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Supplementary Text 

S-I Simulation Details 

The MITS program and the ESoRT were executed at the QM/MM interface on AMBER10 MD platform1. The self-consistent 

charge density functional tight-binding (SCC-DFTB) method2, 3 was adopted to approximate the quantum mechanical Hamiltonian 

of the reactant molecule, and the solvent water was treated with the SPCE model. MITS algorithm supports all quantum methods 

available in the hybrid MD. In this paper we chose SCC-DFTB out of following concerns: i) DFTB generally ensures better accu-

racy than other semi-empirical methods, performs reliably in polar systems, and is computationally extremely efficient compared 

to the first-principle methods4; ii) the current DFTB parameter library works quite well for peptide and organic compound structures 

and conformation energies, the geometries of hydrogen-bonded systems are well reproduced, and also include dispersion energies5; 

iii) in recent years, SCC-DFTB has been extensively benchmarked and widely utilized in research involving organic compounds, 

biomolecules, and materials, giving reliable results2, 3, 6; iv) moreover, the output of SCC-DFTB calculations can be properly trained 

with neural network algorithm to achieve DFT-level accuracy7, further enhancing the reliability and practicability of this semi-

empirical method. 

A cubic box was built with dimensions (30*30*30 Å3), containing 880 SPCE-modeled water molecules and one QM-treated 

solute molecule. The concentration of the reactant molecule is ~0.06 mol/kg, below the saturation limit of the homologs8. The 

system underwent a standard relaxation procedure and equilibrated to an NTP ensemble (300 K, 1atm). To equilibrate the system 

to the appropriate volume, the pressure of the system was adjusted to 1atm by the Berendsen weak-coupling9 algorithm ( with the 

relaxation time constants of 0.2 ps) under another 1ns long normal MD. A cutoff of 10.0 Å was applied for calculating nonbonding 

interactions. Before the production run of sampling, 5-ns long simulation was used to determine the parameters (e.g. [nk], see 

section II) in MITS. Then the configurational sampling data were collected for over 500 ns in NPT ensemble (300 K, 1 atm). For 

ESoRT, we first chose the initial structures (see section IV) from the MITS-generated configurations, then executed the true-dy-

namics transition path shootings under NVE ensemble. Totally 525 successfully transited trajectories were collected (out of ~25,000 

total shooting attempts). All the simulations were performed with a 1-fs time integration step (no SHAKE on QM-treated molecule) 

and with periodic boundary condition. 
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S-II Multilevel Integrated Tempering Sampling (MITS) 

In the selective integrated tempering sampling (SITS) method, we divide the simulation system into two parts and potential 

energy into three parts. For instance, in QM/MM simulation, the system can be separated to the QM part and the MM part, and 

then the potential energy 𝑈 can be divided into the energy of QM part 𝐸QM, the energy of the MM part 𝐸MM and the interactional 

energy between the QM/MM part 𝐸QM/MM 8: 

 𝑈 = 𝐸QM + 𝐸MM + 𝐸QM/MM (1) 

For convenient, we use a ration factor 𝑎 (0 ≤ 𝑎 ≤ 1) to separate the interactional energy 𝐸QM/MM, and incorporate them into 

the QM and MM parts: 

 𝑈 = 𝐸QM + 𝑎𝐸QM/MM + 𝐸MM + (1 − 𝑎)𝐸QM/MM = 𝐸QM
′ + 𝐸MM

′  (2) 

where 𝐸QM
′ = 𝐸QM + 𝑎𝐸QM/MM and 𝐸MM

′ = 𝐸MM + (1 − 𝑎)𝐸QM/MM. In our previous studies, in order to use a widely distrib-

uted temperature range {𝛽𝑖} (𝛽𝑖 = 1/𝑘𝐵𝑇𝑖  and 𝑘𝐵 is the Boltzmann constant) to selectively enhance the sampling of the QM 

part of the system but keep the thermodynamics of the MM part of the system at normal temperature, we use a generalized distri-

bution 𝑓′(𝑈): 

 𝑓′(𝑈) = 𝑒−𝛽0𝐸MM
′

∑ 𝑛𝑖𝑒
−𝛽𝑖𝐸QM

′

𝑖

 (3) 

where 𝛽0 = 1/𝑘𝐵𝑇0, 𝑇0 is the simulation temperature and 𝑛𝑖 is the weighting factor at temperature 𝛽𝑖.  

Here, we also want to enhance the sampling of the MM part using another temperature range {𝛽𝑗}. Analogous to the SITS 

method, it is easily to design a new generalized distribution 𝑓′′(𝑈): 

 𝑓′′(𝑈) = ∑ 𝑛𝑖𝑒
−𝛽𝑖𝐸QM

′

𝑖

∙ ∑ 𝑚𝑗𝑒−𝛽𝑗𝐸MM
′

𝑗

 (4) 

where 𝑚𝑗  is the weighting factor at temperature ranges {𝛽𝑗}. Notice that when 𝛽𝑖 = 𝛽𝑗 = 𝛽0 , 𝑓′′(𝑈) = ∑ ∑ 𝑛𝑖𝑚𝑗𝑗𝑖 𝑒−𝛽0𝑈 =

𝐶𝑒−𝛽0𝑈 = 𝐶𝑓(𝑈) (𝐶 is a constant), which means the thermodynamics of the system can be easily recovered to the normal tem-

perature 𝛽0.  

Similar to the ITS and SITS method, we assume that an effective system with a potential 𝑈eff at the temperature 𝛽0 has the 

same distribution as the generalized distribution 𝑓′′(𝑈): 
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 𝑒−𝛽0𝑈eff
= 𝑓′′(𝑈) = ∑ 𝑛𝑖𝑒

−𝛽𝑖𝐸QM
′

𝑖

∙ ∑ 𝑚𝑗𝑒−𝛽𝑗𝐸MM
′

𝑗

 (5) 

Therefore, the “effective” potential energy 𝑈eff is: 

 𝑈eff = −
1

𝛽0

ln ∑ 𝑛𝑖𝑒
−𝛽𝑖𝐸QM

′

𝑖

−
1

𝛽0

ln ∑ 𝑚𝑗𝑒−𝛽𝑗𝐸MM
′

𝑗

 (6) 

To calculate the derivate of the effective potential energy 𝑈eff with the respect to the atomic coordinates 𝒓QM and 𝒓MM of the 

QM and MM part of the system, we can obtain the force acting on the atoms of the QM part 𝑭QM
eff  and MM part 𝑭MM

eff , respectively: 

 𝑭QM
eff =

∑ 𝛽𝑖𝑛𝑖𝑒
−𝛽𝑖𝐸QM

′

𝑖

𝛽0 ∑ 𝑛𝑖𝑒
−𝛽𝑖𝐸QM

′

𝑖

(𝑭QM→QM + 𝑎𝑭MM→QM) +
∑ 𝛽𝑗𝑚𝑗𝑒−𝛽𝑗𝐸MM

′

𝑗

𝛽0 ∑ 𝑚𝑗𝑒−𝛽𝑗𝐸MM
′

𝑗

∙ (1 − 𝑎)𝑭MM→QM (7) 

 𝑭MM
eff =

∑ 𝛽𝑖𝑛𝑖𝑒
−𝛽𝑖𝐸QM

′

𝑖

𝛽0 ∑ 𝑛𝑖𝑒
−𝛽𝑖𝐸QM

′

𝑖

∙ 𝑎𝑭QM→MM +
∑ 𝛽𝑗𝑚𝑗𝑒−𝛽𝑗𝐸MM

′

𝑗

𝛽0 ∑ 𝑚𝑗𝑒−𝛽𝑗𝐸MM
′

𝑗

∙ [𝑭MM→MM + (1 − 𝑎)𝑭QM→MM] (8) 

where 𝑭QM→QM = −𝜕𝐸QM/𝜕𝒓QM , 𝑭MM→MM = −𝜕𝐸MM/𝜕𝒓MM , 𝑭MM→QM = −𝜕𝐸QM/MM/𝜕𝒓QM  and 𝑭QM→MM = −𝜕𝐸QM/MM/

𝜕𝒓MM are the force acting on the QM part from 𝐸QM, on the MM part from 𝐸MM, on the QM part from 𝐸QM/MM and acting on 

the MM part from 𝐸QM/MM, respectively. Here we set 𝑆QM and 𝑆MM as two scale factors: 

 𝑆QM =
∑ 𝛽𝑖𝑛𝑖𝑒

−𝛽𝑖𝐸QM
′

𝑖

𝛽0 ∑ 𝑛𝑖𝑒
−𝛽𝑖𝐸QM

′

𝑖

 (9) 

 𝑆MM =
∑ 𝛽𝑗𝑚𝑗𝑒−𝛽𝑗𝐸MM

′

𝑗

𝛽0 ∑ 𝑚𝑗𝑒−𝛽𝑗𝐸MM
′

𝑗

 (10) 

Then the effective forces 𝑭QM
eff  and 𝑭MM

eff  can be simplified as: 

 𝑭QM
eff = 𝑆MM𝑭QM + (𝑆QM − 𝑆MM)(𝑭QM→QM + 𝑎𝑭MM→QM) (11) 

 𝑭MM
eff = 𝑆MM𝑭MM + (𝑆QM − 𝑆MM) ∙ 𝑎𝑭QM→MM (12) 

where 𝑭QM = −𝜕𝑈/𝜕𝒓QM = 𝑭QM→QM + 𝑭MM→QM  is the original force acting on the QM part and 𝑭MM = −𝜕𝑈/𝜕𝒓MM =

𝑭MM→MM + 𝑭QM→MM is the original force acting on the MM part. 

Using the effective forces 𝑭QM
eff  and 𝑭MM

eff  to perform the MD simulation, the sampling of the system can be enhanced by the 

multilevel integrated tempering sampling method. Similar to the ITS and SITS method, we can use the reweighting factor 𝑐0 to 

recover the thermodynamics of the system to the normal temperature 𝛽0： 



 

S5 

 

 𝑐0 =
𝑓(𝑈)

𝑓′′(𝑈)
= 𝑒−𝛽0(𝑈−𝑈eff) =

𝑒−𝛽0(𝐸QM
′ +𝐸MM

′ )

∑ 𝑛𝑖𝑒
−𝛽𝑖𝐸QM

′

𝑖 ∑ 𝑚𝑗𝑒−𝛽𝑗𝐸MM
′

𝑗

= [∑ 𝑛𝑖𝑒
(𝛽0−𝛽𝑖)𝐸QM

′

𝑖

∑ 𝑚𝑗𝑒(𝛽0−𝛽𝑗)𝐸MM
′

𝑗

]

−1

 (13) 

Unlike the SITS method, as both the QM and MM parts are enhanced in the MITS method, we can calculate the reweighting 

factors at the other temperatures 𝛽𝑥 that in the overlap area of the two widely distributed temperature ranges {𝛽𝑖} and {𝛽𝑗}: 

 𝑐𝑥 =
𝑓𝑥(𝑈)

𝑓′′(𝑈)
= [∑ 𝑛𝑖𝑒

(𝛽𝑥−𝛽𝑖)𝐸QM
′

𝑖

∑ 𝑚𝑗𝑒(𝛽𝑥−𝛽𝑗)𝐸MM
′

𝑗

]

−1

, 𝛽𝑥 ∈ {𝛽𝑖} ∩ {𝛽𝑗} (14) 

Finally, the two sets of [nk]’s can be obtained using the iteration method as in ITS and SITS method10. 

We note here that, MITS does not prescribe the RCs or alter the TS properties, which allows thorough sampling of the phase 

space and automatic search for reaction mechanisms. To further optimize the computational efficiency, we distributed the entire 

sampling into three windows, and the MITS parameters for each window was set differently and individually (see section III). 

 

S-III Calculation of Thermodynamics 

In pursuit for best efficiency, we adopted the distributive sampling strategy, that is, dividing the entire sampling into three 

windows (window 1 for reactant, 2 for barrier and 3 for product). For MM-region, the sampling temperature ranges for all three 

windows are the same from 270 K to 330 K, with 30 intervals. The temperature ranges of QM-part for window 1 and 3 are relatively 

narrower (220 K to 650 K) and with fewer temperature intervals (k=50 for [nk] series in Eq. S4, Table S1) provided that the sampling 

of reactant/product metastable basins converge much more quickly than on the transition region (250 K to 1000 K, with k= 150). 

In the fulfillment of distributive sampling, an innocuous restraint force (𝐹(Ω(𝐑))) was introduced to the effective potential of 

window 2, in a Woods-Saxon’ form: 

 𝐹(Ω(𝐑)) =
𝜀

1 + 𝑒−2𝛼𝜀(𝑟−𝑟0)
 (15) 

where Ω(𝐑) = 𝑟 is a set of chosen order parameters that delimit the reactant and product (we chose r=d(C1-C6) and d(O3-C4) in 

this paper); 𝜀 is the maximum restriction force, 𝛼 describes the steepness of the restriction boundary, 𝑟0 is the defined boundary 

distance in the restriction, and 𝑟 is the actual distance between the two restrained atoms. This restraint effectively manifests only 

when 𝑟 > 𝑟0  and is almost null when 𝑟 < 𝑟0 . We set 𝑟0 = 2.5 Å, 𝛼 = 5.0 and 𝜀 = 10.0 for both d(C1-C6) and d(O3-C4), 

which guarantees an extensive overlap between the adjacent sampling windows. The corresponding bias potential for window 2 is: 



 

S6 

 

 𝑉2(Ω(𝐑)) = ln{exp[−2𝛼𝜀(𝑟 − 𝑟0)] + 1}/2𝛼 (16) 

As discussed in Ref. 11, this restraint does not affect the properties of transition state, guarantees the authenticity and sponta-

neity of the transition events, and can be independent of the reaction coordinate(s). Therefore, for each window, we obtained a 

MITS effective potential 𝑈𝑖̃(𝐑), and a possible restraint potential 𝑉𝑖(𝐑) (𝑉1 = 𝑉2 = 0, 𝑉2 in the form of Eq. S16 ). The overall 

reweighting procedure is performed according to the method proposed by Yang et al12. If we treat the combined term 𝑈𝑖̃(𝐑) −

𝑈(𝐑) + 𝑉𝑖(Ω(𝐑)) as the biasing potential, the weighted histogram analysis method (WHAM)13, 14 can be used to analyze the sim-

ulation data. Following the derivation of WHAM, to evaluate the free energy correction to each sampling window, 𝑓𝑖, can be 

realized through iterative computing of the following two quantities: 

 𝜌(𝐑) = ∑
𝑚𝑖𝜌𝑖

𝑏(𝐑)𝑔𝑖
−1

∑ 𝑚𝑗𝑔𝑗
−1𝑒

−𝛽0((𝑉𝑗(𝐑)−𝑓𝑗)+(𝑈𝑗̃(𝐑)−𝑈(𝐑)))3
𝑗=1

3

𝑖=1

 (17) 

 𝑒−𝛽0𝑓𝑘 = ∑ ∑
𝑒

−𝛽0(𝑉𝑘(𝐑𝑖,𝑙)+(𝑈𝑘̃(𝐑𝑖,𝑙)−𝑈(𝐑𝑖,𝑙)))
𝑔𝑖

−1

∑ 𝑚𝑗𝑔𝑗
−1𝑒

−𝛽0((𝑉𝑗(𝐑𝑖,𝑙)−𝑓𝑗)+(𝑈𝑗̃(𝐑𝑖,𝑙)−𝑈(𝐑𝑖,𝑙)))3
𝑗=1

𝑚𝑖

𝑙=1

3

𝑖=1

 (18) 

where 𝜌(𝐑) is the unbiased probability distribution, 𝜌𝑖
𝑏(𝐑) is the biased distribution for i-th window, 𝑚𝑖 is the number of sam-

ples recorded in the i-th simulation window, 𝐑𝑖,𝑙 denotes the l-th sampled configuration in the i-th window, and β0 is the inverse 

of the targeted reweighting temperature (can be chosen from anywhere between 280 K to 320 K, as mentioned in above sections). 

The statistical inefficiency term13, 𝑔𝑖, is given by 𝑔𝑖 = 1 + 2𝜏𝑖, where 𝜏𝑖 is the integrated autocorrelation time (IACT)14 of win-

dow i ( in units of the simulation frame time step). This term assigns lower weights to histograms with longer autocorrelations (in 

this study 𝜏2 ~ 4000𝜏1 and 𝜏1 ≈ 𝜏3, partly because the samples in widow 2 were recorded in every femtosecond, whereas those 

in windows 1 and 3 were both recorded in every picosecond). After converged 𝑓𝑖 were obtained, the unbiased distribution ρ(𝐑) 

follows Eq. S17, and the distribution of other quantities can be derived from 𝜌(𝐑), for instance, the reweighted probability distri-

bution along a collective variable Θ(𝐑): 

 𝜌(𝜃) = ∫ 𝜌(𝐑)𝛿(Θ(𝐑) − 𝜃)d𝐑 (19) 

which can be conveniently evaluated with δ denoting Dirac delta function. The corresponding PMF (𝐺(𝜃)) along Θ(𝐑) is simply 

as: 
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 𝐺(𝜃) = −
1

𝛽0

ln 𝜌(𝜃) (20) 

Alternatively, one can make proper use of other existing reweighing approaches, e.g. MBAR15 or TRAM16 to retrieve the 

thermodynamics as well. 

To calculate the reaction entropy ∆𝑆r, we plotted ∆𝐺r as a function of temperature T (Fig. S6B), of which the slope is the 

−∆𝑆r according to: 

 (
𝜕∆𝐺r

𝜕𝑇
)

𝑝
= −∆𝑆r (21) 

While the reaction enthalpy ∆𝐻r(𝑇0) can be obtained as the slope in the plot of ∆𝐺r 𝑇⁄ -1 𝑇⁄  (Fig. S6A) regarding to the 

Gibbs-Helmholtz equation: 

 
𝜕 (

∆𝐺r

𝑇
)

𝑝

𝜕 (
1
𝑇

)
= ∆𝐻r (22) 

 

S-IV Enhanced Sampling of Reactive Trajectories and Calculation of Kinetics 

According to fluctuation-dissipation theorem (cf. SI Ref 17), for a single-step rapid transition from state A to state B, the rate 

constant can be calculated with a time-dependent function, 𝑘(𝑡) = 𝑍𝐴𝐵(𝑡) 𝑍𝐴⁄ = ∑ 𝑤𝑖sus traj (∑ 𝑤𝑖all traj )⁄  (where 𝑍𝐴𝐵(𝑡) is the 

time correlation function, cf. SI Ref 18, while 𝑍𝐴 is the partition function for state A), which is the probability of finding the 

system in state B a time t after it was in state A. If A and B are separated by a single barrier, this probability will increase with an 

exponential time dependence. 𝑘(𝑡) grows linearly in time if t is longer than the typical transition time over the barrier (denoted 

by 𝜏mol), and smaller than the exponential relaxation time (denoted by 𝜏rxn = 1/(𝑘1 + 𝑘−1)). In our case, 𝜏mol<200 fs, so we set 

t to be 2 ps, which is conventionally used in transition path samplings and well satisfies the above conditions. 

In reference of the transition path sampling (TPS), the rate constant calculation of chemical reactions requires shooting from 

the initial phase space points representing the Boltzmann distribution of the reactant and collecting the successful conversions18. 

Based on the reactive-flux-over-population theory, the ratio between the number of successful conversions and that of all trajecto-

ries within a given length of time (t = 2 ps) can be used to calculate the desired rate constant: 

 𝑘1 =
∑ 𝑤𝑖sus traj,forward

𝑡(∑ 𝑤𝑖sus traj,forward + ∑ 𝑤𝑗failed traj,forward )
 (23) 
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 𝑘−1 =
∑ 𝑤𝑖sus traj,backward

𝑡(∑ 𝑤𝑖sus traj,backward + ∑ 𝑤𝑗failed traj,backward )
 (24) 

In Eqs. S23 and S24, 𝑤𝑖  is the weighting factor for each initial configuration. Different from the traditional TPS, ESoRT is 

more efficient since the sampled configurations are biased towards the transition region by MITS, and reside on different sponta-

neous reactive paths. Out of these sampled configurations, a set of initial structures (with recorded atomic coordinates, velocities, 

charges, as well as the effective weighting factors) were randomly selected. The neighboring points were assured to be at least 0.1 

ps apart in the MITS trajectories to reduce the correlation between the points generated by the same reactive trajectory. With these 

selected initial configurations, tens of thousands of MD trajectories, each consisting of a pair of forward and backward (for both 

𝑡=2 ps), were obtained on the original potential energy surface under an NVE ensemble. These trajectories were then categorized 

based on their destination: a successful transition if the forward and backward-bound trajectories end in different metastable basins, 

otherwise an unsuccessful attempt. Those successfully converted trajectories will contribute to the rate constant corresponding to 

its forward direction. While those unsuccessful trajectories will be counted in the denominator in Eqs. S23 and S24 according to 

which basin they end in. We also tested the linear dependence of 𝑘(𝑡) on different choices of t (t= 1.2 ps, 1.5 ps and 2.0 ps, 

respectively). The results show that 𝑘(𝑡)/𝑡 approximates constant within statistical errors (Table S5). 

Considering that along one reactive trajectory, the “active” configurations were much rarer than those“inactive” ones, which 

meant a uniform time interval between selected points might lack of efficiency due to the consequently redundant non-reactive 

shootings. Some efforts could be taken to enhance the efficiency of the transition path shootings. Our strategy was as follows. A 

Gaussian selecting bias, denoted as Ps(i), was assigned to the i-th configuration, according to the d(C1-C6) and d(O3-C4): 

 
1

𝑃s(𝑖)
= exp (−

(𝑑(C1 − C6) − 𝜇1)2

𝜎1
2 ) exp (−

(𝑑(O3 − C4) − 𝜇2)2

𝜎2
2 ) (25) 

where 𝜇1, 𝜇2, 𝜎1, 𝜎2 are constant parameters which estimate the according bond lengths of TS. This Ps means that we 

picked the configurations more frequently within the proximity of the TS, and should be corrected in the calculation of kinetics by 

Eq. S26: 

 𝑘 =
∑ 𝑤𝑖 ∙ 𝑃s(𝑖)sus traj

𝑡(∑ 𝑤𝑖 ∙ 𝑃s(𝑖)sus traj + ∑ 𝑤𝑗 ∙ 𝑃s(𝑗)failed traj )
 (26) 

Noteworthy, the independently calculated reaction rates can be linked to equilibrium constant and free-energy change of re-

action through Eqs. S27 (where R is gas constant, T the temperature and K the thermodynamics equilibrium constant), which can 
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be used to validate the methodological consistency of thermodynamics and kinetics calculations: 

 ∆𝐺r = −𝑅𝑇ln 𝐾 = −𝑅𝑇ln 
𝑘1

𝑘−1

 (27) 

One can check the convergence of trajectory sampling simply by projecting the transition path ensemble to the 2D(d(C1-C6) 

and d(O3-C4))-heat map and comparing it with the thermodynamics calculations (Fig. S7). 

In the calculation of activation enthalpy, we need to compute the kinetics under different temperatures. Since the momentum 

will re-distribute over different temperatures, the Ps(i) also accounts for a correction for kinetic energy re-distribution, by assuming 

kinetic energy obeys approximately the Maxwell-Boltzmann distribution: 

 𝑓𝐸(𝐸𝑖
𝐾; 𝑇) ∝ exp [−

(𝐸𝑖
𝐾 − 〈𝐸𝐾〉𝑇0

)

𝑘𝐵𝑇
] (28) 

 
1

𝑃s(𝑖)
∝ 𝑓𝐸(𝐸𝑖

𝐾; 𝑇)/𝑓𝐸(𝐸𝑖
𝐾; 𝑇0) (29) 

where the 𝐸𝑖
𝐾 stands for the kinetic energy of the i-th configuration, 〈𝐸𝐾〉𝑇0

 is the average kinetic energy at temperature 𝑇0, and 

𝑓𝐸(𝐸𝑖
𝐾; 𝑇) is the probability density of the kinetic energy 𝐸𝑖

𝐾  under temperature T. 

 The activation enthalpy can then be obtained through transition-state theory (Eq. S30) by plotting the rate constant (k) against 

inverse temperature (Fig. S8), where the slope gives ∆𝐻‡: 

 ln (𝑘 ∙ ℎ/𝑘B𝑇) ≈ −
∆𝐻‡

𝑅𝑇
+ Const. (30) 

 

S-V Defining Solvent Coordinates and Transition Paths 

We defined several solvent coordinates as follows that can be used to optimize the reaction coordinate and investigate the 

solvation effects: 

1. Exclusion volume (or solvent-excluded cavity volume). The simulation box around the solute (a radius of 10 Å around the 

center of mass of the solute) was meshed by 0.2×0.2×0.2 Å3 cubicles. The solvation cavity of the solute was defined as those cubic 

cells for which the inserting a 2.9-Å-in-radius spherical probe into the center of the cell did not overlap with any water oxygen 

atom centers19. We chose such a radius for the probe so as to avoid the zero overlap insertions in the bulk water20. 

2. Dipole orientation of the solvation shell. We defined the solvation shell as water molecules (water oxygens) within 3-Å-

reach of any solute atoms. Given that the dipole-dipole interaction is inversely proportional to the distance (to the third power) 
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between the two dipoles: 

 𝑉dipole−dipole ∝ −
𝜇1𝜇2

4𝜋𝑟12
3 cos 𝜃12 (31) 

(where 𝜇 is the strength of the dipole, 𝑟12 is the distance between two dipole centers, and 𝜃12 is the relative angle between the 

two dipoles), we thus defined each dipole orientation of the solvation water relative to the solute dipole by cos 𝜃𝑖, and averaged 

them regarding their distance to the solute (𝑟𝑖): 

 〈cos 𝜃〉 =
∑ cos 𝜃𝑖 𝑟𝑖

3⁄

∑ 1 𝑟𝑖
3⁄

 (32) 

3. Hydrogen-bond length, was defined as the distance between the nearest water hydrogen (Hw, “w” stands for “water”) and 

the O3 atom of reactant, provided that the Ow-Hw-O3 angle is between 120 and 180 degrees.  

We also selected the transition path regions out of every successfully reacted trajectory, and defined them as the “transition 

paths”, in order to construct the transition path probability p(r|TP) (see section VI) and calculate the average transition path length 

(Fig. S9). The transition paths (which were shot both forward and backward from near the separatrix) were terminated once they 

arrived at the reactant or product basin. We judged the terminus as follows: firstly, project the entire trajectory onto the 2D (d(C1-

C6) and d(O3-C4) map as Fig. 4A in the main text; secondly, divide the entire 2D map into uniform square grids with dimension 

0.1×0.1 Å2 and count the local configurational density in each grid; then, “grow” the transition path from the initial shooting point 

forward and backward grid by grid until the grid density jumps abruptly. This method works well in that the grids located within 

the product/reactant basin (Fig. 4A, red and blue symbols) are much more configurationally dense than transition path region (Fig. 

4A, green symbols). The final truncated length is termed as transition path length, denoted as τ throughout this paper. According 

to Hummer, each such transition contributes to the statistics of transition path lengths with a relative weight, w: 

 𝑤 = ( ∑ |𝑣𝑘|−1

intersections 𝑘

)

−1

 (33) 

where the sum is over the points of intersection of the trajectory with the separatrix (or dividing surface, chosen to be d(C1-

C6)=1.84 Å here), and 𝑣𝑘 = ∆𝑑(C1 − C6)/∆𝑡 is the velocity normal to the separatrix at the kth intersection. This factor is used to 

correct the over-/underrepresentation of “slow” and “fast” trajectories when calculate the distribution of transition path lengths (Fig. 

S9) 
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S-VI Bayesian Learning of Reaction Coordinate(s) 

According to Best and Hummer21, a Bayesian probabilistic relation between the equilibrium and tranistion-path ensembles 

can be used to define and identify a transition-state ensemble : 

 𝑝(TP|𝐱)𝑝eq(𝐱) = 𝑝(𝐱|TP)𝑝(TP) (34) 

where four probability densities are introduced : 𝑝eq(𝐱) and 𝑝(𝐱|TP) are the probability distributions in phase space for the 

equilibrium emsemble and transition paths, respectively. 𝑝(TP) is the probability of a phase-space point being on a transition path, 

which is a rate-related constant. 𝑝(TP|𝐱) is the probability for being on a transition path given that the system is in configuration 

x. Once a reaction coordinate (RC) 𝑟 = 𝑟(𝐱) is chosen, Eq. S34 is then generalized for the projected dynamics introduced in the 

main text: 

 𝑝(TP|𝑟)𝑝eq(𝑟) = 𝑝(𝑟|TP)𝑝(TP) (35) 

The shape and maximum value of 𝑝(TP|𝑟) then serve as an indicator of the quality of the chosen RC r. During the optimi-

zation of r, we chose linear combination of different RC candidates (denoted as vector 𝑹), associated with a linear weight coeffi-

cient vector 𝜶: 

 𝑟(𝑹; 𝜶) = ∑ 𝛼𝑖𝑅𝑖
𝑖

 (36) 

 ∑ |𝛼𝑖|
𝑖

= 1 (37) 

After choosing a set of [𝛼𝑖], with the constraint that the absolute values of which sum up to 1, two probability densities, 

𝑝(𝑟|TP) and 𝑝eq(𝑟), can be calculated along this r, and then smoothed by a cubic interpolation procedure. We randomized the 

choice of 𝜶, and reserved those results which guaranteed an ascending 𝑝(TP|𝑟) value. We also removed the 𝑅𝑖 from 𝑹 vector 

if |𝛼𝑖| is less than one percent out of the concern that a tiny 𝛼𝑖  might cause numerical instatibilty during the calculation of 

𝑝(TP|𝑟). 

It should be noted here that 𝑝(TP) is identical for any arbitrary choice of r, so it can be evaluated or estimated according to 

the barrier height of the thermodynamics free-energy profile. For the reaction under invetsigation, we were only able to roughly 

estimate the order of magnitude of 𝑝(TP) (10-20 to 10-19) from Fig. 1B in the main text, provided that the barrier is too sharp and 
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the corresponding peak value is too small when translated into probability. Such a small-valued 𝑝(TP) marks the rarity of chemical 

reactions: intuitively, there are on average only thousands of molecules undergoing transition in a reactor containing one mole of 

molecules at one moment. Also noteworthy, 𝑝(TP) is related to the reaction rate coefficients for the two-state reversible reaction21: 

 
𝑝(TP)

〈𝜏TP〉
≈

2

𝑘1
−1 + 𝑘−1

−1 (38) 

This formula links the thermodynamics (𝑝(TP)), kinetics (𝑘1 and 𝑘−1) and dynamics (𝜏TP) together, so we can employ it to 

test the self-consistency of our sampling protocal and the calculation results. Based on our computation, 𝑝(TP) ≈10-20~10-19 and 

〈𝜏TP〉 =88 fs ≈10-13 s, so the left hand side of Eq. S38 approximates 10-7~10-6 s-1. While 𝑘1
−1 + 𝑘−1

−1 ≈ 𝑘1
−1 = 0.5×10-7 s, so the 

right hand side is also about 10-7~10-6 s-1, suggesting our calculation of dynamics, kinetics and thermodynamics are in very good 

agreement. 

 

S-VII Recap of Kramers’ Theory and Calculation of the Transmission Coefficient 

The transmission coefficient in TST (𝜅TST), after choosing a certain RC, can be evaluated through: 

 𝜅TST =
𝑘abs

𝑘TST

 (39) 

 𝑘TST =
𝑘B𝑇

ℎ
exp (−∆‡ 𝐺/𝑅𝑇) (40) 

Where 𝑘abs is the rate constant calculated using RC-free flux-over-population theory (Eq in the main text), while 𝑘TST is 

based on the transition-state approximation along a chosen RC (here we used the optimized RC, namely r0). For the forward reaction, 

∆𝐺1
‡

≈ 25 kcal/mol and 𝑘abs = 2.0 × 10−7 s-1, so the 𝜅TST,forward ≈ 0.05. In the same fashion, 𝜅TST,backward also estimates to 

be 0.5, given ∆𝐺−1
‡

≈ 19 kcal/mol and 𝑘abs = 4.3 × 10−3 s-1, hence so the 𝜅TST,backward ≈ 0.05. 

In Kramers’ theory, chemical reaction in condensed phase can be regarded as a thermally activated barrier crossing process 

along a well-chosen one-dimensional reaction coordinate. The interactions (classically, the collisions) with solvent are treated as a 

static friction which hinders the system progressing along the RC. There are two commonly used formal expressions for rate con-

stant under different conditions. For the weak friction limit, known as the energy-diffusion-limit, the reaction rate increases with 

slightly larger friction22, 23. While in the other extreme, with overdamped friction, known as the spatial-diffusion-limit, the reaction 

rate becomes inversely proportional to the friction coefficient22, 23. The general form of Kramers’ expression for reaction rate (with 
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moderate-to-strong friction) is: 

 𝑘Kramers = 𝑘TST {[(
𝜉

2𝜔b

)
2

+ 1]

1
2

−
𝜉

2𝜔b

} ≈
𝜔b

𝜉
𝑘TST (41) 

𝑘Kramers and 𝑘TST stand for the theoretical rate constant derived from Kramers’ theory and TST respectively; the friction damping 

frequency is denoted as 𝜉. It is easy to show that 𝑘Kramers is smaller than 𝑘TST. In other words, the TST puts an upper limit to the 

reaction rate, and always overestimates the rate coefficient, which should be corrected by a “transmission coefficient”. To this end, 

Kramers’ theory can be used to estimate the transmission coefficient once we know the friction damping rate 𝜉. 

From Stokes-Einstein relation we know that the friction damping rate can be calculated from the barrier diffusion constant 

𝐷∗: 

 𝜉 =
𝑘B𝑇

𝐷∗𝑀
 (42) 

where 𝑘B is Boltzmann constant, T denotes the temperature; 𝑀 is the effective mass of the reactive particle, here we adopted the 

effective mass of the C1-C6 bond, namely 24 g/mol. As discussed in the main text, with the barrier diffusion constant 𝐷∗~7 ×

10−6 cm2∙s-1, therefore, we obtained that 𝜉~3×1014 s-1. The transmission coefficient (denoted as 𝜅Kramers in the main text) can 

be further calculated through Eq. 3 in the main text. 

 

 

S-VIII Inhomogeneous Reaction Mechanisms and Spectral Clustering of Transition Paths 

Aiming to examine the heterogeneity of the transition path ensemble, we applied the spectral clustering algorithm described 

in Ref.24. This algorithm presents a general framework for time series clustering based on spectral decomposition of the similarity 

matrix, and enjoys several merits in dealing with our concerned problems24, 25: i) it is compatible with dimensionality reduction 

techniques (to define the pairwise similarities) so the high dimensionality of time vectors will not affect the clustering efficiency; 

ii) once with proper similarity metric, it can be used to clustering time vectors with arbitrary length; iii) most importantly, it can 

automatically determine the optimal cluster number. 

The pairwise similarity between two transition paths is defined based on the Longest Common Subsequence (LCSS)26. It is 
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non-metric similarity function, though, one still needs a quantitative measure of the “coordinate” of each data point (i.e. the molec-

ular configuration) along the time series. Provided that the Bayesian-learning algorithm already resulted in a dimensionality reduc-

tion of RCs, so we naturally take advantage of this result to calculate the Euclidean distance 𝑑𝑝(𝑖, 𝑗) between two data points i,j 

along different trajectories in the form: 

 𝑑𝑝(𝑖, 𝑗) = √𝛼 (𝑑𝑖(C1C6) − 𝑑𝑗(C1C6))
2

+ 𝛽 (𝑑𝑖(O3C4) − 𝑑𝑗(O3C4))
2

 (43) 

where 𝛼, 𝛽 correspond to the coefficients of d(C1-C6) and d(O3-C4) present in the optimized RC, respectively. Then the LCSS 

between two transition paths, denoted as 𝑐𝑖𝑗  (Fig. S14), can be computed using dynamic programming algorithm 26, and the dis-

tance matrix element 𝑑𝑖𝑗  between two transition paths i, j (containing 𝑛𝑖 and 𝑛𝑗 data points, respectively) adopts the following 

form27: 

 𝑑𝑖𝑗 =
𝑛𝑖 + 𝑛𝑗 − 2𝑐𝑖𝑗

2√𝑛𝑖𝑛𝑗

 (44) 

In this form, 𝑑𝑖𝑗  (the distance matrix element, Fig. S15) not only distances transition paths with less common sequence length 

(𝑐𝑖𝑗), but also distinguishes the two transition paths in terms of the overall length. The similarity matrix 𝐒𝑖𝑗 (or affinity matrix)24 

is constructed as: 

 𝐒𝑖𝑗 = exp (−
𝑑𝑖𝑗

2𝜎2
) (45) 

where the parameter 𝜎2 can be determined with a gradient ascent method24, 28. A normalization procedure is performed on matrix 

𝐒 (M×M) before estimating the optimal cluster number: 

 𝐒′ = 𝐔−1𝐒 (46) 

 𝐔 = 𝑑𝑖𝑎𝑔 (𝑢11, 𝑢11, … , 𝑢𝑀𝑀) (47) 

 𝑢𝑖𝑖 = ∑ 𝐒𝑖𝑗

𝑀

𝑗=1

 (48) 

Ideally, 𝐒𝑖𝑗 = 𝐒′
𝑖𝑗 = 0 if trajectories i and j belong to different clusters, then the normalized similarity matrix 𝐒′ will be-

come block-diagonal (if we assume that the data objects are ordered by clusters). It also follows that each diagonal block in 𝐒′ has 

the largest eigenvalue 124. Practically, given that the similarity matrix may not be rigorously block-diagonal, one can choose the 
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number of eigenvalues closest to 1 by defining a threshold 𝛿 ∈ [0,1] and counting the eigenvalues 𝜆𝑖 that satisfy: 

 |𝜆𝑖 − 1| < 𝛿 (49) 

After the spectral decomposition is done, and the optimal number of cluster, say K, is obtained, one can treat each row of the 

final eigenvectors (corresponding to the close-to-unity eigenvalues) as a new point in ℝ𝐾 space and cluster them into K clusters 

via KMeans algorithm29. 

For reactions in water, we identified K=2 with threshold 𝛿 = 0.1, which means there exist two categories of transition paths, 

which can be clearly seen from the large gap in the eigenvalue spectrum (Fig. S16). We also note here that the clustering result is 

robust against different choices of similarity metrics. For instance, one can define the “transition velocity” for each transition 

trajectory, that is, the time spent on crossing the transition-state barriers. Two barriers were well defined for d(C1-C6) and d(O3-

C4), respectively, hence we can assign two such velocities (𝑣(C1C6) and 𝑣(O3C4)) to each transition path, and define an Euclid-

ean distance between two trajectories by √(𝑣𝑖(C1C6) − 𝑣𝑗(C1C6))
2

+ (𝑣𝑖(O3C4) − 𝑣𝑗(O3C4))
2

. Using this identity, we again 

clustered transition paths using the method introduced above, also into two clusters. The overlap between the two clustering results 

was quantitatively assessed. Let 𝐱 denotes a time vector, 𝑅𝑖(𝐱) denote the clusters found with LCSS similarity, and 𝑉𝑗(𝐱) for 

those found with “transition velocity” metric, then we can calculate the clustering overlap η as: 

 𝜂 =
∑ 𝐼(𝑅𝑖(𝐱) = 𝑉𝑗(𝐱))𝐱

𝑀
 (50) 

where 𝐼(∙) is the indicator function, 𝑅𝑖(𝐱) is the label of the cluster which 𝐱 belongs to under the LCSS metric, 𝑉𝑖(𝐱) is the 

cluster label which 𝐱 belongs to under transition-velocity metric, and M is the size of the dataset. Under very different similarity 

metrics, the two clustering results yet share an overlap over 85%, thus showing the robustness of the clustering results and solidi-

fying the discovery of the inhomogeneity of the transition paths. 

The transition paths in Cluster 1 are relatively short, and cross the reaction barrier bypassing the “concerted” transition state, 

and connect to the product basin mainly from entrance/exit 1 (Fig. S18). In contrast, Cluster 2 consist of long trajectories that 

deviate far from the concerted transition state, and contribute mainly to the other entrance/exit of the product basin. According to 

the correlation analysis, the hydrogen bond formed between water and the reactant is likely to be the cause of the non-concertedness 

observed in Cluster 2: shorter hydrogen bond is formed, accompanied by more negative charge enriched at O3 atom (Fig. S19).  

In terms of kinetics, the two clusters contribute differently to the forward and backward reaction rates. As shown in Table S2, 



 

S16 

 

forward reaction prefers transition paths in Cluster1, while trajectories in Cluster 2 mainly contribute to backward reaction. Such 

mechanistic asymmetry of bi-directional reaction is an evidence for the non-Markovian solvation effect. To be specific, the transi-

tion event is very fast compared to the relaxation of solute-solvent interactions including hydrogen bonds. Therefore, the solvation 

state is determined by the initial configuration upon entering the transition passage and “frozen” for the following transition. On 

the other hand, the occupancy of hydrogen bond between water and the product (aldehyde) is higher than that for the ether reactant 

(Fig. S20), so the reverse/backward reaction (starting from the aldehyde) is more probable to be accompanied by a well-established 

hydrogen bond during transition, that is, to undergo a mechanism shared in Cluster 2. 

 

S-IX Fourier Analysis of Characteristic Reaction Modes: Resonance and Dephasing 

Several periodicity and vibrational modes were observed for the reaction, including (peak values of) the distribution of tran-

sition path length, the C1-C6 and O3-C4 bond lengths, and the hydrogen bond length. The (discrete) fast Fourier transform was 

then employed in order to identify the characteristic frequency for each observed periodicity, and further check whether there exists 

resonance. Consider we have a series of real (can be complex in more general cases) signals [𝑥𝑛] (in this paper, autocorrelation 

strength or relative probability, both dimensionless), the discrete Fourier transform (DFT) of which is defined by the formula: 

 𝑋𝑘 = ∑ 𝑥𝑛𝑒−𝑖2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

    𝑘 = 0, … , 𝑁 − 1. (51) 

And the corresponding frequency for 𝑋𝑘 is 𝑘/𝑁, which depends on the series length 𝑁. The absolute amplitude of 𝑋𝑘 is used 

to represent the strength at each discrete frequency.  

The probability density function (PDF) of transition path length distribution, the autocorrelation functions (𝐶(𝜏)) of d(C1-

C6), d(O3-C4) and d(O3-Hw) were chosen to be the input [𝑥𝑛] signals (Fig. S22) in the time domain: 

 𝐶(𝜏) =
〈(𝑑(𝑡 + 𝜏) − 〈𝑑〉)(𝑑(𝑡) − 〈𝑑〉)〉

𝜎2(𝑑)
 (52) 

 FFT analysis showed that the observed periodicity in the PDF of the transition path length is closely related to the vibrational 

frequency of d(C1-C6) (Fig. 4B inset in the main text), d(O3-C4) (Fig. S22B). Noteworthy, the damping rate of the periodic peak 
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values of transition path length distribution in Cluster 2 can be well fitted in a single exponential manner, and the damping rate, 

~0.024 fs-1 (Fig. S24), also echoes with the above-mentioned resonant vibrations. Moreover, a unique vibrational resonance was 

identified between the d(C1-C6), d(O3-C4) and d(O3-Hw). However, such resonance is absent for the reactant or product regions 

(Fig. S23). As expected, the product and reactant regions possess distinct vibrational frequency spectrums, but both of them are 

different from the transition paths. This observation implies that the resonant vibrational modes may be unique and necessary for 

the chemical transition event.  

 

S-X Re-crossings and Transition Failure 

Since the resonance between hydrogen bonding and breaking/forming bonds are characteristic of successful transition events, 

we postulate that transient dephasing between the hydrogen bonding and bond breakage/formation is likely to cause transition 

failure and re-crossing events. As illustrated in Fig. S25, when C1-C6 bond is breaking (in a sense it has already broken regarding 

the defined transition state) but the hydrogen bond is vanishing, that is, the reactant suffers a dynamic loss of hydrogen bond when 

crossing the barrier, and the re-crossing event did take place. Actually, the correlation between the hydrogen bond and d(C1-C6) or 

d(O3-C4) is much weaker for those unsuccessful trajectories (Table S4). Additionally, the coefficient variance (Fig. S26) of the 

hydrogen-bond length for those trajectories failed to convert is significantly higher than the successfully transited ones. 

Additionally, comparing pre-exponential factors with experiments is quite important and very intriguing. However, it is rather 

difficult since available amount experimental data is limited. On the other hand, transition-state theory is often assumed when the 

Arrhenius plot is drawn experimentally, thus one cannot directly tell apart the transmission coefficient from the activation entropy. 

In spite of these difficulties, we referred to the experimentally reported activation enthalpy (∆𝐸exp) and reaction rate (𝑘exp) under 

neat condition30, and tried to estimate the pre-exponential factor (denoted by A) for the forward reaction accordingly, 𝐴 =

𝑘exp exp(∆𝐸exp/𝑅𝑇) ≈ 4 × 1011 s−1, smaller than the TST frequency 𝑘B𝑇 ℎ⁄ = 6.2 × 1012 s−1. 
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Supplementary Figures 

 

 

Fig. S1. Reactive trajectories achieved by MITS (window 2). (A) The forward reaction, and (B) the backward reaction are pro-

jected on different reaction coordinates: (top) C1-C6 distance (c.f. Fig. 1 in the main text for atom indices), and (bottom) 

optimized coordinate r0=0.82d(C1-C6)-0.18d(O3-C4). 
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Fig. S2. The broadened distribution of QM-potential energy achieved by MITS (red), and the reweighted Boltzmann distribu-

tion (black). 

 

 

Fig. S3. Free-energy profile along the O3-C4 bond length (or relative atomic distance). The arrow indicates the direction of the 

forward reaction. 
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Fig. S4. 2D free-energy projection: (horizontal axis) the hydrogen-bond length between water hydrogen (Hw) and O3 of the 

reactant; (vertical axis) the optimized RC r0=0.82d(C1-C6)-0.18d(O3-C4). 
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Fig. S5. Free-energy isovalue surfaces in 3D space (d(C1-C6), d(O3-C4) and d(O3-Hw)): with isovalue 25 kBT (A), 45 kBT (B) 

and 60 kBT (C). The transition passages with lower free-energy is characterized by with short hydrogen-bond length (B). 

 

 

Fig. S6. Calculation of reaction thermodynamics. (A) Reaction enthalpy ∆𝐻r is obtained as the linear slope according to 

Gibbs-Helmholtz equation. (B) Reaction entropy ∆𝑆r is obtained as the negative slope. 

 

 

 

Fig. S7. Free-energy projection of transition path ensembles onto the 2D map. (A) Trajectories of all the attempted shootings 
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(both successful and unsuccesful ones). (B) Succeeful transition paths, and two passages connecting the product basin with 

the TS region were identified.  

 

 

Fig. S8. Calculation of reaction activation enthalpies. (A) The activation enthalpy for the forward reaction, 

∆𝐻1
‡
 , is the negative slope. (B) The activation enthalpy for the backward reaction, ∆𝐻−1

‡
, is the negative slope. 
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Fig. S9. Probability distribution of transition path length (𝜏). The overall distribution (blue line) is accumulated by two 

individual Gaussians (red and green, respectively). The average transition path length is (88±30) fs. 

 

 

Fig. S10.  Bayesian assessment of RC candidates regarding to intrinisc molecular properties : the dipole moment (A), charges 

on O3 atom (B), and the characteristic dihedral angle 𝜑 (C) (see Fig. 1A in the main text for defination). The transistion 

state is characterized by a large dipole, enriched negative charge on O3 (charge separation) and an almost in-plane dihedral 
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angle 𝜑. 

 

 

 

Fig. S11. Bayesian optimization of RC by introducing solvent coordinates. (A) TS is characterized by either a short or a relative 

long hydrogen bond (indicated by the two peaks in the bottom panel). (B) Mix in hydrogen bond with d(O3-C4) improves 

the RC defined by O3-4 distance: r1=0.92d(O3-C4)-0.08d(O3-Hw). (C) Mix in hydrogen bond does not significantly 

improve the r0 (the optimized RC on d(C1-C6) d(O3-C4 space), r2=0.75d(C1-C6)-0.23d(O3-C4)+0.02d(O3-Hw). 

 

 

Fig. S12. Bayesian assessment of solvent coordinates. (A) The solvent dipole tends to be antiparallel (with negative values) with 
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the reactant dipole. (B) The solvent excluded volume (exclusion volume), and the TS is featured by a shrunk solvation shell 

with small exclusion volume (the “cage effect”). 

 

 

 

Fig. S13. Correlation coefficient matrix. Cross-correlation coefficients between different molecular properties and solvent 

properties. (Upper triangle) Positive correlation is rendered in red, negative in blue ; (lower triangle) the corresponding 

correlation coefficients. 
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Fig. S14. Finding the longest common subsequences (LCSS) between two trajectories. Two trajectories are symbolized in 

squares and triangles, respectively. The LCSS are rendered in green. 

 

 

 

Fig. S15. The similarity (or distance) matrix with trajectories ordered by clusters. There are two diagonal blocks. Blue colors 
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suggest high similarity while red indicates large distance between trajectories. 

 

 

Fig. S16. Eigenvalue spectrum of spectral decomposition. The spectral gap is shown in a red dashed line. There are two principal 

eigenvalues (close to 1) meaning two clusters of transition paths. 
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Fig. S17. Transition path visiting probability projected onto the 2D free-energy landscape. The two outlets connecting the TS 

region to the product basin, along with the one connecting to the reaction, are labelled out. 

 

 

Fig. S18. Transition probability visiting probability (Pvisit) of two individual clusters projected onto the 2D map. The front layer 

with solid contour lines corresponds to cluster 1, which occupies the outlet 1; the bottom layer with dashed contour lines 

corresponds to cluster 2, which mainly transits through outlet 2. 
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Fig. S19. Mulliken charge on O3 atom (A) and hydrogen-bond length (B) change along the reaction progression calculated for 

different clusters (cluster 1 in black lines, cluster 2 in red lines.  

 

 

Fig. S20. The distributions of hydrogen-bond length in reactant (black) and product (red) states. Hydrogen-bond length is shorter 

for product (the aldehyde) than for reactant (ether). 
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Fig. S21. Example of transition paths with different lengths (𝜏) and numbers of vibrations: 𝜏=115 fs (A), 𝜏=146 fs (B), 𝜏=170 

fs (C), and 𝜏=204 fs (D), respectively. Each purely colored trajectory segment indicates a 40-fs-long vibration (or oscilla-

tion). The red rectangular box denotes the concerted TS region, whereas the two dashed lines correspond to the separatrixes 

defined by d(C1-C6) and d(O3-C4) as in Fig. 4A in the main text. 
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Fig. S22. Autocorrelation functions C(𝜏) (A) and corresponding Fourier transforms (B) of: d(C1-C6) (black), d(O3-C4) (red) and 

d(O3-Hw) (green) in transition path region. 

 

 

 

Fig. S23. Autocorrelation functions C(𝜏) of different motions for reactant (A) and product (B), respectively. C1-C6 bond length 

is rendered in black, O3-C4 bond length in red, hydrogen-bond length in green. 
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Fig. S24. Exponential fit of the damping peak values observed in the transition path length distribution of cluster 2. The abscissa 

is the relative delay of the peak values (the first peak in Fig. 4B in the main text is set to zero). The damping rate is about 

0.024 fs-1. 

 

 

Fig. S25. Distribution of coefficient variance of hydrogen bond length for different trajectories: black for reacted trajectories, 

green for those started and returned to the aldehyde basin, red for those non-reacted trajectories in ether basin. 
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Fig. S26. Example of re-crossing event caused by dephasing of the hydrogen bond. The purple circled region: When the C1-C6 

bond is breaking and O3-C4 bond forming in the beginning, the hydrogen bond is vanishing and dephasing, so the trajectory 

returns to the metastable basin. 
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Supplementary Tables 

 

Table S1. Sampling parameters (of QM-region) in distributed MITS for different windows 

Window index 

Temperature 

downlimita 

Temperature 

uplimit 

Temperature 

intervals (nk size) 

Applied restraints 

1 250(275)b 650(325) 50(30) No 

2 250(275) 1000(325) 150(30) Yesc 

3 250(275) 650(325) 50(30) No 

a. Temperatures are all in unit of Kelvin (K). 

b. Numbers with and without parentheses correspond to MITS parameters for QM-Hamiltonian and MM-Hamiltonian, 

respectively. 

c. Corresponding to Eq. S16. 

 

 

 

Table S2. Calculation of rate constants and convergence test 

Data Blocka 1 2 3 4 5 

Nsus
b 182 271 355 443 525 

Nattempt
c 15207 19007 23873 28375 32168 

k1/s-1 1.9×10-7 1.9×10-7 2.0×10-7 2.1×10-7 2.0×10-7 

k-1/s-1 3.3×10-3 3.8×10-3 4.2×10-3 4.3×10-3 4.3×10-3 

a. The convergence was tested against a series of block averages (totally 5 blocks). 

b. The successful transitions within the block. 

c. The total attempted shootings within the block. 
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Table S3. Contribution of different clusters to the rate constants 

 Contribution to Forward Reaction Rate Contribution to Backward Reaction Rate 

Cluster 1 63% 45% 

Cluster 2 37% 55% 

 

 

 

Table S4. Correlation coefficient between hydrogen bond and breaking/forming bonds in different trajectories 

 d(C1-C6) d(O3-C4) 

Reacted 0.59 -0.57 

Non-reacted <0.01 -0.07 

 

 

Table S5. Test of transition path shooting length t 

t/ps k(t)/t (10-7 s-1) 

1.2 1.7±0.3 

1.5 1.9±0.3 

2.0 2.0±0.2 

 



 

S37 

 

Supplementary Movie 

FR.wmv: An exemplary trajectory of a forward transition is shown in the movie. Carbon atoms are rendered in cyan, oxygens 

in red, hydrogens in white. 
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