).

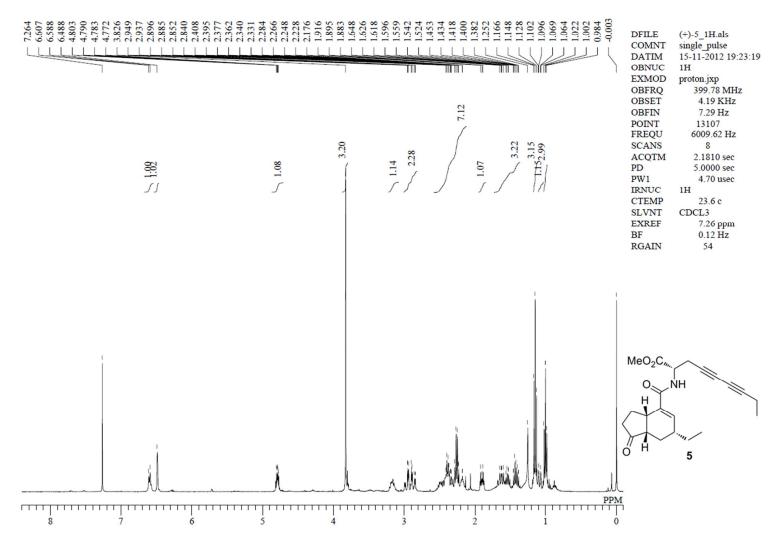


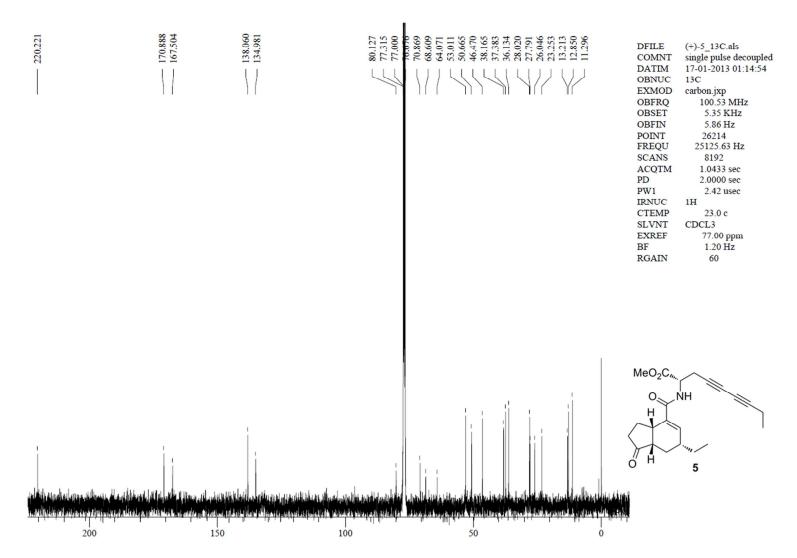

*Ent***5** was prepared from *ent***7** with *ent***3** ²² according to the same method as **5**. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 6.59 (d, J = 7.6 Hz, 1H), 6.49 (s, 1H), 4.80 (dt, J = 7.6, 4.4 Hz, 1H), 3.93 (s, 3H), 3.17 (dt, J = 11.6, 6.8 Hz, 1H), 2.90 (dd, J = 17.2, 4.4 Hz, 2H), 2.52–2.12 (m, 7H), 1.90 (dt, J = 13.2, 4.8 Hz, 1H), 1.69–1.36 (m, 3H), 1.15 (t, J = 7.6 Hz, 3H), 1.08 (td, J = 13.2, 10.8 Hz, 1H), 1.01 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 220.2, 170.9, 167.5, 139.0, 135.0, 80.1, 70.9, 68.6, 64.1, 53.0, 50.7, 46.5, 39.2, 37.4, 36.1, 28.0, 27.8, 26.1, 23.3, 13.2, 12.9, 11.3; IR (film) cm⁻¹: 3317, 2960, 2939, 2877, 2857, 2260, 1741, 1655, 1624, 1522, 1457, 1436, 1349, 1317, 1274, 1218, 1148, 1068.; HRMS (ESI, positive) m/z [M+Na]⁺ calcd. for C₂₂H₂₇NO₄Na : 392.1832, Found : 392.1824; $[\alpha]_{\rm D}^{21}$ –116° (c = 0.20 in CHCl₃).

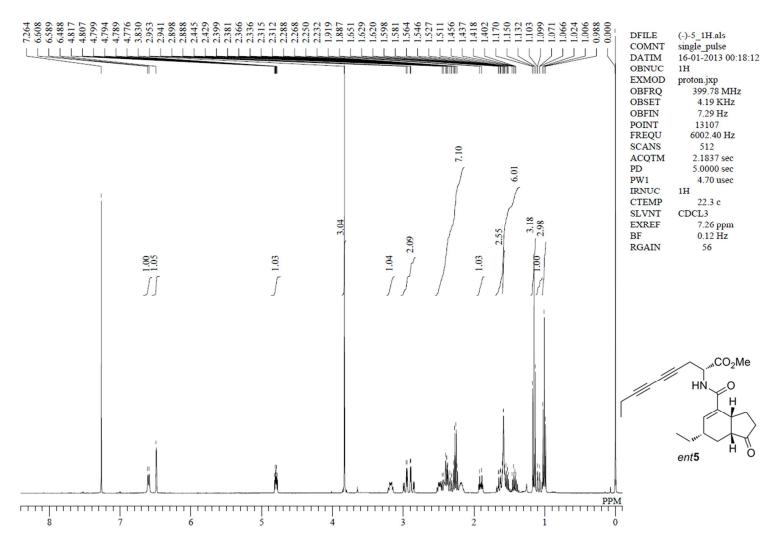


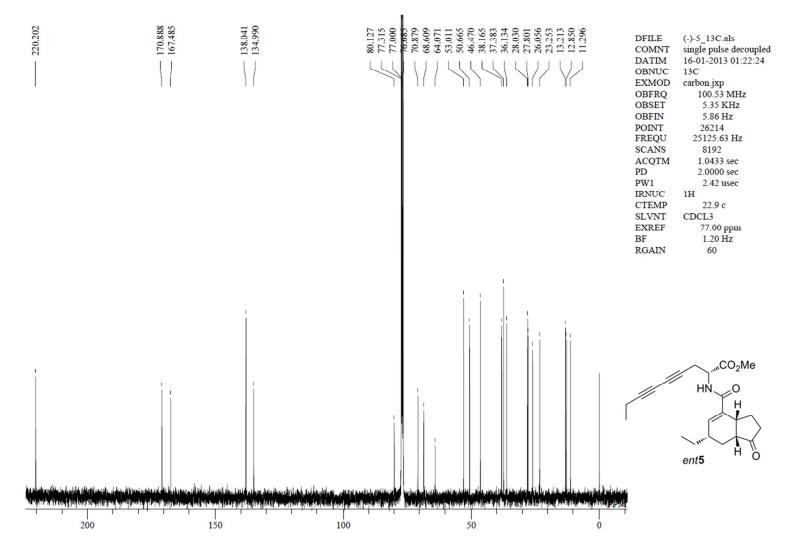












SI References

- Nakamura, A.; Takigawa, K.; Kurishita, Y.; Kuwata, K.; Ishida, M.; Shimoda, Y.; Hamachi, I.; Tsukiji, S., Hoechst tagging: a modular strategy to design synthetic fluorescent probes for live-cell nucleus imaging. *Chemical Communications* 2014, *50* (46), 6149–6152.
- 44. Manen, H. J.; Kraan, Y. M.; Roos, D.; Otto, C., Intracellular Chemical Imaging of Heme-Containing Enzymes Involved in Innate Immunity Using Resonance Raman Microscopy. J. Phys. Chem. B 2004, 108 (48), 18762–18771.
- 45. Lieber, C. A.; Jansen, A. M., Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. *Appl. Spectrosc.* **2003**, *57* (11), 1363–1367.