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S1 Kinetic mechanism for an enzyme with multiple al-
ternative substrates

Here we present the detailed mathematical formulation of the kinetics of an enzyme with
two alternative substrates as depicted on Fig. 4a and described by the following reactions:

GlnB + E1

d1−⇀↽−
a1

E1GlnB
k1−→ GlnB-U + E1 (S1a)

GlnK + E1

d2−⇀↽−
a2

E1GlnK
k2−→ GlnK-U + E1 (S1b)

GlnB-U + E2

d3−⇀↽−
a3

E2GlnB-U
k3−→ GlnB + E2 (S1c)

GlnK-U + E2

d4−⇀↽−
a4

E2GlnK-U
k4−→ GlnK + E2 (S1d)

where (S1a) and (S1b) represent uridylylation, whereas (S1c) and (S1d) represent deuridy-
lylation. Here k1, k2, k3 and k4 are the catalytic rate constants, which are functions of the
glutamine concentration. Furthermore, E1 and E2 denote the concentration of the enzyme
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UT/UR with UT and UR activities respectively. To derive the rate equations corresponding
to reactions (S1), we assume that complex formation between the substrates and the enzyme
occurs much faster than product formation, which is the standard assumption in Michaelis-
Menten kinetics (1). Furthermore, since the enzyme active sites are shared between the two
substrates, we may treat either substrate as the competitive inhibitor of the other. Using
techniques described in section 6.2.1 of (1) we obtain the following system of four equations:

vUT,GlnB =
VUT,GlnB[GlnB]

Km,GlnB(1 + [GlnK]/Km,GlnK) + [GlnB]
(S2a)

vUT,GlnK =
VUT,GlnK[GlnK]

Km,GlnK(1 + [GlnB]/Km,GlnB) + [GlnK]
(S2b)

vUR,GlnB-U =
VUR,GlnB-U[GlnB-U]

Km,GlnB-U(1 + [GlnK-U]/Km,GlnK-U) + [GlnB-U]
(S2c)

vUR,GlnK-U =
VUR,GlnK-U[GlnK-U]

Km,GlnK-U(1 + [GlnB-U]/Km,GlnB-U) + [GlnK-U]
(S2d)

where Km,∗ = (di + ki)/ai, i ∈ {1, 2, 3, 4} are the usual Michaelis constants, and VUT,* =
kp[E1], p ∈ {1, 2} and VUR,∗ = kq[E2], q ∈ {3, 4} are the maximum enzyme velocities.

In addition to the competing substrates, glutamine (GLN) may also bind to the allosteric
side of UT/UR, independently of the substrate binding at a rateKGLN = d5/a5, where a5 and
d5 are the association and dissociation constants of GLN. When bound, GLN activates the
UR activity and inhibits the UT activity (2). We may describe this using the noncompetitive
activation and inhibition model (see Section 6.2.3 and Table 6.1 of (1)), depicted in Fig. S1),
which result in an additional term modifying the Vm,*’s of eqs. (S2):

vUT,GlnB =
VUT,GlnB[GlnB]/Km,GlnB

(1 + [GlnK]/Km,GlnK + [GlnB]/Km,GlnB)

(
1

1 + [GLN]/KGLN

)
(S3a)

vUT,GlnK =
VUT,GlnK[GlnK]/Km,GlnK

(1 + [GlnB]/Km,GlnB + [GlnK]/Km,GlnK)

(
1

1 + [GLN]/KGLN

)
(S3b)

vUR,GlnB-U =
VUR,GlnB-U[GlnB-U]/Km,GlnB-U

(1 + [GlnK-U]/Km,GlnK-U + [GlnB-U]/Km,GlnB-U)

(
1

1 +KGLN/[GLN]

)
(S3c)

vUR,GlnK-U =
VUR,GlnK-U[GlnK-U]/Km,GlnK-U

(1 + [GlnB-U]/Km,GlnB-U + [GlnK-U]/Km,GlnK-U)

(
1

1 +KGLN/[GLN]

)
.

(S3d)

S2 Kinetic mechanism for an enzyme with competing al-
losteric effectors

The mathematical description of simple inhibition and activation can be found in standard
textbooks on reaction (1). However, enzymes with multiple competing allosteric effectors
such as AT/AR are rare, therefore we need to give a derivation of such a system. Fig.
4b illustrates graphically an enzyme which can bind two allosteric effectors (inhibitors or
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Figure S1: Mechanism for allosteric regulation of UT/UR by glutamine (GLN) based on Fig.
4a. On the left hand side glutamine inhibits the conversion of the substrate S (GlnB, GlnK)
to S ′ (GlnB-U, GlnK-U), whereas on the right hand side GLN activates the conversion of S ′
to S. It is assumed that the substrate binding is unaffected by the presence of GLN.
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Figure S2: Mechanism for allosteric regulation of AT/AR by competitive effectors based
on Fig. 4b. On the left hand side proteins A and B compete for activation of enzyme E,
whereas on the right hand side they compete for inhibition of enzyme E. It is assumed that
the substrate binding is unaffected by the presence of the effector.

activators) and a substrate molecule simultaneously, but their presence do not influence each
others’ binding. As in Michaelis-Menten kinetics, we assume that the reactions involving
complex formation between the enzyme, the substrates and the effectors are in equilibrium
independently and at a much shorter timescale than that at which the reaction takes place.

We begin with the case of multiple competing allosteric activators, which can be depicted
by the reaction diagram on the left of Fig. S2. Let E denote a general enzyme catalysing
the conversion of a substrate S to a product P . Assume that E is in a neutral state unless
one of the activators A or B (having different affinities) bind to the common allosteric site.
When either effector is bound, product formation may take place, however the reaction rate
depends on whether A or B is bound. To express the reaction rate mathematically as a
function of effector concentrations note that we can define five different complexes whose
concentrations are denoted as: c1 = [SE], c2 = [SEA], c3 = [EA], c4 = [EB], c5 = [SEB].
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Also, let s = [S], a = [A], b = [B]. Then by the law of mass action it follows that:

(e0 − c1 − c2 − c3 − c4 − c5)s = K1c1 (S4a)
(e0 − c1 − c2 − c3 − c4 − c5)a = K2c3 (S4b)
(e0 − c1 − c2 − c3 − c4 − c5)b = K3c4 (S4c)

c3s = K1c2 (S4d)
c4s = K1c5 (S4e)
c1a = K2c2 (S4f)
c1b = K3c5 (S4g)

where e0 = e+ c1 + c2 + c3 + c4 + c5 is the total concentration of the enzyme and Ki = di/ai.
This is a linear system of equations with eight variables. There are seven equations, but
two are linear combinations of the other five (system has rank 5) so we can express the
concentration of the complexes as functions of three, which we choose to be s, a and b.
Substituting (S4d), (S4e), (S4f) and (S4g) into (S4a) we obtain:(

e0 −
K2

a
c2 − c2 −

K1

s
c2 −

K1

s

b

K3

K2

a
c2 −

b

K3

K2

a
c2

)
s = K2

K1

a
c2(

e0 −
K3

b
c5 −

a

K2

K3

b
c5 −

K1

s

a

K2

K3

b
c5 −

K1

s
s5 − c5

)
a = K3

K1

b
c5.

Rearranging, it follows that:

c2 =
e0(

1 + K1

s

) (
1 + K2

a
+ b

K3

K2

a

)
c5 =

e0(
1 + K1

s

) (
1 + K3

b
+ a

K2

K3

b

) .
Hence the catalytic rate of the enzyme is:

v = k1c2 + k′1c5 =
1(

1 + K1

s

) [ k1e0

(1 + K2

a
+ b

K3

K2

a
)

+
k′1e0

(1 + K3

b
+ a

K2

K3

b
)

]
. (S5)

Hence comparing with the case of a single activator (see Cornish-Bowden 2013, pg. 152-
157) we obtain that there the effect of the two activators are almost additive except for an
additional mixed term in the denominator.

We proceed similarly to obtain a relationship for the case of multiple competing allosteric
inhibitors (see right of Fig. S2). Using rapid equilibrium assumption we obtain a set of
equations identical to system (S4). Here we need to solve for complex c1, so we write:(

e0 − c1 −
b

K3

c1 −
K1

s

b

K3

c1 −
K1

s

a

K2

c1 −
a

K2

c1

)
s = K1c1,

from which it follows that the enzyme velocity is:

v = k1c1 =
e0(

K1

s
+ 1
) (

1 + a
K2

+ b
K3

) . (S6)

So similarly to the case of single inhibitor we obtain that there is a reduction of the maximum
velocity of the reaction leaving the K1 unchanged.
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S3 Global sensitivity analysis of the model
To assess the significance of the model parameters we conducted a sensitivity analysis. The
objective of the latter is to quantify the change in the system output to a small perturbation
in one or a combination of parameters, while the others are kept constant. Since the outputs
are time series, the distance between two time series if of interest, therefore conventional
(local) sensitivity analysis techniques, which are only concerned with variations in the steady
state are not adequate. Instead, here we use the eFAST method (3) to assess parameter
sensitivities, which is a global sensitivity analysis technique, and is available in the Systems
Biology Toolbox 2 for Matlab (4). In essence, global sensitivity analyses are concerned with
sampling the parameter space - usually randomly, according to some optimal strategy - in the
vicinity of the fitted parameters and estimating the resulting variation in the output. The
latter is usually measured by the pointwise difference between the nominal and perturbed
output time series integrated over the time range of interest. The eFASTmethod in particular
samples the parameter space along such a trajectory that allows the model output to be
expressed as a Fourier series. Then the variance in the output can be decomposed into
a sum of terms involving Fourier coefficients, which can be estimated using Monte Carlo
techniques. In our analysis we used a 10% perturbation from the nominal parameters and
105 samples.

Fig. S3 shows the relative sensitivities of the model parameters. Since GlnB/GlnB-U and
GlnK/GlnK-U are important effectors of the AT/AR enzyme, GS-A levels will depend on
the parameters that are specific to uridylylation. However, GS-A levels do not feed back into
the model since we used glutamine concentration as a driver. Hence the parameters specific
to adenylylation do not affect GlnB-U and GlnK-U states. Hence we grouped the parameters
according to whether they are involved in uridylylation or adenylylation. As expected, the
most sensitive parameters are the maximum enzyme velocities, Michaelis constants and the
Hill-coefficient of the AT/AR reactions (nAT), which has a large effect on setting the basal
GS-A levels. Another parameter of high sensitivity is the percentage sequestration, x, which
confirms the importance of modelling AmtB-GlnK complex formation. The parameters of
lowest relative sensitivity are the activation constants KGlnB, KGlnB-U, hence we fixed these
from the literature (see Table I in the paper). Although KGlnK-U was also found to be
relatively insensitive, which is commensurate with the wide sample distribution in Fig. S4,
we could not find parameters in the literature measured under similar conditions to our
experiments. We leave these at their fitted values, because they are highly influential for our
predictions.
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Figure S3: Relative sensitivity of variables to model parameters obtained using eFAST global
sensitivity analysis (3, 4). The fitted parameters are marked in blue. Bars show the maximum
and minimum sensitivity of the individual variables (GlnB-U, GlnK-U and GS-A) obtained
for 105 samples from the parameter space with a maximum 10% deviation from the fitted
parameters. Red line indicates the median value.
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S4 Evolutionary Monte Carlo optimisation algorithm for
parameter fitting

The parameters were fitted using the ’Squeeze and Breathe’ evolutionary optimisation method
(5). Let X(t) = {x1(t), . . . , xd(t)} denote the state of the system with d variables at time t,
which in our case are the concentrations of GlnB, GlnK and GS. The evolution of these vari-
ables is described by a set of ODEs, Ẋ = f(X, t; θ), where θ = {θ1, . . . θn} is a set of n parame-
ters. In essence, the objective of the parameter optimisation is to find parameters θ such that
the distance between the solution X and an experimental dataset D = {X̃(ti)|i = 1, . . . ,m}
of m observations is minimised. To account for measurement error we define the following
cost function, weighted by the standard error of the measurements:

ED(θ) = min
θ

{
m∑
j=1

‖(X(ti; θ)− X̃(ti))/SEi‖

}
,

where ‖.‖ is the Euclidean norm. Since the cost function depends on all n parameters,
its value lies in an n dimensional space. The optimal parameters will be the coordinates
corresponding the global minimum of ED(θ) over all possible parameters. The cost function
ED(θ) defines a very rough landscape and as a result optimisation methods may get stuck in
a local minimum. In fact, an algorithm which guarantees to find the best parameters does
not exist. Therefore the objective of the parameter optimisation is to explore a large portion
of this space to get as close to the global minimum as possible. The Squeeze and Breathe
algorithm achieves this by first running local optimisation around random samples in the
parameter space. These are then ranked according to optimality and culled keeping only
the best few. The culled set is then used to obtain a posterior sampling distribution. The
process is repeated until the difference between subsequent posterior distributions is small.

The fitted parameters are shown in Table I in the main paper and the histograms from
the parameter sampling are shown in Fig. S4. The histograms show the number of times the
parameter fitting algorithm converged to the particular parameter values, whereas the red
asterisk show the parameter value with the minimum cost function. A narrow distribution
around a fitted parameter reflects a well defined minimum in the explored parameter range,
indicating that the fitted model has higher sensitivity to the variations of these parameters.
On the other hand a wide distribution shows that the cost function landscape is shallow or
contains many local minima. This indicates that the model might be less sensitive to the
corresponding parameters. Fig. S4 show that most parameter have a narrow spread. An
exception is KGlnK-U, which show high variation, indicating low sensitivity of the model to
this parameter (confirmed by sensitivity analysis). In the main paper we argue, that the low
sensitivity of KGlnK-U in the WT model has biological origins, since the GlnK protein is less
potent compared to GlnB. However, we do not KGlnK-U to a value found in the literature,
since this parameter will be essential for accurate prediction of the GS adenylylation levels
in the mutant strain containing no GlnB. The parameters to be fitted were chosen also
based on the information provided by a global sensitivity analysis of the model presented in
Section S3.
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Figure S4: Histograms of fitted parameters obtained through the Squeeze-and-Breathe algo-
rithm (5). Red asterisks indicate the parameter combination with the lowest cost function.
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S5 Model selection: uridylylation reactions with and with-
out sequestration

We compared the uridylylation models with and without GlnK sequestration (Eq. 4 in the
main text) using different model selection criteria. All criteria unanimously selected the
model with sequestration.

Our model is fitted to the WT time-series (training dataset). The fitted model is then
used to predict the dynamical responses for the two mutants (test datasets) without using the
measurements. The model with sequestration provides an improved fit both for the training
dataset and an improved prediction of the test datasets, yet it contains 6 parameters (instead
of 4 parameters for the model without sequestration).

To make the comparison precise, we obtain the statistical significance of the models with
and without sequestration based on two information criteria:

• Akaike Information Criterion corrected for small datasets:

AICc = n log(RSS) +
2kn

n− k − 1

• Bayesian Information Criterion:

BIC = n log(RSS) + k log(n)

Here n is the number of data points (24 using the WT and the ∆glnB datasets); k is the
number of fitted parameters (4 without sequestration and 6 with sequestration); and RSS is
the residual sum-of-squares deviation of the model from the data (Eq. 7 ).

Both criteria compare models based on their goodness-of-fit and penalise the number
of parameters. The AICc criterion is theoretically more appropriate (since it compares the
model to the true model), but has a bias toward models with higher complexity. As a
further confirmation, we also computed the BIC criterion, which puts a higher penalty on
the number of model parameters, and would thus favour the lower complexity model.

Table S1 shows that the model with sequestration is selected according to both the AICc
and BIC criteria, as shown by lower values of both criteria for the model with sequestration.

Table S1: Information criteria for model selection of uridylylation model with and without
sequestration using the WT and ∆glnB data (n = 24 points)

Model Number of fitted parameters (k) RSS AICc BIC
without sequestration 4 60.3 108.5 111.1
with sequestration 6 21.7 90.8 92.9
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S6 Comparison to the Straube model of GlnB uridylyla-
tion

The enzyme UT/UR has two active sites (6), catalysing uridylylation (UT) of GlnB/GlnK
and deuridylylation (UR) of GlnB-U and GlnK-U. Having two active sites both with two
distinct substrates means there are four different ways in which ternary complexes can form.
To test whether these contribute significantly to product formation in the UT and UR reac-
tions we compared the Straube model (7), which describes GlnB uridylylation and includes
the ternary complex between UT/UR, GlnB and GlnB-U, and another model, where the
contribution of the ternary complex is ignored. The latter is equivalent to the classical
Goldbeter-Koshland model (8) that assumes Michaelis-Menten kinetics with allosteric in-
hibition and activation by glutamine for the UR and UT reactions respectively. For both
models we used literature parameters from the in vitro reconstituted GlnB-UT/UR system
(9) except for the Vmax, which had to be fitted. To make the best comparison we used the
fact that Vmax = ke, where k is the catalytic rate and e is the concentration of the enzyme,
fixed the ratio between VUT/VUR = kUT/kUR using literature values of kUT and kUR (9)
and fitted only one parameter, corresponding to e. As Fig. S5 shows, both models produce
indistinguishable results under most conditions except 30s after upshift where the Straube
model, being a steady state model, performs worse due to strong transient dynamics. This
suggests that the contribution of the ternary complexes are not likely to be significant.

Despite performing well on GlnB uridylylation using literature parameters, the Straube
model could only produce an adequate fit to the GlnK data in the ∆glnB strain when the
basal UT activity (which is one of its parameters) was as high as 50%. We found this after an
extensive parameter search using a non-linear least squares fitting procedure. This is much
higher than the 1% basal UT activity reported in a previous in vitro study with GlnB and
UT/UR (9). Furthermore, due to the number of complexes this model cannot be extended
to treat GlnB and GlnK at the same time.

The high basal UT activity for GlnK in the Straube model highlights the asymmetry
in the system with respect to glutamine. In other words, glutamine binding to UT/UR
activates the UR activity and inhibits the UT activity by different relative amounts. We
could account for this in our model by defining two different Kd for the activation of UR
and inhibition of UT reactions by glutamine.
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S7 Additional Supplementary Figures and Tables
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Figure S7: Correlation between GlnK concentration derived from non-uridylylated peptides
and that derived independently from the sum of uridylylated and non-uridylylated peptide
GAEYSVNFLPK.

Table S2: MRM-MS signals of GlnK unlabelled/labelled signature peptides

Protein Peptide Internal
standard (Y/N) Q1 Q3 Retention Collision energy

GlnK-1 GAEYSVNFLPK-1a N 612.8 804.5 35.8 30
GlnK-1 GAEYSVNFLPK-1b N 612.8 967.5 35.8 30
GlnK-1 GAEYSVNFLPK-1c N 612.8 244.2 35.8 30
GlnK-1 GAEYSVNFLPK-1a-is Y 616.8 812.5 35.8 30
GlnK-1 GAEYSVNFLPK-1b-is Y 616.8 975.5 35.8 30
GlnK-1 GAEYSVNFLPK-1c-is Y 616.8 252.2 35.8 30

GlnK(u)-1 GAEY(U)SVNFLPK-1a N 765.9 244.2 33.2 30
GlnK(u)-1 GAEY(U)SVNFLPK-1b N 765.9 804.5 33.2 30
GlnK(u)-1 GAEY(U)SVNFLPK-1a-is Y 769.9 252.2 33.2 30
GlnK(u)-1 GAEY(U)SVNFLPK-1b-is Y 769.9 812.5 33.2 30
GlnK-2 IFVAELQR-2a N 488.3 715.4 31.8 30
GlnK-2 IFVAELQR-2b N 488.3 616.3 31.8 30
GlnK-2 IFVAELQR-2c N 488.3 862.5 31.8 30
GlnK-2 IFVAELQR-2a-is Y 493.3 725.4 31.8 30
GlnK-2 IFVAELQR-2b-is Y 493.3 626.3 31.8 30
GlnK-2 IFVAELQR-2c-is Y 493.3 872.5 31.8 30
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