
Biophysical Journal, Volume 112
Supplemental Information
New Continuum Approaches for Determining Protein-Induced Mem-

brane Deformations

David Argudo, Neville P. Bethel, Frank V. Marcoline, Charles W. Wolgemuth, and Michael
Grabe



Supporting Material: New continuum approaches for determining protein
induced membrane deformations

David Argudo∗, Neville P. Bethel∗, Frank V. Marcoline∗, Charles W. Wolgemuth‡ and Michael Grabe∗

∗ Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California San Francisco, San
Francisco, CA 94158, USA.

‡ Departments of Molecular and Cellular Biology and Physics, University of Arizona, Tucson, Arizona.

S1. Analysis of molecular dynamics membrane deformation profiles: effects at the boundaries

To compare molecular dynamics (MD) simulation results with our continuum-atomistic model, we averaged lipid
positions of individual MD snapshots to obtain a final equilibrium membrane shape. The procedure is described in
Simulation Methods in the main text. Fig. S1 shows the running time average of the membrane thickness, which
indicates the time required to average out spatial fluctuations to arrive at a converged static pattern. Panel (A) contains
a gramicidin dimer and (B) is a protein free bilayer. Analysis of these profiles reveals several interesting features.
First, even at 100 ns, the protein free system exhibits a spatial pattern showing inhomogeneity present in the starting
configuration. The magnitude of the inhomogeneity is much reduced (10 Å at 25 ns versus 4 Å at 100 ns), and it
is centered on the bulk equilibrium thickness of 28.5 Å, but a pattern persists nonetheless. The pinching pattern in
the gramicidin simulations is set up quickly (in 25 ns), but the spatial fluctuations are so large that the system must
be averaged for at least 250 ns before a somewhat static pattern emerges. This time difference when compared to the
protein-free system is not surprising since the membranes are pre-equilibrated in a flat undeformed state closer to the
protein-free simulation. But we want to point out that even these simple simulations must be averaged for 200 ns,
preferably more (500 ns in the main text), to achieve static patterns. Second, protein induced deformations extend to
the simulation boundaries indicating that bilayer patch size should be carefully considered to allow full relaxation to
bulk values at the boundaries. At 250 ns, panel (A) shows the membrane height reaches bulk values (28.5 Å) at the
corners of the periodic box (55 Å from the center), but not at the centers of each side (40 Å from the center). If the
box is too small, periodic boundary conditions will muddy interpretation of the patterns.

Figure S1: Running time average of hydrophobic mismatch from MD simulations with gramicidin (A) and without protein (B). Both systems
contain POPC lipids. In panel A, membrane height values converge to the bulk value (∼28.5 Å) at the corners of the simulation box between 100
ns and 250 ns, but the pattern is still fluctuating when averaged for less time. Moreover, at the center of the outer edges of the box (40 Å from the
protein) the membrane heights are 2-3 Å higher than bulk values. (B) MD simulation of a pure POPC membrane. Even after averaging for 100 ns
a spatial pattern persists, but the amplitude of the fluctuations is only ±2 Å from the mean value of 28.5 Å.
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Figure S2: Averaging membrane configurations can produce unrealistic surfaces. (A-B) Binning a straight (A) and tilted (B) protein configuration.
When the protein tilts to the left, the protein-membrane boundary also shifts to the left. (C) Combining bins from configurations A and B leads
to non-monotonic behavior that is otherwise not present in either configuration. (D-E) Binning membrane surfaces from snapshots in which the
protein radius is dilated (D) or constricted (E). The later configuration is representative of what occurs during the creation of hotspots in which
individual lipid molecules extend over the top of the channel to interact with specific tryptophan residues. (F) Combining bins from configurations
D and E leads to non-monotonic behavior, which is not representative of either configuration.

Figure S3: Different averaging methods produce different membrane hydrophobic thickness profiles. (A) Surface profile obtained using an inter-
polation averaging method. For each snapshot, membrane heights are first interpolate to a two dimensional grid of one Å spacing. All grid points
are evaluated regardless of protein occupancy. The final surface is the average of all grids over the course of the trajectory. We see that extending
radially away from the center of the membrane, the deformation profile exhibits pure monotonic behavior (blue to red) within a distance comparable
to the width of a few lipid shells. (B) Surface profile obtained using a bin-based averaging method that simply averages local lipid height in each
snapshot (each bin is 1 Å2). Unlike the method in panel (A), if a lipid is not located within a bin for a given snapshot, the bin will receive no value.
For bins near the protein boundary, they are often occupied by protein, and hence rarely populated by lipid. There are several localized hotspots
adjacent to the protein where the membrane becomes very thick, 32 Å. Extending radially away from the protein in these regions, the membrane
deformation profile exhibits non-monotonic behavior within a distance comparable to the width of a few lipid shells. The simulation system is
composed of POPC lipids and the protein is gramacidin. For both methods, the protein was centered from snapshot to snapshot prior to computing
membrane heights.

2



We carefully considered several methods for averaging the surfaces from MD, because the average of a solution set
often results in an entity that is not a member of the set. However, averaged membrane surface profiles should reflect,
as much as possible, an equilibrium membrane distortions that is physically allowable. Gramicidin is a small peptide
and during MD simulations the protein position and tilt orientation fluctuate resulting in corresponding fluctuations
in the protein-membrane boundary. If these changes are not carefully accounted for during averaging, it can magnify
artifacts resulting from averaging. One option for averaging involves binning membrane height at the upper and
lower leaflets to determine the thickness profile. To do this, we created a 2D grid of squares 1 Å in size, one for
the upper surface and one for the lower surface, and recorded the heights of upper/lower lipid molecules in each
respective bin for every snapshot. However, as shown in Fig S2 this approach leads to two scenarios that produce
artifacts when binning results from MD. Panels (A-C) show the effect of binning straight (A) and tilted (B) protein
configurations. Panel (C) shows how the tilted configuration in (B) results in missing data, and combining bins from
configurations (A) and (B) leads to non-mononotic behavior that is otherwise not present in either true configuration.
Similarly panels (D-F) show the effect of binning a protein with a dilated effective radius (D) at one point in time and
constricted effective radius (B) at another. The averaged surface in (F) has missing data resulting from configuration
(D), and it also exhibits non-monotonic behavior. This later scenario occurs during the creation of hotspots in which
individual lipid molecules extend over the top of the channel to interact with specific tryptophan residues (1). When
hotspots are present, the effective protein area is reduced due to lipids encroach on the protein-occupied region. Panel
(F) shows how combining bins from both configurations leads to non-mononotic behavior that is otherwise not present
in (D) or (E).

As an alternative approach to determining representative, averages of the membrane surface, we used an interpo-
lation procedure where each node value of a Cartesian grid was assigned the interpolated z-value of nearby lipid C2
carbon atoms for each MD snapshot. This approach guarantees that every node of the surface has a value for each
membrane configuration. Fig. S3 shows a comparison between the membrane thickness obtained using the interpo-
lation (A) and binning (B) methods. In the interpolation averaging procedure (A) the membrane deformation profile
that extends radially away from the protein exhibits a monotonic behavior (blue to red) within a distance comparable
to the width of a few lipid shells, while the binning method (B) generates a non-monotonic radial profile arising from
hotspots near the protein (red and yellow) with increased thickness. Analysis of the specific MD snapshots that give
rise to the non-monotonic behavior in the averaged surfaces in Fig. S3 B are themselves radially monotonic near the
protein indicating that the averaged thickness profile harbors artifacts likely resulting from the mechanisms illustrated
in Fig. S2. Moreover, the non-monotonic profile is highly curved with a high corresponding deformation energy
casting further doubts on the physical appropriateness of the binning scheme. A deeper analysis of the influence
hotspots (black or white circled region) play on the binned hydrophobic profile (reproduced in Fig. S4 A) shows that
they are poorly sampled bins (panel B), yet they dramatically influence the final average thickness. We computed the
membrane thickness with this sparse data corresponding to only membrane configurations in which the textithotspot
was populated, and the resulting average profile is radially monotonic within the first few lipid shells (panel (C)).
Importantly, the membrane is quite thick for these snapshots, but the radial relaxation is smooth. We conclude that
individual membrane configurations are quite smooth in the first few lipid shells adjacent to the protein, and simple
binning schemes mask this observation.

S2. Non-Elastic Energy terms

S2.1. Electrostatic Energy G(e)

The electrostatic energy of the inclusion in the bilayer was determined using the non-linear Poisson-Boltzmann
equation (in e.s.u-c.g.s unit system) (2, 3):

−∇ ·
[
ε(~p)∇φ(~p)

]
+ ε(~p)κ2(~p) sinh

[
φ(~p)

]
=

e
kBT

4πρ(~p), φ(~p) =
eΦ(~p)
kBT

, (S1)

where φ(~p) is the reduced electrostatic potential at position ~p, kB is the Boltzmann constant, T is the absolute tem-
perature, κ is the Debye-Huckel screening coefficient, ε is the spatially-dependent dielectric constant, ρ is the space-
dependent charge density within the protein and e is the elementary charge. The electrostatic calculations were carried
out using the APBS software (3) together with modifications to include membrane dielectric effects as described in
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Figure S4: Hotspots are rare, but still smooth. (A) Binned POPC average thickness around gramacidin (same as Fig. S3 B). The dashed oval
encompasses a single hotspot where lipids extend up over the channel, and the oval corresponds to the region in all three panels. (B) Bin occupancy
by lipids during MD simulation. The hotspot is rarely sampled by a lipid. (C) Membrane thickness calculated using only snapshots in which a lipid
occupies the hotspot. The surface was constructed with the interpolation method, since binning resulted in a highly discontinuous surface due to
poor sampling. The resulting profile is monotonic and smooth in the radial direction, and these properties are present in the individual snapshots.

Callenberg (4). As in our recent work Ref. (5), a six way flood fill method is used to add the dielectric influence of
the membrane to the protein system. Additional details on the electrostatic calculations can be found in our previous
publications (5, 6). Finally, we point out that in our calculations we include the effects of ionic screening, but find
that the strength of the ionic solution has little effect in the membrane deformations induced by gramicidin. Setting
the ionic strength to zero or increasing it by an order of magnitude changes the energy by less than 0.5 kcal/mol.

S2.2. Nonpolar Energy G(np)

The non-polar energy of the protein in the membrane environment is related to the amount of protein surface area
buried in the membrane. Here, we assume the non-polar energy is:

G(np) = a · (Amem − Asol) , (S2)

where Amem is the protein’s solvent accessible surface area (SASA) in the membrane and Asol is the total SASA in
solution. The total protein Asol and per atom surface areas are calculated using Michael Sanner’s Molecular Surface
program, MSMS (7). To determine Amen, membrane exposed atoms were first identified using the same six way flood
fill algorithm used for the electrostatic calculations. Atoms that are determined to be membrane exposed are set to
have an Amem = 0.0. The nonpolar energy of each atom was calculated based on its height relative to the leaflets
of the membrane. For atoms in the membrane core, its SASA was multiplied by the surface tension, a = 0.028
(kcal/mol)/Å2. For atoms in the headgroup regions, the surface tension constant decays linearly from 0.028 to 0.00
(kcal/mol)/Å2 over the 8 Å thickness of the headgroups. The phenomenological constant 0.028 (kcal/mol)/Å2 is taken
from the work of Sitkoff and co-workers (8), and we ignore the constant term usually found in these treatments to
zero given that it is typically a small energetic value when compared to other terms in our theory. For more details see
Refs. (5, 6).

S2.3. Protein Orientational Entropy G(o)

The orientational entropy cost is the energetic penalty associated with the protein’s inability to explore certain
configurations when inserted in the membrane, which can be expressed in terms of the Euler angles ρ, θ and φ describ-
ing the protein’s orientation in the membrane. The angle ρ represent rotations about the long axis of the protein, θ is
the angle created between the z-axis of the membrane and the long axis of the protein (See Fig. 3 in main text), and φ
represents rotations of the protein about the z-axis of the membrane. As the protein axis tips away from the membrane
normal (θ), it is able to explore a greater number of states associated with free rotation about φ. The entropy at a given
θ value in the range δθ is related to the area swept out by the tip of the protein as it rotates about φ. Thus, the entropic
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energy change with respect to the protein aligned with the membrane normal is given by:

G(o) = −kBT ln
(
∆Aθ

∆A0

)
, (S3)

where ∆Aθ is the area swept out by the tip of the helix over the surface of a sphere and ∆A0 is the effective area
explored by the helix tip when it is oriented vertically. The ratio in areas is then given by:

∆Aθ

∆A0
=

∫ θ+δθ

θ−δθ
sin θdθ∫ δθ

0 sin θdθ
, (S4)

where δθ ≈ r/h accounts for tilt angle spanned by a cylinder of finite radius r and height h.

S3. Geometrical description of the membrane
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Figure S5: Cartoon model of the membrane in the presence of a conically shaped protein. In the regions where the upper and lower leaflet both
exist, the compression surface is labeled cM(x, y), while in regions where either the upper or lower leaflet does not exist, the compression surface is
labeled c1(x, y). The variable u+

B corresponds to the membrane boundary displacements at the interface between the protein and the upper leaflet.
The angle α of the conically shaped protein can be used to describe the degree of mismatch between the upper and lower leaflets.

We start by defining the geometry of the system. In Fig. S5, we illustrate a special case where the conical shape
of an inclusion causes a mismatch between a region of the upper monolayer and the lower monolayer. A lack of cor-
responding patch along the z-direction poses a problem for the compression coupling between the leaflets. In general,
protein shapes are complex, and this coupling problem arises in many instances. To address this type of biological
problems we propose a two-sheet membrane model where the compression of each sheet is derived independently
with respect to the bilayer compression surface cM(x, y) which acts as the coupling element between leaflets (Fig. S5).

We use small deflection theory (9, 10) to model the monolayer surfaces. We define the normal vector to the
surface representing the upper monolayer as ~N+ and the lower monolayer as ~N−, which are approximately given by
the following relations (9, 11):

~N+ =

{
∂h+

∂x1
,
∂h+

∂x2
,−1

}
, ~N− = −

{
∂h−

∂x1
,
∂h−

∂x2
,−1

}
. (S5)

The variables h±(x1, x2) represent the shape, or distance from z = 0, of each leaflet. From the shape variables,
we define the normalized variables u±(x1, x2) as the difference between the shape function of the upper and lower
monolayer h±(x1, x2) with respect to the flat, undistorted monolayer thickness h0:

u±(x1, x2) = h±(x1, x2) ∓ h0. (S6)
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The deformation represented by the leaflet shape variables given in Eq. S6 is equivalent to the mathematical descrip-
tion of bilayer deformation in terms of a dilation variable d = (u+ − u−)/2 and the bilayer midplane h = (u+ + u−)/2
(12). Finally, it important to distinguish the true monolayer surface in three dimensional space (Γ±) from the two
dimensional projection of the surface used in calculations (Ω±):

dΓ± ≈

[√
1 + (∇u±)2

]
dΩ± ≈

[
1 +

(∇u±)2

2

]
dxdy, (S7)

where dΩ± is the differential dxdy in the projected plane (9).

S4. Elastic energy of an arbitrarily shaped inclusion in the membrane

We describe the total elastic energy of the system as the sum of the independent contributions of each monolayer:

GT = E+
m + E−m, (S8)

where +/− denotes variable associated with the upper/lower monolayer, respectively. We account for energies associ-
ated with mean curvature bending (E±B), changes in the area per lipid (compression) (E±C), surface tension (E±S ), and
changes in the gaussian curvature (E±G):

E±m = E±B + E±S + E±C + E±G, (S9)

where each term is briefly described in the following sections.

S4.1. Mean bending curvature
The bending energy is (9):

E±B =
1
2

∫
Γ±

K±b
(
2H± + J±0

)2
dΓ±, (S10)

where the integration is performed over each monoloyer surface Γ±, K±b are the monolayer bending moduli, H± are
the mean curvature fields describing the neutral surfaces of each monolayer, and J±0 are the spontaneous curvatures in
each leaflet. Under small deformations, the mean curvature can be approximated as (9, 13):

H+ = ~∇~N+ ≈
1
2
∇2u+(x1, x2) and H− = ~∇~N− ≈ −

1
2
∇2u−(x1, x2). (S11)

For the chosen normal vectors in Eq. S5 positive curvature H+ at the upper leaflet is a concave up shape, while positive
curvature H− at the lower leaflet is concave down. The plus sign in front of the spontaneous curvature term J±0 follows
the standard convention that a lipid in equilibrium with a positive spontaneous curvature is one with a large headgroup
that prefers to adopt a micelle geometry (9). Since this sign convention varies in the literature, care must be taken
when comparing different Hamiltonians (9, 10).

Making use of the definitions of the projected area and expanding up to quadratic order in the deformation vari-
ables, the bending energy is (9):

E±B ≈
1
2

∫
Ω±

K±b
(
∇2u± ± J±0

)2
+

K±b
2

(
J±0

)2 (
∇u±

)2 dxdy. (S12)

S4.2. Surface tension
The tension/stretching energy (E±S ) for each monolayer can be written as (9):

E±S =

∫
Γ±
σ±dΓ± − σ±Γ0, (S13)

where σ is the surface tension parameter, and the integration is performed along the neutral surface of each monoloyer
Γ±. Γ0 is the initial undeformed area of the membrane, and it is the same for both upper and lower monolayers. Making
use of Eq. S7, we can rewrite expression Eq. S13 as:

E±S =
1
2

∫
Ω±
σ±

(
∇u±

)2 dxdy. (S14)
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It is important to point out that the surface tension parameter σ is a subtle term that has generated significant
controversy depending on its physical interpretation (9). For a detailed description of the numerous interpretations of
this term, we refer the reader to the works of Schmid (14), Diamant (15) and Watson et al. (16). Here, we interpret σ to
be the conjugate variable that opposes the addition of new area to the total bilayer surface Γ. For constant area per lipid,
Γ is proportional to the total number of lipids, and therefore, σ plays the role of the chemical potential. Combining
the ∇2u± term in Eq. S12 with Eq. S14, we obtain the effective surface tension parameter γ± = σ± + K±B(J±0 )2/2. In
the main text, we have expressed the energy in terms of the effective surface tension γ±.

In addition to the gradient term, σ (∇u±)2, in the Hamiltonian, it is often common to find a linear term in the
literature, σ (u+ − u−), that arises due to changes in lipid area for a volume incompressible membrane (16–18). This
linear term results in systematic change in the equilibrium thickness of the membrane (16, 18):

L∗0 = L0

(
1 −

σ

Ka

)
, (S15)

where Ka is the bilayer compression modulus, L0 is the membrane thickness of a tension-free membrane and L∗0 is the
new equilibrium membrane thickness. Using Eq. S15, we can rewrite our deformation variables u± with respect to L∗0
rather than L0. By doing this change of reference configuration, we recover the same Hamiltonian (without a linear
term) in our deformation variables u+ and u−. Membrane vesicles are known to burst when the tension goes beyond
a few mN/m, but exact values for the surface tension as a function of the membrane composition and protein are
unknown. For this reason we have decided to use σ ≈ 3 mN/m as originally postulated by H.W. Huang (13) and often
employed in more recent works (6, 19–22). Adding the linear term and keeping σ ≈ 3 mN/m results in a membrane
thickness shift L0 − L∗0 of less than 1.4%.

S4.3. Bilayer compression

As derived in Refs. (17, 23), the compression energy for each monolayer is given by:

E±C ≈
∫

Ω±

K±a
2

(
A± − A0

A0

)2

dΩ±, (S16)

where A0 is the initial area per lipid and A± is the deformed area per lipid. The compression modulus of each
monolayer does not need to be the same, hence K+

a represents the modulus for the upper leaflet and K−a is the modulus
for the lower leaflet. As discussed later, for a protein of arbitrary shape with unmatched leaflet regions, a framework
where the upper and lower leaflets can have different compression moduli becomes important when including shell
hardening effects through spatially dependent moduli (1, 24) (see section S4.4).

Returning to Eq. S16, the compression energy can be rewritten in terms of the shape variables u± since the change
in area (A± − A0) is related to the vertical compression along the z-axis by means of the lipid volume constraint (25):

V = χV0, V0 = h0A0, V = (h+ − c)A+ = −(h− − c)A−, (S17)

where V0 is the initial volume of the lipids, V is the volume of the lipids in the deformed configuration (assumed to
be the same for the upper and lower leaflets) and c(x, y) is the compression surface (11, 16, 26, 27) (Fig S5). The
parameter χ ∈ [0, 1] is a phenomenological term describing the degree of volume conservation of the lipids before
and after deformation. It is well known that the lipid volume is nearly incompressible (17, 25). For this reason, we
have constrained our analysis in the main text to the incompressible case of χ ≈ 1, but note that our methods can
accommodate lipid compressibility through the phenomenological variable χ. For a compressible lipid mix, there
would be a new term appearing in the energy functional that can be treated as a line tension (linear on the deformation
variable u±). Having a line tension term in the energy functional can be easily accounted for using a change of
variables (28, 29), resulting in no change to the form of the equilibrium equations. Using Eq. S17, the energetic
penalty for compression in Eq. S16 can approximated up to quadratic order on the shape variables to be:

EC =

∫
Ω+

K+
a

2h2
0

[
u+ − c

]2 dΩ+ +

∫
Ω−

K−a
2h2

0

[
u− − c

]2 dΩ−. (S18)
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S4.3.1. Bilayer compression: matched regions
When the upper and lower leaflets match (Ω+ = Ω− = ΩM) the energy in Eq. S18 reduces to:

EC =

∫
ΩM

K+
a

2h2
0

[
u+ − c

]2
+

K−a
2h2

0

[
u− − c

]2 dΩM . (S19)

For the static case, the deformations associated with the compression surface c(x, y) will equilibrate very fast, and
consequently, we can minimize over c(x, y) without loss of generality (26, 27). The solution yields:

c(x, y) =
K+

a u+ + K−a u−

K+
a + K−a

. (S20)

Using Eq. S20, the bilayer compression energy of the bilayer can be rewritten as:

EC =

∫
ΩM

Keff

2h2
0

[
u+ − u−

]2 dxdy, Keff =
K+

a K−a(
K+

a + K−a
) , (S21)

where Keff is analogous to the effective spring constant of two Hookean springs coupled in series. In the main text, we
have labeled the compression surface in matched regions c = cM(x, y).

S4.3.2. Bilayer compression: unmatched regions
When the area of protein insertion in the upper and lower leaflets do not match there is a region in space Ω1 where

the shape variable u+ is not defined and/or a region Ω2 where the variable u− is not defined. For such scenarios,
we expect that the surface of compression c(x, y) is a function of the geometry of the inserted protein, where the
energy minimization with respect to c(x, y) is subject to a spatial constraint. As an illustrative example, we consider
the insertion of a conically shaped protein shown in Fig. S5. In the unmatched region Ω1 in the lower leaflet, the
compression energy is described by:

E−C =

∫
Ω1

2K−a
L2

0

[
u− − c(x, y)

]2
− λ (c(x, y) − c1) dxdy, (S22)

where λ is the conjugate Lagrange multiplier to the constraint in the compression surface c(x, y). The function c1 is
unknown and probably the result of complex coupling between the geometry of the membrane protein and distortion
of the lipids. Fig. S5 shows a mismatch region between upper and lower surfaces that is described by an angle α.
For small values of (π/2 − α) (small mismatch region Ω1), we expect that the bilayer midplane cM (compression
surface in the matched region ΩM) is not to heavily distorted such that the compression surface c1(x, y) in Ω1 can be
approximated as:

c1(x, y) =
h+

B + h−(x, y)
2

, (S23)

where h+
B = u+

B + h0 is the set of boundary conditions between the upper leaflet and protein (Fig. S5). Although we
have used a conically shaped protein for illustrative purposes, the approximation in Eq. S23 is valid for proteins of
arbitrary shape as long as the mismatched regions are moderately small. Importantly, this approximation preserves
continuity of the midplane function c(x, y) over the entire space. We make the same approximation in the lower leaflet
for u−(x, y) in the region Ω2:

c2(x, y) =
h−B + h+(x, y)

2
, (S24)

where h−B = u−B − h0 is the set of boundary conditions between the lower leaflet and protein (figure not shown). Note
the deflection values h+(x, y) and h−(x, y) can in general vary in space along the boundary of the protein. In that case
the values of h+

B and h−B inside the regions Ω1 and Ω2 are calculated through an interpolation procedure. We emphasize
that in our proposed elastic model h+

B and h−B are prescribed as fixed conditions used to compute the compression plane
c(x, y) on mismatched regions.
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S4.4. Hardening effects near the protein
The decreased conformational freedom of lipids near the boundary of an inclusion leads to greater molecular

packing and greater resistance to elastic deformations – an effect known as hardening (1, 24). Partenskii and Jordan
(24) accounted for this effect by developing a membrane free energy model where the elastic moduli were higher at
the boundary of the inclusion, but returned to bulk values away from the protein-membrane interface with a decay
length λD ∼ 15 Å (comparable to the length of a lipid molecule). In their model the protein was assumed to be a
cylinder and the slope condition was allowed to relax by using natural BCs on the curvature (See S5 for details on
boundary conditions). Their model could describe experiments carried out on gramicidin (30) by only modulating the
compression modulus as:

Ka(x, y) =

[
1 + (Θ − 1) · exp

(
−

r − r0

λD

)]
Ka,B, for r ≥ r0, (S25)

where Ka,B is the bulk compression modulus, Θ ∼ 4.5 is the fitted phenomenological hardening factor, r0 is the
protein radius, and r is the radial distance from the protein center. Hence, lipids located r− r0 > 15 Å from the protein
have bulk-like behavior. Recently Lee et al. (22) noted that this approach still fails to provide bilayer thickness values
consistent with molecular dynamics. We presume that these differences are due to the simplified protein representation
in the elastic model and not the theoretical methodology. Therefore, in the main text we have implemented the Kim
et al. (1), Partenskii and Jordan (24) hardening effect in the context of specific protein geometry. In our model, the
upper (+) and lower (−) leaflet compression moduli follow from Eq. S25:

K±a (x, y) =

[
1 + (Θ± − 1) · exp

(
−

r − r±0
λD

)]
Ka,m, for r ≥ r±0 , (S26)

where Ka,m is the monolayer bulk compression modulus, which we assume is half of the bilayer value Ka,B. For
non-cylindrical proteins, the quantity r − r±0 is computed by identifying the membrane-protein contact point, r±0 , that
lies along the radial line connecting r to the origin. In general, the hardening field will be different in the upper
and lower leaflets due to differences in the protein geometry in both leaflets (as in Fig. S5) leading to K+

a (x, y) ,
K−a (x, y). Therefore, when studying the distortions induced by arbitrary shape proteins, the bilayer compression
modulus including the effects of hardening is readily given by the effective modulus Keff in expression Eq. S21.
Throughout this work, we set Θ± ∼ 4.5 based on the gramicidin analysis in Ref. (24); however, it is possible
to compare our calculations to deformation profiles determined from all-atom simulations to arrive at appropriate
hardening values.

S4.5. Gaussian curvature
The Gaussian curvature energy in the upper leaflet is given by (see Refs. (11, 31, 32)):

EG = −
KG

2

∫
Ω+

~∇ ·
[(
~∇~n

)
~n −

(
~∇ · ~n

)
~n
]

dxdy, (S27)

where KG is the Gaussian bending modulus, ~n = ∇h+ is the two dimensional surface normal (neglecting the z-
component), and we have dropped much of the leaflet specific notation. There is a similar energy term corresponding
to the lower leaflet. In the expression above, we have used the notation ~∇~n = n j,k to represent a second order tensor
containing the derivatives of the normal vector ~n and hence

(
~∇~n

)
~n =

(
~n · ~∇

)
~n = n j,knk is a vector. With the divergence

theorem, we can recast the Gaussian bending energy on the boundary ∂Ω as:

EG = −
KG

2

∮
∂Ω

[(
~∇~n

)
~n −

(
~∇ · ~n

)
~n
]
·
(
−~r

)
dl, (S28)

where we define ~r as the outer normal to the surface describing the boundary ∂Ω in the x-y plane. Next, we show that
the Gaussian contribution only depends on the boundary condition ~n = ~n0 = ~∇h0 on ∂Ω (31, 32). To do this, we first
define the tangential surface gradient operator (see Ref. (31)):

~∇T~n = ~∇~n −
(
~∇~n

)
~r ⊗ ~r, (S29)
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which essentially removes any contribution of the tensor ~∇T~n in the normal direction to the surface ~r. Consequently,
~∇T~n only depends on tangential derivatives, or in other words, only values of ~n = ~n0 on ∂Ω. Making use of ~∇T~n, we
can rewrite Eq. S28 as: [(

~∇~n
)
~n −

(
~∇ · ~n

)
~n
]
· ~r = ni, jn jri − ni,in jr j (S30)

=
(
ni, j − ni,krkr j

)
n jri −

(
ni,i − ni,krkri

)
n jr j

=
[(
~∇T~n

)
~n − tr

(
~∇T~n

)
~n
]
· ~r.

From Eq. S30, we see that the Gaussian contribution Eq. S28 is only a function of normals ~n0 on the boundary.
Consequently, if ~n0 is fixed as part of the boundary conditions, then there is no variation of the Gaussian energy EG

with respect to ~n at the boundary (δ(EG)/δ~n = 0) and there is no contribution of the Gaussian component to the
minimization equations. Thus, Eq. S28 does not influence the minimum energy configuration, but it must be included
to determine the total energy of the system.

S4.5.1. Gaussian bending modulus KG

Let c1 and c2 be the two principal curvatures such that mean curvature is 2H = c1 + c2 and the Gaussian curvature
is K = c1 · c2. Then the energy density associated with changes in curvature is given by(9):

G =
1
2

Kc(H2) + KG(K) = [c1, c2] · [A] · [c1, c2]T , A =

[
Kc Kc + KG

Kc + KG Kc

]
, (S31)

where Kc is the bending modulus. For the free energy G to have a minimum, the matrix A must be positive definite,
which requires 2Kc > −KG > 0. In the main text, we have used KG ∼ −0.9Kc as recently measured from simulation
(33).

S5. Boundary conditions at the membrane-protein contact curve

The total energy of the membrane-protein system (GT ) is given by the sum of the membrane elastic energy (G(me)),
the electrostatic energy (G(e)), and the nonpolar energy G(np). For the elastic energy G(me), we assume that the only
unknowns are the fields u+(x, y) and u−(x, y). The energy minimization is obtained using the variational formulation:

δG(me)(u+, u−) = δG(me)
u+ + δG(me)

u− = 0, (S32)

where δGu+ and δGu− represent the variation in energy resulting from variables u+ and u−, respectively. Eq. S32 yields
the equilibrium shape equations of the membrane as well as a set of requirements (boundary conditions BCs) that the
membrane deformation variables must satisfy at the boundary interface(34).

To see the role and physical significance of the BCs, we write the membrane’s elastic energy functional δG(me) as
the sum of the interior membrane surface contributions (δG(me)

Ω
) and the contribution at the boundary edge (δG(me)

B )
(34):

δG(me) (u+, u−
)

= δG(me)
Ω

(
u+, u−

)
+ δG(me)

B
(
u+, u−

)
. (S33)

Under the assumption that no external forces are acting over the interior surface of the membrane and that the only
perturbations are due to the inclusion on the internal edge-boundaries, then the first term δG(me)

Ω
over the interior

surface yields the Euler-Lagrange equations presented in the main text:

∇4u+ − ∇2J+
0 − γ∇

2u+ + β
(
u+ − u−

)
= 0, in ΩM , (S34)

∇4u− + ∇2J−0 − γ∇
2u− + β

(
u− − u+) = 0, in ΩM , (S35)

∇4u− + ∇2J−0 − γ∇
2u− +

β

2
(
u− − u+

B
)

= 0, in Ω1, (S36)

∇4u+ − ∇2J+
0 − γ∇

2u+ +
β

2
(
u+ − u−B

)
= 0, in Ω2, (S37)
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The second term δG(me)
B in Eq. S33 must account for the external shearing force p±ext and mechanical moments m±ext

imposed by the inclusion at the edges (interior boundary) of the upper and lower leaflets, respectively. The latter
yields the following set of allowable BCs (24):

δu+ [
p+(u+, u−) − p+

ext
]
+ δ

(
∇u+ · ~r2

) [
m+(u+, u−) − m+

ext
]

= 0 at the upper leaflet boundary, (S38)
δu−

[
p−(u+, u−) − p−ext

]
+ δ

(
∇u− · ~r1

) [
m−(u+, u−) − m−ext

]
= 0 at the lower leaflet boundary, (S39)

where ~r1 is the unit vector pointing perpendicular to the curve described by the lower leaflet-protein interface and ~r2 is
the unit vector pointing perpendicular to the curve described by the upper leaflet-protein interface (see Fig. 1 B in the
main text). The variable p± represents the internal forces and m± are the internal moments generated at the interface
by the stressed upper and lower leaflets.

From Eq. S38 and Eq. S39, we see that there there are several different BCs that satisfy the physical situation.
The first, and most intuitive situation, is fixed BCs, where u± and ~∇u± are predetermined at the boundaries. In this
case, variations on the deformation variables at the boundary are zero (δu± = δ∇u± = 0) and Eq. S38 - Eq. S39 are
immediately satisfied. For the protein induced membrane distortion problem, we have following set of fixed conditions
(See Refs. (24)):

u±= 0, ~∇u± = 0 far away from inclusion, and (S40)

u±= u±B, ~∇u− · ~r1 = S −, ~∇u+ · ~r2 = S + at the protein-monolayer interface,

where S ± reflects the monolayer slope, or contact angle, at the point of contact with the protein. The fixed conditions
far away from the inclusion in Eq. S40 are commonly used in the literature since it is expected that the protein induced
membrane deformations should decay to bulk values; however, there is more disagreement about the appropriate BCs
at the protein-monolayer interface in Eq. S40 (22). Earlier work found that setting the slopes equal to zero at the
protein-membrane interface yielded compatible energetics with experiments carried out on gramicidin (24, 36, 37).
Yet there is no formal justification for the zero slope condition, and more recent comparison with MD simulations
suggests that the zero slope boundary condition fails to properly describe membrane deformations near the protein
(22).

A second set of BCs compatible with Eq. S38 and Eq. S39 arise from the physical constraints of forces and torques
at the membrane-protein interface (24):

p+(u+, u−) = p+
ext and m+(u+, u−) = m+

ext at the upper leaflet boundary, (S41)
p−(u+, u−) = p−ext and m−(u+, u−) = m−ext at the lower leaflet boundary. (S42)

It is not possible to know the analytic form of the constraints p±ext and m±ext, thus precluding an easy implementation
of these conditions. However, a special situations, referred to as natural BCs, arises when u± and/or S ± are allowed
to freely and independently adjust to the effects of the inclusion (22, 24). When u± is free to adjust, it implies no
external forces are being applied (p± = 0), while freely adjusting slopes (S ±) imply no externally applied moments
(m± = 0) (24). For instance, instead of fixing the value of S ± at the boundary, many authors have used the alternative
natural BCs of prescribing the curvature (∇2u± = 0). For the case of gramicidin, it was determined that natural BCs on
the curvature poorly correlated with experimental energies (22). Moreover, a formal mathematical derivation shows
that the spontaneous J0 and Gaussian modulus KG should directly influence the curvature boundary condition (38).
Both of these quantities are usually neglected in continuum elastic models that use the natural boundary condition
on curvatures (22, 38). This could potentially contribute to the discrepancies reported between continuum elastic
predictions and simulation/experiment.

S5.1. What are the correct boundary conditions for real proteins?

The unknown functional form of the forces p±ext and torques m±ext at the boundary precludes the use of a purely
elastic continuum model for the membrane. Instead we use a hybrid continuum-atomistic model that couples the
membrane deformation energy (G(me)), non-polar energy (G(np)) and electrostatic energy (G(e)). The set of boundary
conditions of the elastic model that minimizes the total energy of the system (GT ) is the key coupling element between
the three explicit energies appearing in our hybrid approach. In the main text, we describe the optimization procedure
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used to minimize the energy by optimally choosing BCs, and these optimized displacement values at the protein-
membrane boundary (u±B) are shown in Fig. 3 of the main text.

For completeness, the optimized slope boundary conditions (S ±) together with the slopes extracted from MD are
shown in Fig. S6. The MD slope data is rather noisy due to the highly fluctuating nature of the gramicidin protein
(center of mass translations, rotations, off axis tilting, and rotamer flipping), but our continuum slope predictions are in
good agreement with the average values from MD. Convergence of the search over the boundary conditions depends
on the protein’s geometry and size, but generally it requires 500 to 1500 iterations to achieve an absolute convergence
in the energy of 0.5 kcal/mol. Typical optimization times are about 2 to 7 hours on a desktop computer using a single
core. As shown in Fig. S6, our optimized slopes are slightly positive and not zero as suggested by previous authors
(13, 36, 37). Our solutions show evidence that at the protein-membrane interface, the slopes adapt in order to reduce
the elastic penalty. This result agrees with the expected physical behavior for an elastic slab that is compressed. The
hydrophobic region of gramicidin is slightly smaller than the hydrophobic thickness of the membrane (POPC), and in
order to reduce the compression penalty near the protein the membrane returns to its undeformed shape more quickly
resulting in non-zero slope. Having a positive slope will have a favorable effect to reduce compression at the expense
of introducing curvature into the system. Including lipid hardening effects near the protein tends to increase the degree
of the slope since the compression penalty increases. Despite our finding of a non-zero slope, the values reported here
are smaller than the values reported previously (24) when using using lipid hardening in a membrane elastic model
together with natural boundary conditions (free slope).

Figure S6: Predicted slopes at the protein-membrane boundary obtained from continuum calculations. The dotted line represents the optimal slope
at the upper leaflet, and the dashed line corresponds to the slope values at the lower leaflet. The x-axis is the angular parameterization of the
displacement along the membrane-protein boundary.

S6. Convergence of the continuum elastic energy.

We tested the convergence of our numeric solver for three different cases: an idealized cylindrical inclusion
with r0 = 15 Å, a configuration of gramicidin A examined in the main text, and the configuration of nhTMEM16
examined in our previous work (10). Each case has its own advantage. The cylinder has an analytic solution that
we used to assess the absolute convergence of our method, while the later two cases are real proteins. Gramicidin
is small and largely cylindrical, while nhTMEM16 is a large dimer with 20 transmembrane helices total (10). For
the cylinder and gramicidin, solutions were calculated on a 100 Å by 100 Å grid, but nhTMEM16 is much larger,
it was calculated on a 200 Å by 200 Å grid (10). For each boundary, we applied symmetric displacement boundary
conditions: u±B = ∓1.5 ± 1.5 · Sin(2t) ∓ 1.5 · Cos(t). For the cylinder, a slope of zero was applied with no Partenskii-
Jordan hardening near the protein, while the other two systems employed a hardening factor of 4.27 and a slope factor
of -0.04. The error on the membrane displacement field was evaluated using the L∞-norm, while the relative error was
used to assess convergence of the total membrane energy (GT ). Analytic solutions do not exists for the gramicidin
and nhTMEM16 cases, so the errors were calculated relative to the solution obtained at the highest grid density. In all
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cases, the greatest error over the entire displacement field is less than 0.7 Å when the grid spacing is less than 1.5 Å,
which is greater than 64 grid points for A and B and greater than 128 grid points for C (Fig. S7). For the cylindrical
inclusion, the error in the L∞-norm asymptotically approaches 0.065 Å rather than 0 Å. The element corresponding to
this maximum error is located on the outer boundary at 50 Å, where we assumed that the displacement field returned
to zero in the numeric calculation, but we assume boundaries at infinity in the analytic solution. Thus, the true error in
the numeric solver is even smaller than what is presented, due to inconsistencies between our numeric calculation and
our analytic reference. The relative energies have converged to approximately 5 % in all cases when the grid spacing
is 1 Å (Fig. S7 D-F). For all calculations in the main text, we use a grid spacing of 1 Å.

Figure S7: Convergence of membrane distortions on boundaries of different size and complexity. (A-C) L∞-norm of the membrane shape variable
for a cylinder of radius 15 Å, gramicidin, and nhTMEM16, respectively. The error is E∞ = max{unumeric

i, j − uanalytic
i, j } for the cylinder and E∞ =

max{unumeric
i, j − unumeric max refinement

i, j } for the two real proteins, and the indices i, j correspond to all elements in the xy-plane. Note that this error
is identical to the maximum component of the L1-norm as indicated in the figure label. (D-F) Relative error in the elastic energy for the cylinder,
gramicidin, and nhTMEM16, respectively. The total energy for each test case was 8.8, 17.9, and 31.5 kcal/mol, respectively, where the last two
values were determined from the numeric solution at the highest grid density and the former was determined analytically.

S7. Membrane height profiles from hybrid continuum-atomistic model.

Finally, we wanted to show the full 2D membrane profile predicted from our hybrid-continuum atomistic model
(Fig. S8) using the self-consistently optimized membrane boundary displacements (shown in Fig. 4 of the main text)
and slopes (Fig. S6). At the outer edges of the solution domain, we have imposed far field boundary conditions
(u± = ∇u± = 0). The corresponding membrane shape is quite similar in nature to the profiles from MD shown in
Fig. 2A,B (main text); however, they are not identical for several important reasons. First, the MD simulations impose
periodic boundaries and the continuum calculation in (Fig. S8) do not. Second, the profiles from the MD simulations
are averaged over the entire simulation trajectory, while the continuum boundary conditions were taken from a small
subset of protein configurations around the most populated orientation. As discussed throughout the manuscript, it is
not advisable to closely compare deformation profiles of averaged membranes with static snapshots.
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