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1 Hardness proof of Problem FF-Median

Theorem 1. Problem FF-Median is MAX SNP-hard.

Reduction. The maximum independent set problem for graphs bounded by
node degree 3, denoted as MAX IS-3 is MAX SNP-hard [3]. The corresponding
decision problem can be informally stated as follows: Given a graph Λ bounded
by degree 3 and some number l ≥ 1, does there exists a set of vertices V ′ ⊆ V
of size |V ′| = l whose induced subgraph is unconnected? In the following, we
present a transformation scheme R to phrase Λ as FF-median instance R(Λ) =
(G,H, I, σ) such that the value F�(M) of a median M of R(Λ) is limited by
F�(M) ≤ 2 · l + 3. In doing so, we associate vertices of V with genes of extant
genomes G,H and I. In order to keep track of associated genes, we denote by
function ξ(x) the list of vertices associated with gene x. We further introduce
two types of unassociated genes, “∅” and “∗”, whose members are identified by
subscript notation.

Transformation R:

1. Construct genome G such that for each vertex v ∈ V there exists two
associated genes gv, ḡv ∈ C(G), i.e. ξ(gv) = ξ(ḡv) = v. Further, let each
gene pair gv, ḡv form a circular chromosome, giving rise to adjacency set
A(G) = {{ḡh

v , g
t
v}, {ḡh

v , g
t
v} | v ∈ V, gv, ḡv ∈ C(G)}.

2. For each edge (u, v) ∈ E construct a circular chromosome Xuv hosting
two genes xuv, x∅ ∈ C(Xuv), with gene xuv being associated with both
vertices u and v and gene x∅ being unassociated. Further, let both
genes form a circular chromosome, giving rise to adjacency set A(Xuv) =
{{xh

uv, x
t
∅}, {x

h
∅, x

t
uv}}.

3. Assign each chromosome constructed in the previous step either to genome
H or to genome I such that each vertex v ∈ V is associated with at most
two genes per genome.

4. Complete genomes H and I with additional circular chromosomes Xv
where C(Xv) = {xv, x∅} and A(Xv) = {{xh

v , x
t
∅}, {x

h
∅, x

t
v}} such that each

vertex in V is associated with exactly two genes per genome.
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ā

b

b̄

c

c̄

d

d̄

∗

∗

ab

∅

ād
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ā

∅

c̄

∅

d̄

∅

∗

∗

G

H

I

(b)

Figure 1: (a) A simple graph bounded by degree three and (b) a corresponding
FF-Median instance constructed with transformation scheme R.

5. For each vertex v ∈ V , let g, ḡ ∈ C(G), h, h̄ ∈ C(H), and i, ī ∈ C(I) be
the pairs of genes associated with v, i.e. ξ(g) = ξ(ḡ) = ξ(h) ∩ ξ(i) =
ξ(h̄) ∩ ξ(̄i) = v. Assign gene similarities σ(g, h) = σ(g, i) = σ(h, i) = 1
and σ(ḡ, h̄) = σ(ḡ, ī) = σ(h̄, ī) = 1.

6. Add a copy of circular chromosome X∗ to each genome G,H, and I,
where C(X∗) = {x∗, x̄∗} and A(X∗) = {{xh

∗, x̄
t
∗}, {x̄h

∗, x
t
∗}}. Let g∗, ḡ∗ ∈

C(G), h∗, h̄∗ ∈ C(H), and i∗, ī∗ ∈ C(I), set the gene similarity score be-
tween all pairs of genes in {g∗, h∗, i∗} and {ḡ∗, h̄∗, ī∗} respectively, to 1.
Lastly, set the gene similarity score of all pairs of unassociated genes of
type “∅” including genes g∗, ḡ∗ to 1

4 .

Except for step 3, none of the instructions of transformation scheme R are
computationally challenging. Note that in step 3 the demanded partitioning
of chromosomes into genomes H and I is always possible as consequence of
Vizing’s Theorem [4], by which every graph with maximum node degree d is
edge-colorable using at most d or d+ 1 colors. Hence, using colors χ1, χ2, χ3, χ4

with χ1 = χ2 ≡ I, χ3 = χ4 ≡ H and Misra and Gries’ algorithm [2], edges of
graph Λ = (E, V ) can be partitioned into two groups in O(|E||V |) time implying
an assignment to genomes H and I.

Example 1. Figure 1 (b) shows a FF-Median instance constructed with trans-
formation scheme R from the simple graph depicted in Figure 1 (a). Gene
similarities between genes are not shown, but can be derived from the genes’
labeling.

We structure our proof that the presented transformation is in fact a valid
mapping of an MAX IS-3 instance to an instance of FF-Median into three dif-
ferent lemmas:

Lemma 1. Given a median M of FF-Median instance R(Λ) = (G,H, I, σ),
(1) for each median gene (g, h, i) ∈ C(M) where g, h, or i are associated with
vertices in V (Λ) holds ξ(g) = ξ(h)∩ ξ(i) = v, v ∈ V (Λ); (2) there exist at most
two median genes whose corresponding extant genes are not associated to any
vertex in V (Λ).
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Proof. Assume for contradiction that claim (1) does not hold. Then either
ξ(g) 6= ξ(h) ∩ ξ(i), or ξ(h) ∩ ξ(i) = ∅, both of which violate the constraint of
establishing gene similarities between associated genes that is given in step 5.
For claim (2), observe that the only unassociated genes in genome G are gene g∗
and ḡ∗ introduced in step 6, limiting the overall number of unassociated genes
in any median M .

Lemma 2. The conserved adjacency set of any median M of FF-Median in-
stance R(Λ) = (G,H, I, σ) is of the form A(M) ∩ AC� = AG� (M) ∪ {{mh

∗,m
t
∗},

{mh
∗,m

t
∗}}, where the extant genes corresponding to m∗ and m∗ are all unassoci-

ated genes of type “∗” and A(M)G� ⊆
{
{mh

1 ,m
t
2} ∈ AC� | ξ(πG(m1)) = ξ(πG(m2))

}
.

Proof. Observe that both candidate median adjacencies a∗ = {mh
∗,m

t
∗} and

ā∗ = {mh
∗,m

t
∗} are conserved in all three genomes, whereas all other conserved

candidate adjacencies between associated and unassociated genes can be at most
conserved in H and I. Establishing adjacencies a∗, ā∗ gives rise to a cumulative
adjacency score of 6. Conversely, up to 4 non-conflicting adjacencies between
associated and unassociated genes can be established that are conserved in both
genomes H and I. However, since such adjacencies are only conserved between
unassociated genes of type “∅” whose gene similarities are set to 1

4 , the best
cumulative adjacency score can not exceed 4. Thus, adjacencies a∗, ā∗ must be
contained in any median. Further, because of this and the fact that in both
genomes H and I, each gene associated with vertices of V (Λ) is only adjacent
to an unassociated gene, M cannot contain adjacencies that are conserved in
extant genomes other than genome G, which are the adjacencies of each gene
pair (gv, ḡv) associated with the same vertex v ∈ V (Λ).

Lemma 3. Given FF-median instance R(Λ) = (G,H, I, σ), let mu,mv be any
pair of candidate median adjacencies of A� whose corresponding extant genes
are associated to vertices u, v ∈ V (Λ), then mu,mv are conflicting if and only
if (u, v) ∈ E.

Proof. By construction in step 5 of transformation scheme R, each vertex v ∈ V
is associated with exactly two candidate median genes mv = (g, h, i),mv =
(ḡ, h̄, ī), mv,mv ∈ Σ�, such that ξ(g) = ξ(h)∩ξ(i) = v and ξ(ḡ) = ξ(h̄)∩ξ(̄i) = v.
Further, let u be another vertex of V (Λ), such that (u, v) ∈ E(Λ), and mu,mu

are its two corresponding candidate median genes. Then, by construction in step
2, there exists exactly one extant gene x with ξ(x) = uv (which, by assignment
in step 3, is either contained in genome H or I). Consequently, either mu is
in conflict with mv, or mu with mv, or mu with mv, or mu with mv. Recall
that by construction in step 2 in R and by Lemma 2, mu,mu and mv,mv form
conserved candidate adjacencies {mh

u,m
t
u}, {mh

u,m
t
u} and {mh

v ,m
t
v}, {mh

v ,m
t
v},

respectively. Clearly, independent of which of the candidate median gene pairs
of u and v are in conflict, both pairs of candidate median adjacencies are in
conflict with each other.

Now, let u, v be two vertices of V (Λ) such that edge (u, v) 6∈ E(Λ), then there
exists no gene x in extant genomes H and I with ξ(x) = uv. Even more, due
to Lemma 1, there cannot exist a candidate median gene (g, h, i) with {u, v} ⊆
ξ(g)∪ξ(h)∪ξ(i). Thus, the candidate median genes of u and v are not conflicting
and neither are their corresponding candidate median adjacencies.
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We proceed to show that the given transformation scheme gives rise to an
approximation preserving reduction known as L-reduction. An L-reduction re-
duces a problem P to a problem Q by means of two polynomial-time computable
transformation functions: A function f : P → Q′ ⊆ Q that maps each instance
of P onto an instance of Q, herein represented by transformation scheme R,
and a function g : Q′ → P to transform any feasible solution of an instance in
Q′ to a feasible solution of an instance of P . Here, a feasible solution means
any – not necessarily optimal – solution that obeys the problem’s constraints.
A feasible solution of FF-Median instance (G,H, I, σ) is an ancestral genome X
where C(X) ⊆ Σ� and A(X) ⊆ A� such that A(X) is conflict-free. We give the
following transformation scheme to map ancestral genomes of an FF-Median
instance to solutions of an MAX IS-3 instance:

Transformation S: Given any ancestral genome X of R(Λ), return {ξ(πG(m1)) |
{ma

1 ,m
b
2} ∈ A(X) : IG(πG(m1)a, πG(m2)b) = 1 and ξ(πG(m1)) 6= ∅}.

We define score function s�(X) ≡ 1
2F�(X) − 3 of an ancestral genome X. For

(R,S) to be an L-reduction the following two properties must hold for any
given MAX IS-3 instance (Λ, l): (1) There is some constant α such that for any
median M of the transformed FF-Median instance R(Λ) holds s�(M) ≤ α·l; (2)
There is some constant β such that for any ancestral genome X of R(Λ) holds
l − |S(X)| ≤ β · |s�(M)− s�(X)|. We proceed to proof the following lemma:

Lemma 4. (R,S) is an L-reduction of problem MAX IS-3 to problem FF-
Median with α = β = 1.

Proof. For any median M of FF-Median instance R(Λ), the number of con-
served median adjacencies with correspondence to the same vertex of Λ is two,
giving rise a cumulative adjacency score of two. From Lemmata 2 and 3 imme-
diately follows that any ancestral genome of R(Λ) that maximizes the number
of conserved adjacencies also maximizes the number of independent vertices in
Λ. Recall that the two conserved adjacencies between unassociated genes of
type “∗” (which are part of all medians) give rise to a cumulative adjacency
score of 6, we conclude that |A(M)∩AC� | − 2 = 1

2F�(M)− 3 = s�(M) = l, thus
α = 1.

Because l = sλ(M), it remains to show that l− |S(X)| ≤ β|l− s�(X)|. In a
sub-optimal ancestral genome of R(Λ), median genes with no association to ver-
tices of Λ can also contain extant genes of type “∅”. These unassociated median
genes can form “mixed” conserved adjacencies with genes that are associated
with vertices of Λ. Such mixed conserved adjacencies have no correspondence
to vertices in Λ and do not contribute to the transformed solution S(X) of an
ancestral genome X. Yet, as mentioned earlier, the cumulative adjacency score
of all mixed conserved adjacencies can not not exceed 4. Therefore it holds that
|S(X)| ≥ s�(X) and we conclude β = 1.
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2 Simulated sequence evolution with ALF

PAM Genome Inversions Transpositions Duplications Losses

10
G 8.7 6.1 7.3 6.9
H 7.3 4.5 6.3 5.4
I 8.5 6.6 10.4 5.6

30
G 24.5 16.9 21.0 22.7
H 23.4 19.8 20.6 18.4
I 25.5 17.2 17.5 20.9

50
G 39.9 27.8 32.4 36.7
H 41.8 31.8 31.0 31.7
I 43.2 30.0 28.7 39.7

70
G 58.6 42.3 41.1 39.2
H 57.0 43.6 46.3 45.1
I 60.4 41.4 40.7 39.1

90
G 75.0 54.5 53.1 64.2
H 69.9 50.5 54.1 65.0
I 75.2 55.5 60.3 58.5

110
G 96.3 69.4 67.0 74.6
H 90.6 64.2 62.5 70.9
I 90.2 68.5 62.6 61.2

130
G 105.7 76.3 74.4 81.0
H 108.7 78.2 79.6 82.8
I 110.8 73.6 73.9 77.3

Table 1: Average benchmark data of seven evolutionary distances, each com-
prising ten genomic datasets generated by ALF [1].
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Parameter name Value

sequence evolution

substitution model WAG (amino acid substitution model)
insertion and deletion Zipfian distribution exponent c = 1.8214

insertion rate 0.0003
maximum insertion length 50

rate variation among sites Γ-distribution shape parameter a = 1
number of classes 5
rate of invariable sites 0.01

genome rearrangement

inversion rate 0.0004
maximum inversion length 100

transposition rate 0.0002
maximum transposition length 100
rate of inverted transposition 0.1

gene family evolution

gene duplication rate 0.0001
max. no. of genes involved in one dupl. 5
probability of transposition after dupl. 0.5
fission/fusion after duplication 0.1
probability of rate change 0.2
rate change factor 0.9
probability of temporary rate change (duplicate) 0.5
temporary rate change factor (duplicate) 1.5
life of rate change (duplicate) 10 PAM
probability of temporary rate change (orig+duplicate) 0.3
temporary rate change factor (orig+duplicate) 1.2
life of rate change (orig+duplicate) 10 PAM

gene loss rate 0.0001
maximum length of gene loss 5

gene fission/fusion rate 0.0
maximum number of fused genes −

Table 2: Parameter settings for simulations generated by ALF [1].

3 Real genomes dataset

Genbank ID Name

U00096.3 Escherichia coli str. K-12 substr. MG1655, complete genome
AE004439.1 Pasteurella multocida subsp. multocida str. Pm70, complete genome
AE016853.1 Pseudomonas syringae pv. tomato str. DC3000, complete genome
AM039952.1 Xanthomonas campestris pv. vesicatoria complete genome
CP000266.1 Shigella flexneri 5 str. 8401, complete genome
CP000305.1 Yersinia pestis Nepal516, complete genome
CP000569.1 Actinobacillus pleuropneumoniae L20 serotype 5b complete genome
CP000744.1 Pseudomonas aeruginosa PA7, complete genome
CP000766.3 Rickettsia rickettsii str. Iowa, complete genome
CP000950.1 Yersinia pseudotuberculosis YPIII, complete genome
CP001120.1 Salmonella enterica subsp. enterica serovar Heidelberg str. SL476, complete genome
CP001172.1 Acinetobacter baumannii AB307-0294, complete genome
CP001363.1 Salmonella enterica subsp. enterica serovar Typhimurium str. 14028S, complete genome
FM180568.1 Escherichia coli 0127:H6 E2348/69 complete genome, strain E2348/69
CP002086.1 Nitrosococcus watsoni C-113, complete genome

Table 3: Dataset of genomes used in comparison with the OMA database.
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