Supplementary Information:

Title: Multiple viral infections in *Agaricus bisporus* - Characterisation of 18 unique RNA viruses and 8 ORFans identified by deep sequencing

Authors: Gregory Deakin^{a,b,c,1}, Edward Dobbs^{a,1}, Ian M Jones^b, Helen M Grogan^c, and Kerry S Burton^{a, *}

Supplementary Tables

Name	Contig	Length	ORF Length
ORFan 1	C34	5078	513, 681, 1944
ORFan 2	C17	2311	426
ORFan 3	C19	1959	315
ORFan 4	C28	1935	315, 360
ORFan 5	C27	1110	528
ORFan 6	C38	1089	267, 276
ORFan 7	C24	927	258, 276, 324
ORFan 8	C31	703	291

Table S1. ORFans sequenced from samples of *A. bisporus*, their RNA length and Open Reading Frame (ORF) lengths.

The Name column corresponds to the proposed name for the discovered ORFan. The Contig column corresponds to contiguous RNA sequences assembled from the Illumina reads for each ORFan. The length and ORF length columns are in RNA bases and correspond respectively to the total length of the ORFan and length of ORFs above 250 bases.

Accession number	Virus name	
KY357487	Agaricus bisporus Virus 2	AbV2
KY357488	Agaricus bisporus Virus 3	AbV3
KY357489	Agaricus bisporus Virus 6 RNA1	AbV6 RNA1
KY357490	Agaricus bisporus Virus 6 RNA2	AbV6 RNA2
KY357491	Agaricus bisporus Virus 7	AbV7
KY357492	Agaricus bisporus Virus 5	AbV5
KY357493	Agaricus bisporus Virus 8	AbV8
KY357494	Agaricus bisporus Virus 9	AbV9
KY357495	Agaricus bisporus Virus 10	AbV10
KY357496	Agaricus bisporus Virus 11	AbV11
KY357497	Agaricus bisporus Virus 12	AbV12
KY357498	Agaricus bisporus Virus 13	AbV13
KY357499	Agaricus bisporus Virus 14	AbV14
KY357500	Agaricus bisporus Mitovirus 1	AbMV1
KY357501	Agaricus bisporus Virus 15	AbV15
KY357502	Agaricus bisporus Virus 16 RNA1	AbV16 RNA1
KY357503	Agaricus bisporus Virus 16 RNA2	AbV16 RNA2
KY357504	Agaricus bisporus Virus 16 RNA3	AbV16 RNA3
KY357505	Agaricus bisporus Virus 16 RNA4	AbV16 RNA4
KY357509	Agaricus bisporus Endornavirus 1	AbEV1
KY357510	Agaricus bisporus Spherical Virus	AbSV
KY357511	Mushroom Bacilliform Virus	MBV
KY357512	ORFan2	ORFan2
KY357513	ORFan3	ORFan3
KY357514	ORFan4	ORFan4
KY357515	ORFan5	ORFan5
KY357516	ORFan7	ORFan7
KY357517	ORFan8	ORFan8
KY357518	ORFan6	ORFan6
KY357519	ORFan1	ORFan1

Table S2. GenBank accession numbers for the virus and ORFan RNA molecules

AbV2 described above (KY357487) is the canonical variant. Additionally the Accession numbers of the two other variants discussed are:

KY357506 for the C19-C23-C1 variant of AbV2, and KY357507 for the C19-C1 variant of AbV2.

Additionally the variant of AbV6 (2990) has the Accession number KY357508.

	Read co	Read coverage per 1kb (FPKIVI)			Ratios	
Library	AbV2	AbV2	ORFan 3			
	(C1)	(C23)	(C19)	C1:C23	C1:C19	C23:C19
138	519.89	739.77	301.29	0.70	1.73	2.46
003-A	5350.75	5901.46	2431.71	0.91	2.2	2.43
003-B	5692.04	6534.27	3775.24	0.87	1.51	1.73
004-A	390.37	168.73	166.48	2.32	2.34	1.01
004-B	4174.26	4986.66	2304.21	0.84	1.81	2.16
1497-A	5865.43	6408.78	2993.09	0.92	1.96	2.14
1497-B	1448.05	384.89	786.84	3.76	1.84	0.49
1283	83.65	74.49	33.61	1.12	2.49	2.22
2735	482.95	658.72	246.94	0.73	1.96	2.67
2786	131.83	100.28	45.01	1.31	2.93	2.23
2919	51.82	34.10	11.94	1.52	4.34	2.86
2990	71.14	61.36	25.22	1.16	2.82	2.43
3209	264.62	363.69	114.75	0.73	2.31	3.17

Table S3. Abundance (depth of coverage) of the 'modular' contigs associated with thecomponents of AbV2 (C1, C23 and C19) and their ratio in each sample/library.Read coverage per 1kb (FPKM)Read coverage per 1kb (FPKM)

Reads from each sequenced library were aligned separately to the three contigs associated with AbV2 using bowtie2 and indexed using samtools. <u>Fragments Per Kilobase of contig per Million mapped reads</u> (FPKM) values were calculated in order to normalise the coverage of each contig. Ratios were calculated using the FPKM values

Accession	Short Name	Full name
M26965	PPV	Plum pox virus
D83408	BaMMV	Bean mild mosaic virus
AJ132268	BaYMV	Barley yellow mosaic virus
AY533037	FGDMV1	Fusarium graminearum dsRNA mycovirus-1
AB698498	RNV3	Rosellinia necatrix mycovirus 3
AF188514	CHPV3	Cryphonectria hypovirus 3
JF781304	SSHPV1	Sclerotinia sclerotiorum hypovirus 1
M57938	CHPV1	Cryphonectria hypovirus 1
AY307099	CHPV4	Cryphonectria hypovirus 4
L29010	CHPV2	Cryphonectria hypovirus 2
KC330231	FGHPV1	Fusarium graminearum hypovirus 1

Table S4. Viruses and their accession numbers used to construct *Hypoviridae* phylogenetic tree (Figure S1).

The Accession column corresponds to the GenBank accession for the virus. The Short Name column corresponds to the name used in Figure S1 and the Full name column gives the taxonomic name for the virus.

Virus	5' UTR	3' UTR	Poly-A	Shared Motif	Pseudo- knots	GC%	SNPS/kb
AbV2	35	779			5	50.2	0.22
AbEV1	12	64			0	37.4	0.42
AbV3	31	47	У		0	39.8	1.27
AbV5	21	37			0	40.2	0.07
AbV6 RNA 1	30	550	У	A> 226b in 3'	3	44.9	6.18
AbV6 RNA 2	2090	378	У	A> 226b in 3'	6	42.2	4.20
AbV7	12	536	У		5	51.9	1.80
AbSV	5	345			3	45.5	5.14
AbV8	96	155			3	48.7	1.30
AbV9	32	0			0	58.3	0.17
AbV10	98	109			0	46.3	0.93
AbV11	44	164			1	45.4	2.61
AbV12	0	110			1	54.3	7.73
AbV13	50	255			2	55.0	1.09
MBV	9	250			2	46.3	3.97
AbMV1	385	183			1	35.9	0.18
AbV14	641	51	у		1	43.1	9.44
AbV15	507	105	у		0	48.2	0.10
AbV16 RNA 1	75	63	у	B> 25b in 3'	1	48.3	8.84
AbV16 RNA 2	61	53	у	B> 25b in 3'	0	50.2	10.13
AbV16 RNA 3	38	99	у	B> 25b in 3'	3	50.3	2.88
AbV16 RNA 4	47	95	у	B> 25b in 3'	0	46.2	1.79
ORFan 1	0	0				50.5	1.48
ORFan 2	1614	272				48.8	0.04
ORFan 3	668	975				48.7	0.05
ORFan 4	+	+				54.3	0.21
ORFan 5	+	+				55.4	0.27
ORFan 6	0	0				44.5	0.92
ORFan 7	+	+	у			58.7	0.32
ORFan 8	59	354	у			52.2	1.90

Table S5. Potential regulatory regions, GC content and variation across all samples for each virus and ORFan.

The 5' UTR and 3' UTR columns correspond to the length in bases for both of these regions. The poly-A column denotes whether a poly-A tail was associated with the sequenced virus. The shared motif column indicates a shared motif between molecules as indicated. The Pseudo-knots column corresponds to number of pseudoknots predicted in both 5'UTR and 3' UTR using DotKnot_1.3.1 (49). The SNPS/Kb column corresponds to the mean between samples of SNPS/Kb for each virus compared to the reference sequence. † Possibly circular

,		
Accession	Short Name	Full name
EU770620	EpCV	Epirus cherry virus
FJ157981	CsVC	Cassava virus C
EU770623	OuMV	Ourmia melon virus
JN400241	PiRV-4	Phytophthora infestans RNA virus 4
AF039063	ScNV-20S	Saccharomyces cerevisiae narnavirus 20S
U90136	ScNV-23S	Saccharomyces 23S RNA narnavirus
AJ004930	OMV3a	Ophiostoma mitovirus 3a
AM087548	OMV1a	Ophiostoma mitovirus 1a
AJ132755	OMV5	Ophiostoma mitovirus 5
AJ132756	OMV6	Ophiostoma mitovirus 6

Table S6. Viruses and their accession numbers used to construct *Narnaviridae* phylogenetic tree (Figure S2).

The Accession column corresponds to the GenBank accession for the virus. The Short Name column corresponds to the name used in Figure S2 and the Full name column gives the taxonomic name for the virus.

Query id	Subject id	% identity	alignment length	mismatches	e-value
LN867098	AbV16 RNA 1	100	108	0	4x10 ⁻⁵⁸
LN867097	AbV16 RNA 1	97.63	169	4	1x10 ⁻⁸⁶
LN867094	AbV16 RNA 1	99.47	189	1	8x10 ⁻¹⁰⁴
LN867096	AbV16 RNA 2	100	99	0	9x10 ⁻⁵³
LN867091	AbV16 RNA 2	99.07	214	2	3x10 ⁻¹¹⁶
LN867089	AbV16 RNA 2	100	237	0	9x10 ⁻¹³⁵
LN867088	AbV16 RNA 2	98.57	210	3	4x10 ⁻¹¹²
LN867093	AbV16 RNA 3	100	98	0	3x10 ⁻⁵²
LN867092	AbV16 RNA 3	100	200	0	1x10 ⁻¹¹²
LN867087	AbV16 RNA 3	99.03	414	4	0
LN867086	AbV16 RNA 4	99.79	475	1	0
LN867095	ORFan 8	100	100	0	3x10 ⁻⁵³
LN867090	ORFan 8	100	242	0	1x10 ⁻¹³⁷

Table S7. The sequences of transcripts of Brown Cap Mushroom Virus identified by Eastwood *et al.* (2015) are homologous to the AbV16 viral components and ORFan8.

The Query id column corresponds to the non-host transcript GenBank accession and the Subject id column corresponds to the viral segment. The % identity column indicates similarity between the aligned sequences. Alignment length corresponds to the length in nucleotides over which an alignment was found between the two sequences. The mismatches column indicates the number of mismatched nucleotides in the alignment. The e-value column indicates the likelihood of the alignment occurring due to random chance.

Accession	Host	Homology	e-value
HP641214	Alasmidonta varicosa	EpCV	2x10 ⁻⁵²
GACH01090825	Chromolaena odorata	OuMV	3x10 ⁻¹³
² GACI01002802	Uromyces appendiculatus	ScNV-23s	5x10 ⁻¹⁸
GACM01002912	Phakopsora pachyrhizi	PiRV-4	0
GADD01004427	Pyropia haitanensis	PiRV-4	9x10 ⁻⁴³
GAEK01031901	Pseudotsuga menziesii var. menziesii	CsVC	2x10 ⁻⁹
GAIR01011807	Puccinia striiformis	ScNV-20s	2x10 ⁻²²
² GAIR01012025	Puccinia striiformi	ScNV-23s	3x10 ⁻¹⁸
² GAIR01012062	Puccinia striiformis	ScNV-23s	9x10 ⁻¹⁵
² GAIS01005902	Puccinia striiformis	ScNV-23s	7x10 ⁻¹⁵
¹ KF298275	Uncultured virus isolate	ScNV-23s	3x10 ⁻¹⁷
¹ KF298284	Uncultured virus isolate	ScNV-20s	4x10 ⁻²¹

Table S8. Sequences and their accession numbers present in NCBI Transcriptome ShotgunAssembly database with homology to viruses of *Narnaviridae* family.

The Accession column corresponds to the GenBank accession for the homologous sequence. The Host column corresponds to the organism (if known) from which RNA was extracted. The Homology column corresponds to the virus where the homology was found and the e-value column indicates the likelihood of the alignment occurring due to random chance.

¹Known but unnamed viruses isolated by Cook *et al*. (33)

² Previously reported by Cook et al. (33)

Table S9. Sequences and their accession numbers present in the NCBI Transcriptome Shotgun Assembly database with homology to viruses of *Tymovirales* order.

Accession	Host	Homology	e-value
GAHU01094215	Agave Tequilana	BOTVF	1x10 ⁻²²
GAHU01087027	Agave Tequilana	BOTVF	5x10 ⁻²³
GAHU01124587	Agave Tequilana	Pepino mosaic virus	4x10 ⁻²⁹
GAHU01077006	Agave Teguilana	BOTVF	2x10 ⁻⁶⁴

The Accession column corresponds to the GenBank accession for the homologous sequence. The Host column corresponds to the organism (if known) from which RNA was extracted. The Homology column corresponds to the virus where the homology was found and the e-value column indicates the likelihood of the alignment occurring due to random chance.

Accession	Short Name	Full name
M58152	ACLSP	Apple chlorotic leaf spot virus
D14995	ASGVP	Apple stem grooving virus
D21829	ASPVP	Apple stem pitting virus
AF238884	BOTVF	Botrytis virus F
AY055762	BOTVX	Botrytis virus X
AJ318061	CLBVS	Citrus leaf blotch virus
AJ309022	GFKVM	Grapevine fleck virus
X75433	GVAIS	Grapevine virus A
AF406744	ICRSV	Indian citrus ringspot virus
EU489641	LOLV	Lolium latent virus
AF265566	MRFVC	Maize rayado fino virus
D14449	PVMR	Potato virus M
EU835937	PVT92	Potato virus T
D00344	PVXX3	Potato virus X
M97264	SHVX	Shallot virus X
AY147260	SSDRV	Sclerotinia sclerotiorum debilitation-associated virus
X07441	TYMV	Turnip yellow mosaic virus
AY182001	OMSV	Oyster musgroom spherical virus
AF126284	AURAV	Aura virus
AY112987	SFV	Semliki forest virus
J02363	SINV	Sindbis virus

Table S10. Viruses and their accession numbers used to construct *Tymovirales* phylogenetic tree (Figure S3).

The Accession column corresponds to the GenBank accession for the virus. The Short Name column corresponds to the name used in Figure S3 and the Full name column gives the taxonomic name for the virus.

Accession	Short name	Full name
EU779934	SsRV-L	Sclerotinia sclerotiorum RNA virus L
AY258322	RUBV	Rubella virus
AY535004	AHEV	Avian hepatitis E virus
M73218	HEV-1	Hepatitis E virus (Human)
AF082843	HEV-3	Hepatitis E virus (Swine)
AF102884	NbetaV	Nudaurelia capensis beta virus
U18246	HaSV	Helicoverpa armigera stunt virus
AY594352	DpTV	Dendrolimus punctatus tetravirus
AF280539	BSBMV	Beet soil-borne mosaic virus
D84410	BNYVV	Beet necrotic yellow vein virus
AF126284	AURAV	Aura virus
AY112987	SFV	Semliki forest virus
J02363	SINV	Sindbis virus

Table S11. Viruses and their accession numbers used to construct the Rubi-like tree (Figure S4).

The Accession column corresponds to the GenBank accession for the virus. The Short Name column corresponds to the name used in Figure S4 and the Full name column gives the taxonomic name for the virus.

Accession	Virus	Grouping
AF126284	Aura virus	Alphavirus
AY112987	Semliki forest virus	Alphavirus
J02363	Sindbis virus	Alphavirus
	Agaricus bisporus endornavirus 1	Endornavirus
JQ951943	Bell pepper endornavirus	Endornavirus
JX678977	Grapevine endophyte endornavirus	Endornavirus
DQ399289	Gremmeniella abietina type B RNA virus	Endornavirus
D32136	Oryza sativa endornavirus	Endornavirus
AJ877914	Phytophthora endornavirus 1	Endornavirus
HQ380014	Tuber aestivum endornavirus	Endornavirus
AJ000929	Vicia faba endornavirus	Endornavirus
AY535004	Avian hepatitis E virus	Rubi-like
D84410	Beet necrotic yellow vein virus	Rubi-like
AF280539	Beet soil-borne mosaic virus	Rubi-like
AY594352	Dendrolimus punctatus tetravirus	Rubi-like
U18246	Helicoverpa armigera stunt virus	Rubi-like
M73218	Hepatitis E virus (Human)	Rubi-like
AF082843	Hepatitis E virus (Swine)	Rubi-like
AF102884	Nudaurelia capensis beta virus	Rubi-like
AY258322	Rubella virus	Rubi-like
EU779934	Sclerotinia sclerotiorum RNA virus L	Rubi-like
X52774	Barley stripe mosaic virus	Tobamo-like
X73476	Beet yellow virus	Tobamo-like
X01678	Brome mosaic virus	Tobamo-like
D00355	Cucumber mosaic virus	Tobamo-like
U15440	Lettuce infectious yellow virus	Tobamo-like
X94347	Olive latent virus 2	Tobamo-like
X78602	Peanut clump virus	Tobamo-like
AJ272328	Pelargonium zonate spot virus	Tobamo-like
AB000709	Pepper mild mottle virus	Tobamo-like
AJ238607	Potato mop-top virus	Tobamo-like
L07937	Soil-borne wheat mosaic virus	Tobamo-like
V01408	Tobacco mosaic virus	Tobamo-like
AF166084	Tobacco rattle virus	Tobamo-like
U75538	Tobacco streak virus	Tobamo-like
AJ132845	Tomato mosaic virus	Tobamo-like
KY357510	Agaricus bisporus spherical virus	Tymovirales
KY357497	Agaricus bisporus virus 12	Tymovirales
KY357498	Agaricus bisporus virus 13	Tymovirales
KY357502	Agaricus bisporus virus 16	Tymovirales
KY357488	Agaricus bisporus virus 3	Tymovirales
KY357492	Agaricus bisporus virus 5	Tymovirales
KY357489	Agaricus bisporus virus 6	Tymovirales

Table S12. Viruses and their accession numbers used to construct alphavirus-like supergroupphylogenetic tree (Figure S5).

Accession	Virus	Grouping
KY357491	Agaricus bisporus virus 7	Tymovirales
KY357494	Agaricus bisporus virus 9	Tymovirales
M58152	Apple chlorotic leaf spot virus	Tymovirales
D14995	Apple stem grooving virus	Tymovirales
D21829	Apple stem pitting virus	Tymovirales
AF238884	Botrytis virus F	Tymovirales
AY055762	Botrytis virus X	Tymovirales
AJ318061	Citrus leaf blotch virus	Tymovirales
AJ309022	Grapevine fleck virus	Tymovirales
X75433	Grapevine virus A	Tymovirales
AF406744	Indian citrus ringspot virus	Tymovirales
EU489641	Lolium latent virus	Tymovirales
AF265566	Maize rayado fino virus	Tymovirales
AY182001	Oyster mushroom spherical virus	Tymovirales
D14449	Potato virus M	Tymovirales
EU835937	Potato virus T	Tymovirales
D00344	Potato virus X	Tymovirales
AY147260	Sclerotinia sclerotiorum debilitation-associated virus	Tymovirales
M97264	Shallot virus X	Tymovirales
X07441	Turnip yellow mosaic virus	Tymovirales

The Accession column corresponds to the GenBank accession for the virus. The grouping column corresponds to the phylogenetic node where the virus is located in Figure S5.

Supplementary Figures

Figure S1. Comparison of proposed phylogenetic trees built using the RdRp domains and the helicase domains of the *Hypoviridae* family.

a. Bayesian inference tree of RdRp domains from selected viruses from the Hypoviridae family. The RdRp domains were aligned using MUSCLE and stripped of all gap positions. The phylogenetic tree was calculated using Mr Bayes with default parameters and a burn-in of 1,000,000 cycles. Values indicate the posterior probability of the clade. Selected members of the Potyviridae were used as an out-group.

b. Neighbour-joining tree of helicase domains from selected members of the Hypoviridae and Potyviridae families. The RNA helicase domains (SUPERFAMILY SSF52540) were aligned using MUSCLE. The Neighbour-joining tree was constructed using full alignment (no gap positions deleted). Values indicate the consensus support for the clade based on 1000 bootstrap replicates. Branches corresponding to clades with less than 60% bootstrap support were collapsed.

Red nodes indicate viruses described in this study. Grey nodes indicate out-group. Scale bars represent amino-acid substitutions per site.

Full name and accession for viruses given in Supplementary Table S4.

Figure S2. Proposed phylogenetic tree describing the relatedness of selected members of the *Narnaviridae* family and the *Ourmiavirus* genus. Full length replicase amino-acid sequences were aligned using MUSCLE. The Bayesian Inference Tree was calculated using Mr Bayes with default parameters and a burn-in of 1,000,000 cycles. Values indicate the posterior probability of the clade.

Red nodes indicate viruses described in this study. Blue nodes indicate viral-like sequences found in Transcriptome Shotgun Assembly database (e-values are given in Supp. Table S8). The scale bar represents amino-acid substitutions per site.

Full name and accessions for viruses given in Supplementary Table S8.

Figure S3. Proposed phylogenetic tree describing the relatedness of select viruses from the Tymovirales order. The RdRp domains were aligned using MUSCLE. The Bayesian inference tree was calculated using Mr Bayes with default parameters and a burn-in of 1,000,000 cycles. Values indicate the posterior probability of the clade. Selected members of the Alphavirus genus were used as an out-group.

Red nodes indicate viruses described here. Grey nodes indicate out-group. A search of the transcriptome database found two nearly complete viral replicase molecules in Agave tequilana (accessions GAHU01087027 and GAHU01094215) with high similarity to the C14 component (RdRp) of AbV9. Two further partial replicases similar to tymovirales replicases were also found (accessions: GAHU01077006 and GAHU01124587) (e-values are given in Supp. Table S9). These are highlighted in blue in the phylogenetic tree

The scale bar represents amino-acid substitutions per site.

Full name and accessions for viruses given in Supplementary Table S10.

Figure S4. Proposed neighbour-joining phylogentic tree depicting the relatedness of select members of the Rubi-like viruses. The RdRp domains were aligned using MUSCLE and the phylogenetic tree calculated using a neighbour-joining algorithm implemented in Geneious. Values indicate the consensus support for the clade based on 1000 bootstrap replicates. Branches corresponding to clades with less than 50% bootstrap support were collapsed. Select members of the Alphavirus genus were used as an out-group.

Red nodes indicate viruses described here. Grey nodes indicate out-group. The scale bar represents amino-acid substitutions per site.

Full name and accessions for viruses given in Supplementary Table S11.

.

Fi

gure S5. Proposed neighbour-joining phylogenetic tree of selected members of alphavirus-like supergroup. RdRp domains were aligned using MUSCLE and the phylogenetic tree calculated using the neighbour-joining algorithm implemented in Geneious. Branch values indicate the consensus support for the clade based on 1000 bootstrap replicates. Branches corresponding to clades with less than 40% bootstrap support were collapsed.

Numbered clades represent collapsed branches of major alphavirus-like groups. The expanded clade represents AbV16 (highlighted in red) and its homologs found in the Transcriptome Shotgun Assembly or Expressed Sequence Tag database (Table 4).

Full name and accessions for viruses used in construction of tree are given in Supplementary Table S12. Assembly or Expressed Sequence Tag database (Table 4).