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ABSTRACT The influence of the membrane on transmembrane proteins is central to a number of biological phenomena,
notably the gating of stretch activated ion channels. Conversely, membrane proteins can influence the bilayer, leading to the
stabilization of particular membrane shapes, topological changes that occur during vesicle fission and fusion, and shape-depen-
dent protein aggregation. Continuum elastic models of the membrane have been widely used to study protein-membrane inter-
actions. These mathematical approaches produce physically interpretable membrane shapes, energy estimates for the cost
of deformation, and a snapshot of the equilibrium configuration. Moreover, elastic models are much less computationally
demanding than fully atomistic and coarse-grained simulation methodologies; however, it has been argued that continuum
models cannot reproduce the distortions observed in fully atomistic molecular dynamics simulations. We suggest that this failure
can be overcome by using chemically and geometrically accurate representations of the protein. Here, we present a fast and
reliable hybrid continuum-atomistic model that couples the protein to the membrane. We show that the model is in excellent
agreement with fully atomistic simulations of the ion channel gramicidin embedded in a POPC membrane. Our continuum cal-
culations not only reproduce the membrane distortions produced by the channel but also accurately determine the channel’s
orientation. Finally, we use our method to investigate the role of membrane bending around the charged voltage sensors of
the transient receptor potential cation channel TRPV1. We find that membrane deformation significantly stabilizes the energy
of insertion of TRPV1 by exposing charged residues on the S4 segment to solution.
INTRODUCTION
During the past decade there have been great advancements
in the understanding and modeling of proteins embedded in
the membrane (1–3). One of the first lessons from experi-
ment was that membrane structural and mechanical proper-
ties can induce proteins to undergo conformational changes
to carry out their function. Early experiments on the anti-
biotic ion channel forming peptide gramicidin A showed
that the thickness of the membrane drives dimerization of
the channels (4), whereas later experiments on the mechano-
sensitive channel MscL (5) showed that in-plane tension and
the hydrophobic thickness of the membrane bias the open-
ing and closing of MscL. In addition to the influences of
membrane rigidity and thickness, further advancements in
experimental techniques have shed light on how membrane
shape is coupled to protein function, localization, diffu-
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sional properties, and protein-protein interactions (3). For
instance, membrane curvature plays a crucial role in the
mobility of proteins in the membrane (6). Curvature is
thought to affect the probability of alamethicin conductance
states (7) and to play an allosteric regulatory role for ion
channel function of a-hemolysin (8). Moreover, proteins
are not static. Proteins push back on the bilayer, potentially
acting as shape remodeling elements that may even influ-
ence how cells carry out their biological function (9,10)
For example, protein coats composed of COPI or COPII
complexes have been associated with the distinct shapes
of spherical vesicles that shuttle between the endoplasmic
reticulum and Golgi (11), whereas the homotypic fusion
of embedded proteins on opposing membranes is believed
to induce endoplasmic reticulum tubular networks (12).
Also, there is growing evidence that rows of transmem-
brane F-ATPase dimers are partially responsible for the
complex folds of the cristae (inner mitochondrial mem-
brane) (13,14), and recent experiments using electron
microscopy and electron paramagnetic resonance of endo-
philin A1 show that vesiculation and tubulation are likely
a function of the depth of protein insertion (15).
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Parallel to this experimental evidence, several theoretical
efforts to study the interaction between transmembrane
proteins and their host membranes have also emerged.
Fully atomistic simulation (16), coarse-grained models
(17), purely analytic continuum approaches (18), and hybrid
models (19,20) have been developed to explain what is
observed in experiment and to further explore these interac-
tions beyond the spatial and temporal resolutions of current
experimental techniques. A key characteristic of molecular
dynamic simulations is the possibility of extracting a lateral
pressure profile that describes the nonhomogeneous mem-
brane stress inside a bilayer arising from hydrophobic, elec-
trostatic, and steric interactions (21). The membrane stress
profile can then be used to study the mechanical coupling
between the protein and the bilayer but results are affected
by the level of coarsening in the simulation (22). Protein-
driven membrane deformations require system sizes and
timescales that are challenging for fully atomistic simula-
tion. Continuum approaches, however, are less computa-
tionally demanding and have proven to be an effective
tool to study these systems (3). Numerous continuum
models for the membrane exist, most of which predict the
deformation of the membrane that minimizes the mismatch
between the hydrophobic core of the membrane with the hy-
drophobic belt of amino acids around the protein (2,23–27).
The models calculate the shape of membrane surfaces and
also provide the resulting membrane compression and cur-
vature energies.

Gramicidin-A function in the membrane has been well
characterized using experimental techniques (4,28), and for
this reason it serves as a model system for the validation of
continuum and computational approaches. This antimicro-
bial, short peptide forms anchors in either upper and lower
monolayers, and individual peptides come together to create
a homodimer that spans the membrane. The ion channel is
only functional as a dimer, and in thicker membranes, gram-
icidin must pinch the upper and lower leaflets to dimerize.
For this reason, dimer formation is a function of the hydro-
phobic mismatch between the dimer hydrophobic region
and the membrane hydrophobic thickness. Membrane
bilayer energetics are related to the changes of the average
gramicidin channel lifetimes (26,29), and this phenomenon
provides experimentallymeasurable evidence of the underly-
ing physical interactions between the membrane and the pro-
tein. Many groups have successfully studied these lifetimes
using continuummembranemodels (23–25,27,30,31). These
theoretical approaches have provided deep insight into the
effects of membrane elastic properties and protein boundary
conditions on the energetics of the system and the equilib-
rium shapes of the membrane near the protein. Nevertheless,
the majority of these continuum-based studies have repre-
sented the protein as an idealized cylinder lacking chem-
ical detail. Consequently these continuum models have
failed to reproduce outcomes of detailed atomistic studies
(16,18,22). This observation has prompted the field to refine
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the continuum approaches and include atomistic detail
(19,32,33), geometric effects (34,35), or both (20,36). For
example, the Weinstein group (20,36) developed a novel
method to account for deformations of the bilayer by noncy-
lindrical shape inclusions. Their model represents the mem-
brane as two uncoupled single sheets. They used a finite
difference solver on a Cartesian grid where the membrane
is represented by a continuum elastic model but the boundary
conditions for the model are directly extracted from the
membrane heights at the protein-membrane interface from
molecular dynamics (MD) simulations. This coupling to
observations from MD proved useful in quantifying the hy-
drophobic mismatch-driven remodeling of membranes by
G protein-coupled receptors (20) and studying the coupling
between membrane shape and conformational states of the
bacterial leucine transporter (36). Similarly, Haselwandter
and co-workers developed sophisticated analytic and numer-
ical treatments of the membrane-protein contact boundary to
explore the influence of protein shape on the membrane
deformation energies of MscL (34,35,37). Those authors
used a continuum elastic representation of the membrane
together with mixed finite element formulation to solve for
the membrane energies. Although currently their methods
do not include atomistic detail, their approach yields rapid
numerical convergence for complex domains and have suc-
cessfully been applied to study the relations between the
shape of MscL and the supramolecular architecture of
MscL lattices and clusters (35).

Here, we present a hybrid continuum-atomistic model
that can describe membrane deformations induced by mem-
brane proteins of arbitrary shape. The model uses the struc-
tural information from the protein inclusion (19,32,38)
together with a finite volume, continuum representation
of the membrane (39). In contrast to previous models
(19,20,35), we include protein chemistry and geometrical
effects, but our methods are self-consistent and do not
require any input from molecular dynamics. The finite vol-
ume numeric scheme for describing the membrane shape
allows us to distort the grid near the protein interface, result-
ing in smooth membrane-protein boundaries and a distorted
grid that increases the accuracy of our solver with fewer
discrete elements than a Cartesian grid. The membrane is
allowed to undergo asymmetric bilayer deformations, where
the effects of possible redistribution of the membrane lipids
near the inclusion are captured by the space-dependent
behavior of the elastic moduli (27). The deformation profile
is calculated by minimizing the sum of the elastic, electro-
static, and nonpolar energies. Incorporating all three en-
ergies provides a more sophisticated and realistic view
of global membrane-protein energetics than provided by
membrane-only models. In the next section, we derive our
continuum model for bilayer deformations in response to
the insertion of an integral protein. Then we validate our
method by comparing membrane shapes produced by fully
atomistic simulations of gramicidin with membrane shapes
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produced from our continuum calculations. Our model is
able to accurately reproduce the membrane height profiles,
boundary conditions, and protein orientation seen in our
simulations. We discuss how care must be taken when pro-
ducing average membrane surfaces from MD trajectories
with a particular emphasis on periodic boundary effects
and fluctuations in protein position. Finally, to illustrate
the capability of our model to handle complex protein
shapes, we study the membrane-induced deformations by
the thermosensitive ion channel, TRPV1. These deforma-
tions significantly reduce the electrostatic penalties caused
by exposing charged and polar residues to the membrane
core.
MATERIALS AND METHODS

Model description

As in our previous works (19,32,38), the total energetic stability of the

membrane-protein system is approximated as the following:

GT ¼ GðmeÞ þ GðeÞ þ GðnpÞ þ GðoÞ; (1)

where G(me) is the membrane elastic energy due to the shape distortions in

the membrane,G(e) is the electrostatic penalty caused by inserting a charged

protein into the low-dielectric environment of the membrane, G(np) is the

nonpolar energy associated with burying protein surface area in the mem-

brane (hydrophobic effect), and G(o) represents the orientational entropy

cost of a protein constrained to only explore a subset of tilted configura-

tions. We calculate the change in free energy of the protein-membrane sys-

tem with respect to a reference state where the protein is completely in

solution, far away from the undistorted (flat) membrane. For transmem-

brane proteins, the hydrophobic effect tends to be the largest component,

and it stabilizes the protein in the membrane through the nonpolar energy

G(np). Typically, G(np) is approximately three times larger than the electro-

static interactions G(e), which in turn tend to destabilize the protein; how-

ever, these two components can vary significantly depending on the size

and charge makeup of the protein in question. Whereas G(np) and G(e)

play the major role in determining the insertion energy, the membrane

can still deform to accommodate a charged protein leading to an unfavor-

able elastic penalty G(me) that is approximately an order-of-magnitude

smaller than G(np), in many cases. Finally, the orientational entropy G(o)

has a very modest effect in stabilizing the protein. In this section, we outline

the elements of our theory that allow us to account for arbitrary shape pro-
hydrophilic and hydrophobic residues, respectively. (B) Given here is the top-do

where the upper and lower leaflets are matched UM, meaning uþ ¼ hþ � L0/2 an

to the unmatched U1 region where only the lower leaflet variable u
� is defined. T

only the upper leaflet variable uþ is defined and r!2 is the normal vector to the c

poses, the grid spacing has been enlarged and truncated around the protein. To
tein inclusions. First, we describe the general geometry of the protein-mem-

brane system, and then we present the theory behind the membrane

elasticity G(me) term in Eq. 1. For details on the energetic description on

the nonelastic energetic terms (G(e) þ G(np) þ G(o)), we refer the reader

to our previous publications (3,19,32,38,40) and the Supporting Material.
Geometry: matched and unmatched regions

We consider a bilayer membrane made up of two monolayers (leaflets) of

identical lipid composition with an embedded protein of arbitrary shape

(a graphical representation is given in Fig. 1). Due to the nonuniform

cross-sectional area of the protein, the area projections in the x-y plane of

the upper and lower leaflets do not coincide (see Fig. 1 B). The projected

area in the x-y plane covered by the upper leaflet is denoted Uþ, and it is

described by the field variable hþ(x,y). Similarly, U� is the projected area

of the lower leaflet, where the leaflet’s height is given by h�(x,y). Because
the leaflets do not coincide at all x-y values, it is useful to characterize the

matched and unmatched regions between the projected areas. The region

UM ¼ Uþ W U� is defined as the matched x-y region, where hþ and h�

are well defined. On the other hand, U1 ¼ U� � UM represents the un-

matched region in the x-y plane where only the lower leaflet variable h�

is well defined, while U2 ¼ Uþ � UM represents the unmatched area where

only the upper leaflet variable hþ is well defined. Finally, we define the

shape variables u5 as the difference between the height h5 of the upper

and lower leaflets with respect to the flat equilibrium height of the mem-

brane h0 ¼ L0/2 as follows:

u5 ðx1; x2Þ ¼
�
h5H

L0

2

�
: (2)

Membrane deformation energy G(me)

As mentioned earlier, G(me) represents the elastic energetic penalty due

to membrane deformation in the presence of an inserted protein. We chose

to use a continuum theory to describe the shape deformations of the bilayer

by considering independent variables for each monolayer (23,38). For a

general configuration (e.g., Fig. 1) where there are two unmatched regions

U1 and U2, we define the total membrane free energy as the sum of the in-

dependent contributions of each monolayer, as follows:

GðmeÞ ¼ G
ðmeÞ
M þ G

ðmeÞ
1 þ G

ðmeÞ
2 ; (3)

where GM
(me) is the elastic energy contribution of the two monolayers

over the region UM where both uþ(x,y) and u�(x,y) are defined, G1
(me) is

the contribution over the unmatched region U1 where only u� is defined,
FIGURE 1 Continuum membrane model for

proteins of arbitrary shape. (A) Shown here is a

wide view of membrane deformation around an

embedded membrane protein from the continuum

model. The membrane headgroup-tail interfaces

are shown as gray surfaces, where hþ(x,y) describes
the upper leaflet shape and h�(x,y) describes

the lower leaflet shape. The membrane dividing

(compression) surface CM is shown by the dashed

line and the unperturbed membrane thickness is

labeled L0. The protein is shown in molecular sur-

face representation. Residues are blue and white for

wn view of grid used in membrane solver. The blue area denotes the region

d u� ¼ h� þ L0/2 are defined. The red areas near the boundary correspond

he black areas near the boundary represent the unmatched region U2 where

urve describing the protein/upper-monolayer interface. For illustrative pur-

see this figure in color, go online.
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and G2
(me) is the contribution over unmatched U2 where only uþ is

defined. The energy GM
(me) over the matched region UM is given by the

following (23):
G
ðmeÞ
M ¼ 1

2

Z
UM

Kc

2

h�
V2uþ þ Jþ0

�2 þ �V2u� � J�0
�2i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Mean Curvature-Bending

dxdy

þ1

2

Z
UM

a

2

h�
V
!
uþ
�2 þ �V!u�

�2i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Surface tension

dxdy

þ
Z
UM

Ka

L2
0

h�
uþ � cM

�2 þ �u� � cM
�2i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Compression

dxdy

þ
Z
UM

KG

2

"�
v2uþ

vx2
� v2uþ

vy2

�
�
�
v2uþ

vxvy

�2

þ
�
v2u�

vx2
� v2u�

vy2

�
�
�
v2u�

vxvy

�2
#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Gaussian Curvature

dxdy;

(4)
where we have used the u5 definitions in Eq. 2, the ‘‘þ’’ refers to the upper

monolayer and ‘‘�’’ the lower one, and factors of two are present due to a

monolayer versus bilayer description. Kc is the bilayer bending modulus,

a is the surface tension parameter, Ka is the bilayer area compression

modulus, and KG is the bilayer Gaussian modulus. The variables J0
þ and

J0
� are the spontaneous curvatures of the upper and lower leaflets, respec-

tively. We have defined J0
5 using the standard sign convention, such that a

lipid at equilibriumwith a positive spontaneous curvature is onewith a large

headgroup with a preference for a micelle geometry (41). Above, we have

written the compression term as a function of the surface cM(x,y) separating

the two leaflets (Fig. 1 A). For more details, we refer the reader to the liter-

ature (42–45) and the Supporting Material accompanying this article.

Minimizing the free energy in Eq. 4 with respect to cM(x,y) yields: cM ¼
(uþ þ u�)/2, which corresponds to the midplane of the bilayer (42). Using

this last result for cM in the compression term of Eq. 4 recovers the liquid

crystal-based energy expression proposed by Huang (23) and used in our

previous works (19,32,38).

The functional forms of G1
(me) and G2

(me) over the unmatched regions

are analogous to the expression Eq. 4, but each term only has contribu-

tions from a single leaflet. Where the in-plane areas of the inserted pro-

tein do not match in the upper and lower leaflets there are projected

regions where the bilayer midplane does not exist. For such scenarios,

the lipids in opposing monolayers will still be compressed against a

dividing surface c(x,y), which is constrained by the protein’s geometry.

We define the field variables c1(x,y) and c2(x,y) as the dividing

(compression) surface over regions U1 (upper monolayer) and U2 (lower

monolayer), respectively. The functions c1(x,y) and c2(x,y) are protein

specific, but for transmembrane proteins spanning both leaflets, where

the mismatched region is small compared to the total protein surface

area projection (i.e., gramicidin, TRPV1), we propose an approximation,

as follows:

c1 ¼ u� þ uþB
2

and c2 ¼ uþ þ u�B
2

; (5)
the contact curve between the upper leaflet and the protein. Similarly

u�ðx; yÞ is the boundary condition of u� at the contact curve between the
where uþB ðx; yÞ is the boundary condition of the field variable uþ enforced at

B
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lower leaflet and protein. Equation 5 assumes that the monolayer dividing

surfaces c1 and c2 are not heavily distorted with respect to cM and can be

approximated by extending the bilayer midplane cM¼ (uþ þ u�)/2 by using
the boundary values u5B in regions where either the upper or lower leaflets

are not defined. Equation 5 ensures that the resulting surface dividing the

two monolayers is continuous in space. For more detail, please refer to

the Supporting Material.

We can write the free energy contribution G1
(me) over region U1, as

follows:

G
ðmeÞ
1 ¼ 1

2

Z
U1

Kc

2

�
V2u� � J�0

�2 þ a

2

�
~Vu�

�2
dxdy

þ
Z
U1

Ka

L2
0

�
c1 � u�

�2 þ KG

2

 
v2u�

vx2
� v2u�

vy2
�
�
v2u�

vxvy

�2
!
dxdy;

(6)

and the contribution G2
(me) over region U2, as follows:

G
ðmeÞ
2 ¼ 1

2

Z
U2

Kc

2

�
V2uþ þ Jþ0

�2 þ a

2

�
~Vuþ

�2
dxdy

þ
Z
U2

Ka

L2
0

�
uþ � c2

�2 þ KG

2

 
v2uþ

vx2
� v2uþ

vy2
�
�
v2uþ

vxvy

�2
!
dxdy:

(7)

As before, we have assumed that both monolayers have equal elastic

moduli, and we have expressed the energy contributions in terms of bilayer

moduli to be consistent with Eq. 4.
Membrane equilibrium configurations

The membrane equilibrium shape equations associated with the elastic en-

ergy G(me) are determined by minimization of Eqs. 4–7 resulting in the

following Euler-Lagrange equations:

V4uþ � V2Jþ0 � gV2uþ þ b
�
uþ � u�

� ¼ 0; in UM; (8)
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V4u� þ V2J� � gV2u� þ b
�
u� � uþ

� ¼ 0; in UM; (9)
0

4 � 2 � 2 � b � � þ�
V u þ V J0 � gV u þ
2

u � uB ¼ 0; in U1; (10)

4 þ 2 þ 2 þ b � þ ��
V u � V J0 � gV u þ
2

u � uB ¼ 0; in U2; (11)

where we have made use of Eq. 5 and defined the following:

g ¼ a

Kc

; b ¼ 2Ka

L2
0Kc

; u5
B ¼

�
h5
B H

L0

2

�
: (12)

Under the assumption of constant or vanishing spontaneous cur-

vatures J0
5, we recover the equations of our earlier work (19,32,38).

Note that Gaussian terms do not appear in the Euler-Lagrange equations

Eqs. 8–11. The Gaussian curvature terms can be transformed into boundary

integrals by means of the divergence theorem (46,47) and consequently do

not contribute to the shape equations of the system.

The equilibrium equations Eqs. 8–11 can be readily solved for uþ and u�

given a suitable set of boundary conditions. First, it is physically reasonable

to assume that far away from the protein the perturbation effects on the

membrane deformations vanish. As the perturbations vanish, the membrane

asymptotically approaches its unstressed equilibrium configuration, as

follows:

uþ ¼ u� ¼ ~Vuþ ¼ ~Vu� ¼ 0 far away from inclusion:

(13)
A

D E

B

FIGURE 2 Comparison of protein-induced membrane deformations frommole

membrane height profiles for the upper leaflet (A), lower leaflet (B), and hydroph

bilayer. (D)–(F) show the corresponding continuummembrane surfaces. For the c

membrane boundary and at the edges of the box that were extracted from the M

protein (compression ring) can be clearly seen in the hydrophobic mismatch pane

shows a 55 Å radial distance measured from the center of the protein. White a

calculated using simulation (A) and (B) when compared to continuum (D) and

deformations calculated using our hybrid-atomistic model without any input fro
Meanwhile, at the protein-membrane boundary, we impose the following

fixed set of boundary conditions:

uþ ¼ uþB ; u� ¼ u�B ; ~Vuþ � ~r2 ¼ Sþ;

and ~Vu� � ~r1 ¼ S�;
(14)

where ~r1 is the normal vector to the curve describing the protein/lower-

monolayer interface and~r2 is the corresponding vector at the protein/up-

per-monolayer interface (see Fig. 2). This last set of conditions in Eq. 14

depends on the geometry and atomic structure of the protein, and for this

reason is optimized by an iterative procedure that attempts to minimum

the total energy of the system, GT (32,38). Details on the minimization pro-

cedure are in the next section.

Although we have chosen to use the fixed boundary conditions given in

Eq. 14, there are other alternative conditions that still satisfy Eqs. 8–11. In

the Supporting Material, we address in detail the treatment of boundary

conditions for elastic continuum models and the proposed version of a

hybrid continuum-atomistic model.
Minimization of the total energy GT

In 2013, Lee et al. (18) suggested that elastic continuum descriptions fail to

reproduce the membrane deformations near the protein boundary observed

in MD simulations. The disparity between MD and continuum methods has

been argued to result from the lack of explicit chemical and geometrical ef-

fects of the inserted protein (3,18,20). The contact conditions between

membrane and protein will have a large effect not only on the membrane

deformation energy but also on nonpolar and electrostatic penalties. There-

fore, determining the minimum energy of the system GT (Eq. 1) requires a
F

C

cular dynamics and continuum elasticity. (A–C) Shown here are the average

obic thickness (C) from one 250-ns MD simulation of gramicidin in a POPC

ontinuum calculations (D)–(F), we used boundary conditions at the protein-

D data in (A)–(C). The region where the membrane is compressed near the

ls of both the MD (C) and continuum calculations (F). Dashed arc line in (C)

sterisks show the location of maximum difference between leaflet heights

(E). For reference, in Fig. S8 we show the gramicidin-induced membrane

m MD. To see this figure in color, go online.
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thoughtful choice of the prescribed boundary conditions at the protein-

membrane interface. Our hybrid-continuum approach is equipped to deter-

mine the correct boundary conditions. We search for the optimal set of fixed

boundary conditions Eq. 14 that minimize the total energy GT and conse-

quently play the key role in coupling the elastic and nonelastic effects

(see Eq. 1). To find the optimal value of the displacement boundary condi-

tions uþB and u�B , we use a simulated annealing algorithm (48), where an

iterative search is performed over all displacement parameters to obtain

the membrane shape that minimizes GT. The displacement boundary condi-

tions are further optimized using Powell’s method (49), then the slope

boundary conditions are optimized using a Nelder-Mead simplex method

(50). The Powell and Nelder-Mead optimizations are performed one

more time to ensure convergence. We express the variables uþB and u�B in

Fourier series representation of order n (three or higher) where the search

is over the (2n þ 1) amplitude coefficients. The upper and lower slope vari-

ables, Sþ and S�, are set as proportional to the upper and lower displace-

ment boundary conditions, as follows:

Sþ ¼ aþuþB ; S� ¼ a�u�B ; (15)

where aþ and a� are the scalar parameters that are optimized. This simpli-

fication reduces the parameter space and the search time. More information

can be found in Callenberg (48).
Identifying the membrane-protein contact curve

Within the dual monolayer framework, there are two contact curves—one

for the upper leaflet and one for the lower leaflet. These curves represent

the lipid excluded surface, which is the surface of closest contact between

a spherical lipid probe and the protein atoms (51). To identify these curves,

we first erect a flat Cartesian grid for the upper and lower leaflets, and then

use level set theory to move grid points near the membrane-protein surface

onto the boundary curve representing the lipid excluded surface (39). The

mathematical details on how to obtain the distorted grid representing the

monolayer surfaces with geometrically accurate boundary curves can be

found in Wolgemuth and Zajac (39).

For both upper and lower leaflets, we define the smooth curve C(x,y) that

represents the lipid-excluded surface. Next, we find the level set function

L(x,y) (isocontour) rendering the signed minimum distance from every co-

ordinate point (i,j) in the Cartesian grid to the curve C(x,y). Therefore, the

interface C(x,y) is represented implicitly by the zero of the level set function

L(x,y)¼ 0 and the unit normal to the curve C(x,y) is given by the following:

~r ¼ � ~VLðx;yÞ
j~VLðx;yÞ j : (16)

Fig. 1 shows the unit vector~r ¼~r2 corresponding to the upper leaflet. Next,

from the distance map L(x,y) we identify the set B of all Cartesian grid
TABLE 1 Elastic Membrane Material Properties Specific to POPC a

Parameters

Membrane thickness (L0)

Surface tension (a) 3.00

Bending modulus (KC) 8.5

Gaussian modulus (KG) �
Shell hardening factora (Q)

Area compression modulus (bulk)a (Ka,B) 2.13

Protein dielectric (εp)

Membrane dielectric (εhc)

Headgroup dielectric (εhg)

SASA prefactor for nonpolar energy (a) 0.028

aWe have used nonuniform values of the compression modulus Ka (see Support

calculations (i.e., electrostatic grid dimensions), we use the same values presen
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points (iB, jB) within one Cartesian grid-edge length gl of the curve C as

follows:

B ¼ ðiB; jBÞ for ði; jÞ satisfying jLði; jÞ j%gl: (17)

The collection of points in set B define the curve that most closely describes

each leaflet boundary curve in a Cartesian grid. Finally, we distort the Car-

tesian grid points at the boundary by spatially moving all points in set B

from their initial position~RðiB; jBÞ onto the curve C(x,y) using the following
transformation:

~RDðiB; jBÞ ¼ ~RðiB; jBÞ þ LðiB; jBÞ~r; (18)

where the new position vector ~RDðiB; jBÞ describes the location of the dis-

torted grid points representing the protein-membrane interface. In Eq. 18

the function L(iB, jB) tells how far the points (iB, jB) in the regular Cartesian

grid are from the curve C, while~r tells the direction in which the position

vector ~R needs to be displaced. One of the convenient features of this pro-

cedure is that the distorted grid (see Fig. 1) retains four-point connectivity

and results in smooth boundaries (39). As with all numeric solutions of

PDEs, an accurate description of the boundary is important for faithfully

representing the shape of the system and properly applying boundary con-

ditions. Once the boundaries are established, we solve the shape equations

(Eqs. 8–11) using a finite volume method. Details of the numerical proced-

ure can be found in Wolgemuth and Zajac (39).
Continuum model parameters

Here, we only consider homogeneous POPC membrane systems, and we

have summarized the elastic and continuum parameters used throughout

our calculations in Table 1. We assume the area compression modulus in

the bulk for the upper and lower monolayers K5
a;m is half of the reported

area compression modulus of the bilayer (Ka,B). This condition is justified

over the bulk region UM if we assume a constant and equal density of lipids

per leaflet (see Supporting Material). We point out that although constant

elastic rigidity is commonly used in continuum elastic models of the mem-

brane (3), this assumption likely breaks down near the protein interface

(18,27). From a physical point of view, one can expect spatial changes of

the elastic constants due to limitation on the mobility and packing of the

lipid molecules near the inclusion (shell hardening) (17,22,25–27). For

this reason, it has been previously suggested that the common assumption

of constant elastic parameters might be an oversimplification at the shorter

length scales of a protein-membrane system (25). Partenskii and Jordan

(27) implemented a model where values of the elastic constants near the in-

clusion are larger than the values in the bulk. In their work, this shell hard-

ening effect has a decay length (�15 Å) comparable to the width of lipid

molecules. In their work the bending and compression moduli are both

increased near the protein, but the authors found that only the perturbation
nd Prescribed Parameters for All Continuum Calculations

Values Reference

28.5 Å Kim et al. (16)

� 10�13 N/Å Latorraca et al. (32)

� 10�10 NÅ Kim et al. (16)

�0.9 � Kc Hu et al. (54)

�4.27 Partenskii and Jordan (27)

� 10�11 N/Å Latorraca et al. (32)

2.0 Latorraca et al. (32)

2.0 Latorraca et al. (32)

80.0 Latorraca et al. (32)

kcal/(mol,Å2) Sitkoff et al. (91)

ing Material). For the remaining parameters necessary for the electrostatic

ted in our previous publication (32).
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of the compression bilayer constant Ka has a significant effect on the mem-

brane energy. Comparison to gramicidin experiments showed that the

compression modulus is�5 times larger at the protein-membrane boundary

than in the bulk (Ka,B) (27). In this model, we have incorporated shell hard-

ening through a spatially dependent compression modulus K5
a ðx; yÞ that is

greatest at the protein-membrane boundary, and exponentially decays to the

bulk monolayer value ðK5
a;mÞ as distance increases. Hardening primarily af-

fects the first and second lipid shells surrounding the protein (for detail, see

Supporting Material). We point out that in this model the function K5
a ðx; yÞ

can be arbitrary, and this does not change the governing Euler-Lagrange

equations Eqs. 8–11. As in our previous work (32), we found that the sur-

face tension (a) does not contribute significantly to the energy and for this

reason we assume it to be a constant over all space. Finally, the last integral

term in Eq. 4 is the Gaussian curvature energy contribution. In our problem,

the membrane does not change topology between the initially flat surface

and final distorted surface because both states include the protein hole. In

addition to topological changes, the Gaussian term can be formally shown

to contribute only through the boundary effects (24,47,52,53). When using

fixed boundary conditions, as we do here, the equilibrium shape is indepen-

dent of the Gaussian term, but the total energyGTof any given configuration

still depends on the Gaussian curvature. Consequently, this term will affect

the search for the optimal equilibrium shape as described in Minimization

of the Total EnergyGT. We have chosen to use Gaussian modulus KG values

from simulation (54,55), which are in reasonable agreement with reported

experimental values. Also, in writing our energies we have assumed the

Gaussian monolayer modulus to be half of the measured bilayer modulus

KG. This assumption is justified in our calculation, given that we use zero

spontaneous curvature for each monolayer. In general, the relation between

the monolayer and bilayer Gaussian curvature moduli has a correction term

involving the monolayer spontaneous curvature and the position of the

monolayer pivotal plane (41,56).

We point out that our model, like any continuum membrane representa-

tion, is limited by the phenomenological nature of the parameters

describing the membrane mechanical properties (41). Experiments have

shown that there are still uncertainties regarding the specific values of me-

chanical parameters (57,58), and the MD reported values do not always

agree with experiment (59,60). In this work, we constrain ourselves to

a smectic liquid-crystal model (23) where the mechanical parameters

(Table 1) have been picked from the gramicidin-POPC literature (16,18),

keeping in mind that our goal is a comparison between our hybrid contin-

uum model and MD simulations.
Simulation methods

Simulations were prepared using the NMR gramicidin structure (PDB:

1JNO) (61). With CHARMM-GUI (62), the structure was inserted into a

97 � 97 Å2 POPC membrane, and solvated with TIP3P water molecules

(63), and 150 mMKCl. The total system size was 38,876 atoms. The system

was run in the software NAMD (http://www.ks.uiuc.edu/Research/namd/)

(64) using the CHARMM36 lipid force field (http://mackerell.umaryland.

edu/charmm_ff.shtml) (65) with an anisotropic Nos�e-Hoover-Langevin

barostat and Langevin thermostat. Equilibration and production simulations

were carried out using the default parameters provided by CHARMM-GUI

(http://www.charmm-gui.org/). Two independent gramicidin simulations

were separately prepared and run for 250 ns each, and another mem-

brane-only simulation was prepared and run for 100 ns.

The hydrophobic interfaces of the upper and lower leaflets were averaged

over time to obtain a single MD-generated membrane surface to compare

with the continuum predictions. The goal of such averaging is to provide

a physically accurate representation of the equilibrium shape of the mem-

brane, but we note that the average of a solution set is not necessarily a

solution itself. That is, averaging the membrane surface may produce phys-

ically unrealistic shapes. To reduce possible artifacts from averaging, we

used an interpolation method. When comparing membrane surfaces be-

tween MD and our continuum model, each frame from MD was aligned
to the initial snapshot by centering the protein. Then the upper and lower

surfaces were interpolated from the C2 carbon atoms of the POPC acyl

chains (66) using a cubic spline method. After the alignment, the upper

and lower surfaces were averaged over all frames. When comparing the pre-

dicted boundary conditions of our continuummodel to MD, the protein was

further aligned by rotating in the x-y plane to minimize the root mean square

deviation of the protein backbone. Because the continuum model assumes

the membrane lies in the x-y plane, the simulations were only allowed to

rotate about the z axis during the alignment. Other rotations were not

allowed because this would rotate the membrane out of the x-y plane. Addi-

tional details are provided in the Supporting Material.
RESULTS AND DISCUSSION

Gramicidin induces asymmetric deformations

We first applied our model to study the membrane de-
formations created around the antibacterial ion channel
gramicidin. This protein is often used to explore protein-
membrane interactions, because its ability to conduct ions
is intimately connected to the properties of the membrane
(4), and experimental studies have demonstrated membrane
thinning/thickening at the protein interface (28). Continuum
elastic models have proven useful in predicting the
energetics of gramicidin induced deformations and using
these energies to accurately estimate open channel lifetimes
(18,26,67). All of these models use a simplified cylindrical
description of gramicidin leading to radially symmetric
membrane distortions. In 2012, Kim et al. (16) rigorously
compared the continuum distortions to those observed
from all-atom molecular dynamics simulations. Interest-
ingly, despite their reliability in determining channel func-
tion, the authors noted that simplified continuum elastic
models fail to reproduce the deformations observed in
simulation (16).

We chose to revisit this analysis using a more accurate
treatment of the channel chemistry and geometry to deter-
mine if these features could overcome the deficiencies
inherent in simpler continuum models. We started by
running two independent simulations of gramicidin in a
100 � 100 Å2 membrane patch of POPC membrane for
250 ns each (500 ns total). The average membrane deforma-
tion profiles from the two MD simulations are shown in
Fig. 2, A–C. Similar to previous studies (16,22), we observe
highly nonsymmetric deflections in the upper and lower
leaflets with respect to the bilayer midplane (Fig. 2, A
and B). The greatest distortion in the upper leaflet is the
blue region adjacent to the protein (Fig. 2 A), whereas
the greatest distortion in the lower leaflet is the red region
adjacent to the protein but on the opposite side (Fig. 2 B).
Both distortions result in membrane compression as summa-
rized in the plot of the membrane hydrophobic thickness
(Fig. 2 C). The bulk, equilibrium POPC thickness is
28.5 Å, and at the protein the membrane is 22 Å whereas
along the outer edge (�50 Å away) the membrane thickness
is between 27 and 30 Å. The thickness at the middle of the
simulation box edges is �1 Å thicker than the equilibrium
Biophysical Journal 112, 2159–2172, May 23, 2017 2165
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value indicating that it has not returned to equilibrium.
However, in the corners the membrane is quite close to
the bulk value. This observation indicates that care must
be taken when interpreting protein-membrane coupling on
small patches of membrane where the boundary conditions
of the box enter, as has been highlighted previously (32,68).

As a first test of our continuum model, we asked whether
it could reproduce the membrane surfaces observed in fully
atomistic simulation if we extracted the boundary condi-
tions at the membrane-protein interface and the outer
boundary directly from the simulation. Thus, we focused
only on the elastic component of our model (G(me)), ignoring
for now the electrostatic (G(e)) and nonpolar (G(np)) contri-
butions. For consistency between the MD calculations and
our continuum approach, we calculated the most probable
protein orientation from MD, and then used the same orien-
tation in our continuum calculations. To obtain the boundary
conditions, we first identified the boundary curve of a single
snapshot from the MD simulations using the level set
method described earlier. The displacements at the bound-
aries were found by interpolation from the MD membrane
surfaces, and the slope boundary conditions were calculated
by taking the dot product of the surface gradient and the
normal of the boundary. The corresponding continuum sur-
faces are plotted in Fig. 2,D, E, and F, under their respective
averaged surfaces fromMD (Fig. 2). In the solution domain,
the continuum membrane surfaces match remarkably well
with the surfaces seen in MD, indicating that continuum
elastic models can accurately describe membrane distor-
tions on protein-sized length scales. Both methods predict
very similar damped oscillating profiles where the mem-
brane first pinches down by �4 Å near the protein forming
a ring where the membrane is compressed (compression
ring), then the membrane expands to overshoot the bulk
value before finally returning to equilibrium values at the
corners of the simulation box (Fig. 2). The upper leaflet
height in Fig. 2 D differs by <1.0 Å with the MD results
(Fig. 2 A) over the entire surface, and the mean absolute de-
viation between both surfaces is only 0.2 Å. Similarly, the
continuum and MD surfaces for the lower leaflet are at
most 1.5 Å different from each other with a mean absolute
deviation of 0.3 Å. The most notable difference between
the continuum calculations and the MD simulations is the
size of the compression ring around the protein (Fig. 2, C
and F). The ring extends radial from the center of the protein
for 25–30 Å in the continuum calculations, but only 20–
25 Å in the MD simulations.

It has been suggested that the bilayer becomes harder near
embedded proteins (27), and in Fig. 2, we used a variable
compression modulus with a hardening factor Q ¼ 4.27
(taken from Partenskii and Jordan (27)) to capture this ef-
fect. We found that this hardening factor is essential for
modulating the radial extent of the membrane compression
ring. In the absence of hardening (Q ¼ 1), gramicidin-
induced distortions extend over a larger ring (30–35 Å)
2166 Biophysical Journal 112, 2159–2172, May 23, 2017
(data not shown), which results in a poorer match with
what is observed in MD. Increasing the hardening factor
beyond 4.27 produces an even better match to MD, but
the deformation energy increases significantly and there is
no experimental estimate of Q for the gramicidin-POPC
system.

Continuum elastic models readily provide estimates of
the membrane distortion energy, whereas MD simulations
do not, and extracting boundary conditions from MD to
solve continuum elasticity equations to determine deforma-
tion energies has been used previously (13,20). The grami-
cidin membrane configuration in Fig. 2 produces a POPC
membrane distortion energy of 10.4 kcal/mol. The energy
is equally shared by the upper and lower leaflets, with the
compression mode accounting for most of the energetic pen-
alty (49%), followed by the mean curvature effects (33%)
and Gaussian curvature effects (17%). As in previous
studies, we find that the surface tension has a negligible
contribution (<1%) (18,19,23,25,27). Returning to the
full energetic calculation of our implicit membrane model,
the elastic deformation (�10 kcal/mol) and electrostatic
component (�25 kcal/mol) are unfavorable, but overall
gramicidin is stabilized in the membrane by the nonpolar
energy (��83 kcal/mol), which arises from the significant
fraction of buried protein surface area.
Predicting protein orientation in the membrane

Next, we wanted to determine if we could use our full con-
tinuum energy model to predict the orientation of grami-
cidin in the membrane. The full model (Eq. 1) includes
electrostatic and nonpolar contributions in addition to the
membrane deformation energy. The boundary conditions
at the membrane-protein interface are extracted from the
protein structure using our proposed methodology in Mini-
mization of the Total Energy GT. Starting with the long axis
of the protein aligned with the z axis and the protein center
of mass in the middle of the membrane, we carried out a
search over the upper and lower membrane-protein contact
curves to determine the optimal membrane deformation pro-
file that minimizes the total energy. We applied flat outer
boundary conditions on a 150 � 150 Å2 outer boundary,
far enough from the protein that our MD simulations pre-
dicted that the membrane should return to its equilibrium
value. Once the optimal membrane contact curve and energy
were determined for this one orientation, we scanned
through a series of tilt and rotation angles and identified
the minimum energy membrane configuration for each
orientation, E(q, r). Tilting of gramicidin breaks the bilayer
symmetry about the midplane, leading to different mem-
brane-protein interfaces in the upper and lower leaflets.
Our model and numeric scheme is equipped to handle
symmetry breaking that arises from complex protein shape
as well as protein orientation in the membrane caused by
tilt. With these energies, we created a two-dimensional
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pseudo-histogram of gramicidin orientation, H(q, r), using
the relation: H(q, r) ¼ exp(�E(q, r)/kBT). The map gener-
ated by our continuum model provides good agreement with
the histogram obtained from simulation (Fig. 3, A and B).
Additionally, the minimum energy orientation matches
remarkably well with the average orientation seen in simu-
FIGURE 3 The continuum model predicts the correct protein orientation

in the membrane. Given here is the orientation of gramicidin in the mem-

brane predicted from MD simulations (A), our hybrid continuum-atomistic

model (Eq. 1) (B), and the continuum model without membrane bending

(C). In all panels, the heat map on the left shows the probability of finding

gramicidin at specific tilt q and rotation r-angles, where q is the angle be-

tween the z axis and the long axis of the helix, and r corresponds to rotation

about the long axis of the channel. To define the rotation r, we use as refer-

ence points the projection of the z axis together with the vector formed by

the helical principal axis and the Ca position in residue W9 (16). The most

probable configuration has been marked with a white asterisk (*). The right

panel shows the protein configuration corresponding to the most probable

configuration, as well as the pictorial description of q and r. Probabilities

were obtained by calculating the energy at each orientation, then using

Boltzmann weighting to convert the energies to probabilities. To see this

figure in color, go online.
lation (Fig. 3, A and B). The model predicts an optimal
orientation of 10� tilt and 77� rotation, while the MD pre-
dicts 12.5� tilt and 62� rotation. The orientational entropy
term G(o) slightly stabilizes the predicted tilted configura-
tion by �1 kcal/mol with respect to the vertical configura-
tion, which is expected given the increase in accessible
states for moving off axis. For both the MD and the hybrid
continuum-atomistic model, the protein orients to maxi-
mally expose the hydrophilic indole nitrogens on the trypto-
phan residues. Because the POPC bilayer is thicker than
gramicidin, the membrane must also pinch to expose these
hydrophilic groups. We hypothesized, therefore, that this
orientation would no longer be the most energetically favor-
able if the membrane was very stiff. To test this idea, we car-
ried out the same search with a nondeformable membrane.
The predicted orientation no longer matches MD or our
deformable membrane model (Fig. 3, C), demonstrating
that membrane deformation is necessary to predict protein
orientation in the membrane in this instance.
Predicting the membrane-protein contact curve

Next, we wanted to determine if our hybrid continuum-
atomistic model (Eq. 1) could actually predict the shape
of the membrane-protein contact curve observed in the
MD simulations. First, we investigated our two independent
MD simulations to determine if the contact curve is charac-
terized by a single contour with very little variation, or if it
fluctuates wildly, which would be impossible for our deter-
ministic model to reproduce. Individually averaging the re-
sults from both simulations showed pronounced membrane
pinching at the contact interface by as much as 2 Å at the
upper leaflet and 2 Å at the lower leaflet (solid green and
blue curves compared to the constant dashed line; Fig. 4),
but there are subtle differences between the simulations
because the membrane thickness varied in the azimuthal di-
rection and it showed fluctuations over time. Calculating the
SD of the contact curve in time revealed that it fluctuates up
to 4 Å in both leaflets (blue and green shaded intervals in
Fig. 4). The variance in the height arises from changes in
side-chain rotamer conformation, changes in protein tilt
and rotation angle, and thermal motion of the membrane-
protein system. Thus, the average membrane surfaces and
contact curves result from a superposition of many different
protein configurations. With this in mind, we identified 32
snapshots from our MD simulations that populated the
most probable bin in Fig. 3 A, and we used our continuum
model (Eq. 1) together with the protein structure to calculate
the optimal membrane boundary for each snapshot configu-
ration. The average membrane-protein contact curves for
the upper and lower boundary from these continuum calcu-
lations are shown in Fig. 4 where we see good agreement
with both MD simulations (dash/dotted line). Moreover,
Fig. 4 C shows one of the continuum solutions revealing
that membrane-anchoring tryptophans are the primary
Biophysical Journal 112, 2159–2172, May 23, 2017 2167
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FIGURE 4 Comparison of protein-membrane boundary distortions from

the continuum model and MD simulation. Given here are the membrane

height values at the protein-membrane boundary for the upper leaflet (A)

and lower leaflet (B). The dotted line corresponds to the average solution

calculated from 32 protein snapshots by our continuum model. The blue

and green solid lines are the average membrane height values from the

two independent 250 ns MD simulations. The blue- and green-shaded re-

gions correspond to MD solutions within 1 SD and the overlap between

the blue- and green-shaded region has been highlighted in a darker color.

The equilibrium height of the undeformed monolayer L0/2 is shown by

dashed lines. (C) Shown here are the membrane surface profiles calculated

from the model. The angular coordinate in (A) and (B) are with respect to

the x axis shown here. The protein-membrane boundaries align with the

indole nitrogens of the tryptophans and the hydroxyl of the terminal etha-

nolamine. The right view corresponds to a 180� rotation about the z axis.

To see this figure in color, go online.
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determinants of the membrane height around the protein.
The membrane thins to expose these nitrogens to the high
dielectric environment of the headgroup region, in agree-
ment with our simulations and previous work (16). We
observe the indole nitrogen creating transient hydrogen
bonds with the headgroup phosphate or backbone carbonyls
of the adjacent lipids, whereas the tryptophan ring inter-
acts with the positively charged choline through cation-p
interactions.

Elasticity equations require two boundary conditions, and
here we impose membrane height and membrane slope con-
ditions. Earlier gramicidin studies that used similar bound-
2168 Biophysical Journal 112, 2159–2172, May 23, 2017
ary conditions found that it was necessary to impose a
zero slope on the surface to match experimental results
(18,25,31), and later studies with shell hardening revealed
that a zero slope condition was no longer needed to match
experiment (27). Here, we optimized for the slope that min-
imizes the total energy, and we found that the most favor-
able contact slope is moderately positive (but not equal to
zero) with a slight variability along the boundary (see
Fig. S6).
TRPV1 residues bend the membrane

The numeric advances described here let us explore mem-
brane distortions around embedded proteins with complex
shapes, and the continuum nature of our model scales well
to large systems. Thus, we used our approach to predict
the membrane deformations around TRPV1, a large nonse-
lective cation channel with four voltage-sensor-like domains
that harbor basic residues buried in the membrane inter-
face. Previously, we used our software APBSmem (https://
apbsmem.sourceforge.io/) to scan through all multipass
membrane proteins of known structure and calculate
the electrostatic energy (Ge) associated with embedding
the protein in a flat, low-dielectric lipidlike environ-
ment (40). We found that the closed, capsaicin-bound
(partially open), and RTX-bound (fully open) structures
returned >10 residues that incurred large electrostatic pen-
alties for being in or near the membrane (Fig. 5 A). Exami-
nation of the structures revealed that many of these residues
were near the hydrophobic interface, but buried in the mem-
brane according to the hydrophobic thickness estimated by
the Orientations of Proteins in the Membrane database
(69). We reasoned that minor distortions in the membrane
may expose these charged and polar residues to water
relieving the electrostatic penalty, and we also hypothesized
that these membrane deformations may be coupled to
the function of the channel. We used our continuum
model (Eq. 1) and searched for the membrane configuration
that minimized the total energy of the system. As reasoned,
the optimal solution exhibits large deformations around the
protein, and these deformations significantly reduce the
electrostatic insertion penalty of the high energy residues
(Fig. 5, B and C). The membrane deformation energies
induced by the closed, partially open, and fully open struc-
tures are 38, 52, and 64 kcal/mol, respectively. These
energies indicate that as the TRPV1 channel opens, it gen-
erates larger membrane deformations. K464 and R491 are
two membrane-anchoring residues that are partially respon-
sible for these deformations. In an undeformed membrane,
K464 and R491 cause very large 12.8 and 19.9 kcal/mol
electrostatic penalties in the open structure, respectively,
but these penalties are almost completely relieved when
the membrane is allowed to bend. It is tempting to speculate
that these residues are involved in thermosensitivity or
voltage sensing, and their displacement may bias the

https://apbsmem.sourceforge.io/
https://apbsmem.sourceforge.io/


FIGURE 5 The hybrid continuum-atomistic model predicts that TRPV1

deforms the membrane. (A) Shown here are the electrostatic membrane

insertion penalties for membrane-exposed residues when the membrane is

represented as a rigid slab. Hydrophobic interfaces are shown as transparent

surfaces. Residues are colored by electrostatic insertion penalty. We calcu-

late this penalty as the electrostatic energy of the protein in membrane

minus the electrostatic energy of the protein in solution. (B) Electrostatic

insertion penalty after the membrane is allowed to deform. In (A) and

(B), only residues with a penalty >1 kcal/mol are shown. (C) Given here

is the reduction in electrostatic penalty after the membrane is allowed to

deform. This is the penalty of (A) subtracted from the penalty in (B). For

clarity, only residues with reductions >1 kcal/mol are shown. Tyr-511

and TM helices are labeled. To see this figure in color, go online.
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opening of the channel. However, more detailed experi-
mental analysis on the mechanistic role of K464 and R591
is required.
CONCLUSIONS

Although continuum elasticity theory has been successful
at reproducing the long-wavelength equilibrium shapes of
membrane structures (41), whether such models can accu-
rately describe membrane deformations at the Ångström
length scale has been debated. A 2013 comparison to fully
atomistic MD simulations suggests that continuum models
fail to reproduce key features observed in the simulations
(18). Here, we presented a self-consistent continuum
approach to model protein-mediated distortions in the
bilayer, which overcomes much of the shortcomings of
simpler continuum treatments. Our model builds off of
our earlier work in which we accurately represent the pro-
tein at the atomic level and incorporates a biophysically
meaningful energy model of the system that includes
electrostatic, nonpolar, and membrane elastic energies
(19,32,38). Here, we have significantly advanced our geo-
metric handling of the protein shape and elasticity calcula-
tions by employing a finite volume solver (39) to address
insertions of arbitrary shape. The membrane calculations
are performed in a distorted grid that is mapped to the mem-
brane-protein boundary, which increases the fidelity of our
solver with lower grid densities than a strictly Cartesian
grid. We show that the method matches results from MD
simulations with high accuracy, and our approach highlights
how the boundary conditions of the elastic solver preserve
the chemical information of the protein. Nonetheless, the
method is computationally fast because it relies on implicit
energy models at all stages. Thus, we assert that continuum
membrane models have the potential to provide deep insight
into membrane-protein interactions involved in a wide range
of biological phenomena with high spatial resolution, but
with minimal computational overhead.

We validate our continuum model by comparing to MD
simulations of gramicidin in a POPC membrane. First, we
test our continuum membrane description by only using
our elastic solver and boundary conditions extracted from
MD. As seen in Fig. 2, the continuum predictions nicely
match MD membrane deformation profiles and the extent
of the membrane compression ring around gramicidin. We
then move on to make predictions for gramicidin orientation
and depth of penetration using the full energy model given
by Eq. 1 without any input from MD. Our continuum model
agrees with the atomistic predictions for membrane contact
heights and tilt as shown in Figs. 3 and 4. We show that a
flat-slab representation of the membrane fails to determine
the preferred protein orientation, indicating that membrane
deformation plays a crucial role in determining the final
equilibrium configuration. Finally, as an application of our
self-consistent continuum model, we study POPC mem-
brane deformations induced by the transient receptor poten-
tial cation channel TRPV1. We found that allowing the
membrane to deform greatly reduces the electrostatic pen-
alty of charged residues near the headgroup-tail interfaces
of the membrane. Our calculations further showed that
TRPV1-charged residues generate much larger deforma-
tions in the open and partially open structures than the
closed structure. Based on this observation, we speculate
that the same residues involved in the membrane distortions
Biophysical Journal 112, 2159–2172, May 23, 2017 2169
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could be involved in thermosensitivity or voltage sensing.
More detailed experimental analysis is required to uncover
the mechanistic role of these residues.

When comparing to continuum descriptions of the mem-
brane, the MD surface profiles require careful analysis of
periodic boundary effects (32,68) and spatial fluctuations
of the protein orientation and side-chain movements. Our
MD simulations of the gramicidin channel in a 100 �
100 Å2 patch reveal that the membrane is not fully relaxed
at the edges (Fig. 2). If one desires to match MD simulation
results, continuum elastic membrane models should explic-
itly impose similar far-field conditions. Although grami-
cidin has been a test case for exploring continuum models
of the membrane and comparing these solutions to MD,
we believe that it is likely one of the harder systems to match
due to the small size of the protein, which allows it to
change its orientation in the membrane on a fast timescale
resulting in sizable fluctuations in the protein-membrane
contours (Fig. 4). Care must be taken when averaging the
membrane surfaces from the MD simulations to avoid
unphysical artifacts (see Supporting Material), and our
experience suggests that comparison between MD and our
continuum model is much easier for larger proteins that
are better anchored in the membrane (3). Additionally, the
computational demand is significantly lower for continuum
calculations as opposed to MD. For gramicidin, the bound-
ary conditions and energies can be calculated within 3 h on a
desktop CPU, whereas the converged MD surfaces required
54 days of computation time using GPU-accelerated NAMD
with 1 GPU and 32 CPUs.

Elastic moduli are key elements of the model that directly
impact the membrane deformation energy and surface pro-
files. Previous work has suggested that these moduli vary
spatially due to protein effects (18,27), and we found that
including a lipid hardening factor as suggested in Partenskii
and Jordan (27) significantly improves the quantitative
match between continuum results and atomistic MD. As
membrane elastic models become increasingly more sophis-
ticated through the inclusion of spatially dependent elastic
moduli that vary with membrane composition (60), we
believe that our solver can serve as an efficient tool to test
models and elastic constants by quickly calculating ener-
getics and membrane shapes to compare with experiments
(23,25,70) and atomistic simulations. Additional experi-
mental estimates of the energetics of the gramicidin-POPC
system would be needed to further parameterize continuum
models. Lastly, we point out that whereas hardening is a
compelling candidate to explain differences between contin-
uum predictions and MD, certainly there are other factors
that are known to affect membrane energetics such as lipid
tilt (71), entropic cost of lipid confinement (72,73), line ten-
sion effects on lipid ordering (74–76), and additional terms
penalizing the changes in area per lipid molecule (77). In
future work, we plan to refine our elastic model by adding
these elements.
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Our hybrid continuum-atomistic model offers a distinct
advantage over fully atomistic simulations for studying pro-
tein-membrane interactions due to its speed and accuracy,
and this advantage grows with the size of the system.
Because the model accurately reproduces results from MD
simulations, we now plan to use it to probe larger, more
complex biological situations such as multiprotein problems
like the F-ATPase complexes that form rows of proteins
along the inner membrane of the mitochondrial cristae
(13), M2 channel-mediated fission (78), and SNARE-medi-
ated fusion (79). Because continuum calculations are
inexpensive and fast, our model provides a promising
framework for exploring these multiprotein phenomena,
where we can not only address geometrical effects in the
membrane and the protein shape (34,35,37), but also extract
membrane deformation energy values and reveal how spe-
cific protein structure and chemistry drives the processes.
SUPPORTING MATERIAL
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S1. Analysis of molecular dynamics membrane deformation profiles: effects at the boundaries

To compare molecular dynamics (MD) simulation results with our continuum-atomistic model, we averaged lipid
positions of individual MD snapshots to obtain a final equilibrium membrane shape. The procedure is described in
Simulation Methods in the main text. Fig. S1 shows the running time average of the membrane thickness, which
indicates the time required to average out spatial fluctuations to arrive at a converged static pattern. Panel (A) contains
a gramicidin dimer and (B) is a protein free bilayer. Analysis of these profiles reveals several interesting features.
First, even at 100 ns, the protein free system exhibits a spatial pattern showing inhomogeneity present in the starting
configuration. The magnitude of the inhomogeneity is much reduced (10 Å at 25 ns versus 4 Å at 100 ns), and it
is centered on the bulk equilibrium thickness of 28.5 Å, but a pattern persists nonetheless. The pinching pattern in
the gramicidin simulations is set up quickly (in 25 ns), but the spatial fluctuations are so large that the system must
be averaged for at least 250 ns before a somewhat static pattern emerges. This time difference when compared to the
protein-free system is not surprising since the membranes are pre-equilibrated in a flat undeformed state closer to the
protein-free simulation. But we want to point out that even these simple simulations must be averaged for 200 ns,
preferably more (500 ns in the main text), to achieve static patterns. Second, protein induced deformations extend to
the simulation boundaries indicating that bilayer patch size should be carefully considered to allow full relaxation to
bulk values at the boundaries. At 250 ns, panel (A) shows the membrane height reaches bulk values (28.5 Å) at the
corners of the periodic box (55 Å from the center), but not at the centers of each side (40 Å from the center). If the
box is too small, periodic boundary conditions will muddy interpretation of the patterns.

Figure S1: Running time average of hydrophobic mismatch from MD simulations with gramicidin (A) and without protein (B). Both systems
contain POPC lipids. In panel A, membrane height values converge to the bulk value (∼28.5 Å) at the corners of the simulation box between 100
ns and 250 ns, but the pattern is still fluctuating when averaged for less time. Moreover, at the center of the outer edges of the box (40 Å from the
protein) the membrane heights are 2-3 Å higher than bulk values. (B) MD simulation of a pure POPC membrane. Even after averaging for 100 ns
a spatial pattern persists, but the amplitude of the fluctuations is only ±2 Å from the mean value of 28.5 Å.
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Figure S2: Averaging membrane configurations can produce unrealistic surfaces. (A-B) Binning a straight (A) and tilted (B) protein configuration.
When the protein tilts to the left, the protein-membrane boundary also shifts to the left. (C) Combining bins from configurations A and B leads
to non-monotonic behavior that is otherwise not present in either configuration. (D-E) Binning membrane surfaces from snapshots in which the
protein radius is dilated (D) or constricted (E). The later configuration is representative of what occurs during the creation of hotspots in which
individual lipid molecules extend over the top of the channel to interact with specific tryptophan residues. (F) Combining bins from configurations
D and E leads to non-monotonic behavior, which is not representative of either configuration.

Figure S3: Different averaging methods produce different membrane hydrophobic thickness profiles. (A) Surface profile obtained using an inter-
polation averaging method. For each snapshot, membrane heights are first interpolate to a two dimensional grid of one Å spacing. All grid points
are evaluated regardless of protein occupancy. The final surface is the average of all grids over the course of the trajectory. We see that extending
radially away from the center of the membrane, the deformation profile exhibits pure monotonic behavior (blue to red) within a distance comparable
to the width of a few lipid shells. (B) Surface profile obtained using a bin-based averaging method that simply averages local lipid height in each
snapshot (each bin is 1 Å2). Unlike the method in panel (A), if a lipid is not located within a bin for a given snapshot, the bin will receive no value.
For bins near the protein boundary, they are often occupied by protein, and hence rarely populated by lipid. There are several localized hotspots
adjacent to the protein where the membrane becomes very thick, 32 Å. Extending radially away from the protein in these regions, the membrane
deformation profile exhibits non-monotonic behavior within a distance comparable to the width of a few lipid shells. The simulation system is
composed of POPC lipids and the protein is gramacidin. For both methods, the protein was centered from snapshot to snapshot prior to computing
membrane heights.
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We carefully considered several methods for averaging the surfaces from MD, because the average of a solution set
often results in an entity that is not a member of the set. However, averaged membrane surface profiles should reflect,
as much as possible, an equilibrium membrane distortions that is physically allowable. Gramicidin is a small peptide
and during MD simulations the protein position and tilt orientation fluctuate resulting in corresponding fluctuations
in the protein-membrane boundary. If these changes are not carefully accounted for during averaging, it can magnify
artifacts resulting from averaging. One option for averaging involves binning membrane height at the upper and
lower leaflets to determine the thickness profile. To do this, we created a 2D grid of squares 1 Å in size, one for
the upper surface and one for the lower surface, and recorded the heights of upper/lower lipid molecules in each
respective bin for every snapshot. However, as shown in Fig S2 this approach leads to two scenarios that produce
artifacts when binning results from MD. Panels (A-C) show the effect of binning straight (A) and tilted (B) protein
configurations. Panel (C) shows how the tilted configuration in (B) results in missing data, and combining bins from
configurations (A) and (B) leads to non-mononotic behavior that is otherwise not present in either true configuration.
Similarly panels (D-F) show the effect of binning a protein with a dilated effective radius (D) at one point in time and
constricted effective radius (B) at another. The averaged surface in (F) has missing data resulting from configuration
(D), and it also exhibits non-monotonic behavior. This later scenario occurs during the creation of hotspots in which
individual lipid molecules extend over the top of the channel to interact with specific tryptophan residues (1). When
hotspots are present, the effective protein area is reduced due to lipids encroach on the protein-occupied region. Panel
(F) shows how combining bins from both configurations leads to non-mononotic behavior that is otherwise not present
in (D) or (E).

As an alternative approach to determining representative, averages of the membrane surface, we used an interpo-
lation procedure where each node value of a Cartesian grid was assigned the interpolated z-value of nearby lipid C2
carbon atoms for each MD snapshot. This approach guarantees that every node of the surface has a value for each
membrane configuration. Fig. S3 shows a comparison between the membrane thickness obtained using the interpo-
lation (A) and binning (B) methods. In the interpolation averaging procedure (A) the membrane deformation profile
that extends radially away from the protein exhibits a monotonic behavior (blue to red) within a distance comparable
to the width of a few lipid shells, while the binning method (B) generates a non-monotonic radial profile arising from
hotspots near the protein (red and yellow) with increased thickness. Analysis of the specific MD snapshots that give
rise to the non-monotonic behavior in the averaged surfaces in Fig. S3 B are themselves radially monotonic near the
protein indicating that the averaged thickness profile harbors artifacts likely resulting from the mechanisms illustrated
in Fig. S2. Moreover, the non-monotonic profile is highly curved with a high corresponding deformation energy
casting further doubts on the physical appropriateness of the binning scheme. A deeper analysis of the influence
hotspots (black or white circled region) play on the binned hydrophobic profile (reproduced in Fig. S4 A) shows that
they are poorly sampled bins (panel B), yet they dramatically influence the final average thickness. We computed the
membrane thickness with this sparse data corresponding to only membrane configurations in which the textithotspot
was populated, and the resulting average profile is radially monotonic within the first few lipid shells (panel (C)).
Importantly, the membrane is quite thick for these snapshots, but the radial relaxation is smooth. We conclude that
individual membrane configurations are quite smooth in the first few lipid shells adjacent to the protein, and simple
binning schemes mask this observation.

S2. Non-Elastic Energy terms

S2.1. Electrostatic Energy G(e)

The electrostatic energy of the inclusion in the bilayer was determined using the non-linear Poisson-Boltzmann
equation (in e.s.u-c.g.s unit system) (2, 3):

−∇ ·
[
ε(~p)∇φ(~p)

]
+ ε(~p)κ2(~p) sinh

[
φ(~p)

]
=

e
kBT

4πρ(~p), φ(~p) =
eΦ(~p)
kBT

, (S1)

where φ(~p) is the reduced electrostatic potential at position ~p, kB is the Boltzmann constant, T is the absolute tem-
perature, κ is the Debye-Huckel screening coefficient, ε is the spatially-dependent dielectric constant, ρ is the space-
dependent charge density within the protein and e is the elementary charge. The electrostatic calculations were carried
out using the APBS software (3) together with modifications to include membrane dielectric effects as described in
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Figure S4: Hotspots are rare, but still smooth. (A) Binned POPC average thickness around gramacidin (same as Fig. S3 B). The dashed oval
encompasses a single hotspot where lipids extend up over the channel, and the oval corresponds to the region in all three panels. (B) Bin occupancy
by lipids during MD simulation. The hotspot is rarely sampled by a lipid. (C) Membrane thickness calculated using only snapshots in which a lipid
occupies the hotspot. The surface was constructed with the interpolation method, since binning resulted in a highly discontinuous surface due to
poor sampling. The resulting profile is monotonic and smooth in the radial direction, and these properties are present in the individual snapshots.

Callenberg (4). As in our recent work Ref. (5), a six way flood fill method is used to add the dielectric influence of
the membrane to the protein system. Additional details on the electrostatic calculations can be found in our previous
publications (5, 6). Finally, we point out that in our calculations we include the effects of ionic screening, but find
that the strength of the ionic solution has little effect in the membrane deformations induced by gramicidin. Setting
the ionic strength to zero or increasing it by an order of magnitude changes the energy by less than 0.5 kcal/mol.

S2.2. Nonpolar Energy G(np)

The non-polar energy of the protein in the membrane environment is related to the amount of protein surface area
buried in the membrane. Here, we assume the non-polar energy is:

G(np) = a · (Amem − Asol) , (S2)

where Amem is the protein’s solvent accessible surface area (SASA) in the membrane and Asol is the total SASA in
solution. The total protein Asol and per atom surface areas are calculated using Michael Sanner’s Molecular Surface
program, MSMS (7). To determine Amen, membrane exposed atoms were first identified using the same six way flood
fill algorithm used for the electrostatic calculations. Atoms that are determined to be membrane exposed are set to
have an Amem = 0.0. The nonpolar energy of each atom was calculated based on its height relative to the leaflets
of the membrane. For atoms in the membrane core, its SASA was multiplied by the surface tension, a = 0.028
(kcal/mol)/Å2. For atoms in the headgroup regions, the surface tension constant decays linearly from 0.028 to 0.00
(kcal/mol)/Å2 over the 8 Å thickness of the headgroups. The phenomenological constant 0.028 (kcal/mol)/Å2 is taken
from the work of Sitkoff and co-workers (8), and we ignore the constant term usually found in these treatments to
zero given that it is typically a small energetic value when compared to other terms in our theory. For more details see
Refs. (5, 6).

S2.3. Protein Orientational Entropy G(o)

The orientational entropy cost is the energetic penalty associated with the protein’s inability to explore certain
configurations when inserted in the membrane, which can be expressed in terms of the Euler angles ρ, θ and φ describ-
ing the protein’s orientation in the membrane. The angle ρ represent rotations about the long axis of the protein, θ is
the angle created between the z-axis of the membrane and the long axis of the protein (See Fig. 3 in main text), and φ
represents rotations of the protein about the z-axis of the membrane. As the protein axis tips away from the membrane
normal (θ), it is able to explore a greater number of states associated with free rotation about φ. The entropy at a given
θ value in the range δθ is related to the area swept out by the tip of the protein as it rotates about φ. Thus, the entropic
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energy change with respect to the protein aligned with the membrane normal is given by:

G(o) = −kBT ln
(
∆Aθ

∆A0

)
, (S3)

where ∆Aθ is the area swept out by the tip of the helix over the surface of a sphere and ∆A0 is the effective area
explored by the helix tip when it is oriented vertically. The ratio in areas is then given by:

∆Aθ

∆A0
=

∫ θ+δθ

θ−δθ
sin θdθ∫ δθ

0 sin θdθ
, (S4)

where δθ ≈ r/h accounts for tilt angle spanned by a cylinder of finite radius r and height h.

S3. Geometrical description of the membrane

x

z

y

cM(x,y)

c1(x,y)

α

uB
+

Figure S5: Cartoon model of the membrane in the presence of a conically shaped protein. In the regions where the upper and lower leaflet both
exist, the compression surface is labeled cM(x, y), while in regions where either the upper or lower leaflet does not exist, the compression surface is
labeled c1(x, y). The variable u+

B corresponds to the membrane boundary displacements at the interface between the protein and the upper leaflet.
The angle α of the conically shaped protein can be used to describe the degree of mismatch between the upper and lower leaflets.

We start by defining the geometry of the system. In Fig. S5, we illustrate a special case where the conical shape
of an inclusion causes a mismatch between a region of the upper monolayer and the lower monolayer. A lack of cor-
responding patch along the z-direction poses a problem for the compression coupling between the leaflets. In general,
protein shapes are complex, and this coupling problem arises in many instances. To address this type of biological
problems we propose a two-sheet membrane model where the compression of each sheet is derived independently
with respect to the bilayer compression surface cM(x, y) which acts as the coupling element between leaflets (Fig. S5).

We use small deflection theory (9, 10) to model the monolayer surfaces. We define the normal vector to the
surface representing the upper monolayer as ~N+ and the lower monolayer as ~N−, which are approximately given by
the following relations (9, 11):

~N+ =

{
∂h+

∂x1
,
∂h+

∂x2
,−1

}
, ~N− = −

{
∂h−

∂x1
,
∂h−

∂x2
,−1

}
. (S5)

The variables h±(x1, x2) represent the shape, or distance from z = 0, of each leaflet. From the shape variables,
we define the normalized variables u±(x1, x2) as the difference between the shape function of the upper and lower
monolayer h±(x1, x2) with respect to the flat, undistorted monolayer thickness h0:

u±(x1, x2) = h±(x1, x2) ∓ h0. (S6)
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The deformation represented by the leaflet shape variables given in Eq. S6 is equivalent to the mathematical descrip-
tion of bilayer deformation in terms of a dilation variable d = (u+ − u−)/2 and the bilayer midplane h = (u+ + u−)/2
(12). Finally, it important to distinguish the true monolayer surface in three dimensional space (Γ±) from the two
dimensional projection of the surface used in calculations (Ω±):

dΓ± ≈

[√
1 + (∇u±)2

]
dΩ± ≈

[
1 +

(∇u±)2

2

]
dxdy, (S7)

where dΩ± is the differential dxdy in the projected plane (9).

S4. Elastic energy of an arbitrarily shaped inclusion in the membrane

We describe the total elastic energy of the system as the sum of the independent contributions of each monolayer:

GT = E+
m + E−m, (S8)

where +/− denotes variable associated with the upper/lower monolayer, respectively. We account for energies associ-
ated with mean curvature bending (E±B), changes in the area per lipid (compression) (E±C), surface tension (E±S ), and
changes in the gaussian curvature (E±G):

E±m = E±B + E±S + E±C + E±G, (S9)

where each term is briefly described in the following sections.

S4.1. Mean bending curvature
The bending energy is (9):

E±B =
1
2

∫
Γ±

K±b
(
2H± + J±0

)2
dΓ±, (S10)

where the integration is performed over each monoloyer surface Γ±, K±b are the monolayer bending moduli, H± are
the mean curvature fields describing the neutral surfaces of each monolayer, and J±0 are the spontaneous curvatures in
each leaflet. Under small deformations, the mean curvature can be approximated as (9, 13):

H+ = ~∇~N+ ≈
1
2
∇2u+(x1, x2) and H− = ~∇~N− ≈ −

1
2
∇2u−(x1, x2). (S11)

For the chosen normal vectors in Eq. S5 positive curvature H+ at the upper leaflet is a concave up shape, while positive
curvature H− at the lower leaflet is concave down. The plus sign in front of the spontaneous curvature term J±0 follows
the standard convention that a lipid in equilibrium with a positive spontaneous curvature is one with a large headgroup
that prefers to adopt a micelle geometry (9). Since this sign convention varies in the literature, care must be taken
when comparing different Hamiltonians (9, 10).

Making use of the definitions of the projected area and expanding up to quadratic order in the deformation vari-
ables, the bending energy is (9):

E±B ≈
1
2

∫
Ω±

K±b
(
∇2u± ± J±0

)2
+

K±b
2

(
J±0

)2 (
∇u±

)2 dxdy. (S12)

S4.2. Surface tension
The tension/stretching energy (E±S ) for each monolayer can be written as (9):

E±S =

∫
Γ±
σ±dΓ± − σ±Γ0, (S13)

where σ is the surface tension parameter, and the integration is performed along the neutral surface of each monoloyer
Γ±. Γ0 is the initial undeformed area of the membrane, and it is the same for both upper and lower monolayers. Making
use of Eq. S7, we can rewrite expression Eq. S13 as:

E±S =
1
2

∫
Ω±
σ±

(
∇u±

)2 dxdy. (S14)
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It is important to point out that the surface tension parameter σ is a subtle term that has generated significant
controversy depending on its physical interpretation (9). For a detailed description of the numerous interpretations of
this term, we refer the reader to the works of Schmid (14), Diamant (15) and Watson et al. (16). Here, we interpret σ to
be the conjugate variable that opposes the addition of new area to the total bilayer surface Γ. For constant area per lipid,
Γ is proportional to the total number of lipids, and therefore, σ plays the role of the chemical potential. Combining
the ∇2u± term in Eq. S12 with Eq. S14, we obtain the effective surface tension parameter γ± = σ± + K±B(J±0 )2/2. In
the main text, we have expressed the energy in terms of the effective surface tension γ±.

In addition to the gradient term, σ (∇u±)2, in the Hamiltonian, it is often common to find a linear term in the
literature, σ (u+ − u−), that arises due to changes in lipid area for a volume incompressible membrane (16–18). This
linear term results in systematic change in the equilibrium thickness of the membrane (16, 18):

L∗0 = L0

(
1 −

σ

Ka

)
, (S15)

where Ka is the bilayer compression modulus, L0 is the membrane thickness of a tension-free membrane and L∗0 is the
new equilibrium membrane thickness. Using Eq. S15, we can rewrite our deformation variables u± with respect to L∗0
rather than L0. By doing this change of reference configuration, we recover the same Hamiltonian (without a linear
term) in our deformation variables u+ and u−. Membrane vesicles are known to burst when the tension goes beyond
a few mN/m, but exact values for the surface tension as a function of the membrane composition and protein are
unknown. For this reason we have decided to use σ ≈ 3 mN/m as originally postulated by H.W. Huang (13) and often
employed in more recent works (6, 19–22). Adding the linear term and keeping σ ≈ 3 mN/m results in a membrane
thickness shift L0 − L∗0 of less than 1.4%.

S4.3. Bilayer compression

As derived in Refs. (17, 23), the compression energy for each monolayer is given by:

E±C ≈
∫

Ω±

K±a
2

(
A± − A0

A0

)2

dΩ±, (S16)

where A0 is the initial area per lipid and A± is the deformed area per lipid. The compression modulus of each
monolayer does not need to be the same, hence K+

a represents the modulus for the upper leaflet and K−a is the modulus
for the lower leaflet. As discussed later, for a protein of arbitrary shape with unmatched leaflet regions, a framework
where the upper and lower leaflets can have different compression moduli becomes important when including shell
hardening effects through spatially dependent moduli (1, 24) (see section S4.4).

Returning to Eq. S16, the compression energy can be rewritten in terms of the shape variables u± since the change
in area (A± − A0) is related to the vertical compression along the z-axis by means of the lipid volume constraint (25):

V = χV0, V0 = h0A0, V = (h+ − c)A+ = −(h− − c)A−, (S17)

where V0 is the initial volume of the lipids, V is the volume of the lipids in the deformed configuration (assumed to
be the same for the upper and lower leaflets) and c(x, y) is the compression surface (11, 16, 26, 27) (Fig S5). The
parameter χ ∈ [0, 1] is a phenomenological term describing the degree of volume conservation of the lipids before
and after deformation. It is well known that the lipid volume is nearly incompressible (17, 25). For this reason, we
have constrained our analysis in the main text to the incompressible case of χ ≈ 1, but note that our methods can
accommodate lipid compressibility through the phenomenological variable χ. For a compressible lipid mix, there
would be a new term appearing in the energy functional that can be treated as a line tension (linear on the deformation
variable u±). Having a line tension term in the energy functional can be easily accounted for using a change of
variables (28, 29), resulting in no change to the form of the equilibrium equations. Using Eq. S17, the energetic
penalty for compression in Eq. S16 can approximated up to quadratic order on the shape variables to be:

EC =

∫
Ω+

K+
a

2h2
0

[
u+ − c

]2 dΩ+ +

∫
Ω−

K−a
2h2

0

[
u− − c

]2 dΩ−. (S18)
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S4.3.1. Bilayer compression: matched regions
When the upper and lower leaflets match (Ω+ = Ω− = ΩM) the energy in Eq. S18 reduces to:

EC =

∫
ΩM

K+
a

2h2
0

[
u+ − c

]2
+

K−a
2h2

0

[
u− − c

]2 dΩM . (S19)

For the static case, the deformations associated with the compression surface c(x, y) will equilibrate very fast, and
consequently, we can minimize over c(x, y) without loss of generality (26, 27). The solution yields:

c(x, y) =
K+

a u+ + K−a u−

K+
a + K−a

. (S20)

Using Eq. S20, the bilayer compression energy of the bilayer can be rewritten as:

EC =

∫
ΩM

Keff

2h2
0

[
u+ − u−

]2 dxdy, Keff =
K+

a K−a(
K+

a + K−a
) , (S21)

where Keff is analogous to the effective spring constant of two Hookean springs coupled in series. In the main text, we
have labeled the compression surface in matched regions c = cM(x, y).

S4.3.2. Bilayer compression: unmatched regions
When the area of protein insertion in the upper and lower leaflets do not match there is a region in space Ω1 where

the shape variable u+ is not defined and/or a region Ω2 where the variable u− is not defined. For such scenarios,
we expect that the surface of compression c(x, y) is a function of the geometry of the inserted protein, where the
energy minimization with respect to c(x, y) is subject to a spatial constraint. As an illustrative example, we consider
the insertion of a conically shaped protein shown in Fig. S5. In the unmatched region Ω1 in the lower leaflet, the
compression energy is described by:

E−C =

∫
Ω1

2K−a
L2

0

[
u− − c(x, y)

]2
− λ (c(x, y) − c1) dxdy, (S22)

where λ is the conjugate Lagrange multiplier to the constraint in the compression surface c(x, y). The function c1 is
unknown and probably the result of complex coupling between the geometry of the membrane protein and distortion
of the lipids. Fig. S5 shows a mismatch region between upper and lower surfaces that is described by an angle α.
For small values of (π/2 − α) (small mismatch region Ω1), we expect that the bilayer midplane cM (compression
surface in the matched region ΩM) is not to heavily distorted such that the compression surface c1(x, y) in Ω1 can be
approximated as:

c1(x, y) =
h+

B + h−(x, y)
2

, (S23)

where h+
B = u+

B + h0 is the set of boundary conditions between the upper leaflet and protein (Fig. S5). Although we
have used a conically shaped protein for illustrative purposes, the approximation in Eq. S23 is valid for proteins of
arbitrary shape as long as the mismatched regions are moderately small. Importantly, this approximation preserves
continuity of the midplane function c(x, y) over the entire space. We make the same approximation in the lower leaflet
for u−(x, y) in the region Ω2:

c2(x, y) =
h−B + h+(x, y)

2
, (S24)

where h−B = u−B − h0 is the set of boundary conditions between the lower leaflet and protein (figure not shown). Note
the deflection values h+(x, y) and h−(x, y) can in general vary in space along the boundary of the protein. In that case
the values of h+

B and h−B inside the regions Ω1 and Ω2 are calculated through an interpolation procedure. We emphasize
that in our proposed elastic model h+

B and h−B are prescribed as fixed conditions used to compute the compression plane
c(x, y) on mismatched regions.
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S4.4. Hardening effects near the protein
The decreased conformational freedom of lipids near the boundary of an inclusion leads to greater molecular

packing and greater resistance to elastic deformations – an effect known as hardening (1, 24). Partenskii and Jordan
(24) accounted for this effect by developing a membrane free energy model where the elastic moduli were higher at
the boundary of the inclusion, but returned to bulk values away from the protein-membrane interface with a decay
length λD ∼ 15 Å (comparable to the length of a lipid molecule). In their model the protein was assumed to be a
cylinder and the slope condition was allowed to relax by using natural BCs on the curvature (See S5 for details on
boundary conditions). Their model could describe experiments carried out on gramicidin (30) by only modulating the
compression modulus as:

Ka(x, y) =

[
1 + (Θ − 1) · exp

(
−

r − r0

λD

)]
Ka,B, for r ≥ r0, (S25)

where Ka,B is the bulk compression modulus, Θ ∼ 4.5 is the fitted phenomenological hardening factor, r0 is the
protein radius, and r is the radial distance from the protein center. Hence, lipids located r− r0 > 15 Å from the protein
have bulk-like behavior. Recently Lee et al. (22) noted that this approach still fails to provide bilayer thickness values
consistent with molecular dynamics. We presume that these differences are due to the simplified protein representation
in the elastic model and not the theoretical methodology. Therefore, in the main text we have implemented the Kim
et al. (1), Partenskii and Jordan (24) hardening effect in the context of specific protein geometry. In our model, the
upper (+) and lower (−) leaflet compression moduli follow from Eq. S25:

K±a (x, y) =

[
1 + (Θ± − 1) · exp

(
−

r − r±0
λD

)]
Ka,m, for r ≥ r±0 , (S26)

where Ka,m is the monolayer bulk compression modulus, which we assume is half of the bilayer value Ka,B. For
non-cylindrical proteins, the quantity r − r±0 is computed by identifying the membrane-protein contact point, r±0 , that
lies along the radial line connecting r to the origin. In general, the hardening field will be different in the upper
and lower leaflets due to differences in the protein geometry in both leaflets (as in Fig. S5) leading to K+

a (x, y) ,
K−a (x, y). Therefore, when studying the distortions induced by arbitrary shape proteins, the bilayer compression
modulus including the effects of hardening is readily given by the effective modulus Keff in expression Eq. S21.
Throughout this work, we set Θ± ∼ 4.5 based on the gramicidin analysis in Ref. (24); however, it is possible
to compare our calculations to deformation profiles determined from all-atom simulations to arrive at appropriate
hardening values.

S4.5. Gaussian curvature
The Gaussian curvature energy in the upper leaflet is given by (see Refs. (11, 31, 32)):

EG = −
KG

2

∫
Ω+

~∇ ·
[(
~∇~n

)
~n −

(
~∇ · ~n

)
~n
]

dxdy, (S27)

where KG is the Gaussian bending modulus, ~n = ∇h+ is the two dimensional surface normal (neglecting the z-
component), and we have dropped much of the leaflet specific notation. There is a similar energy term corresponding
to the lower leaflet. In the expression above, we have used the notation ~∇~n = n j,k to represent a second order tensor
containing the derivatives of the normal vector ~n and hence

(
~∇~n

)
~n =

(
~n · ~∇

)
~n = n j,knk is a vector. With the divergence

theorem, we can recast the Gaussian bending energy on the boundary ∂Ω as:

EG = −
KG

2

∮
∂Ω

[(
~∇~n

)
~n −

(
~∇ · ~n

)
~n
]
·
(
−~r

)
dl, (S28)

where we define ~r as the outer normal to the surface describing the boundary ∂Ω in the x-y plane. Next, we show that
the Gaussian contribution only depends on the boundary condition ~n = ~n0 = ~∇h0 on ∂Ω (31, 32). To do this, we first
define the tangential surface gradient operator (see Ref. (31)):

~∇T~n = ~∇~n −
(
~∇~n

)
~r ⊗ ~r, (S29)
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which essentially removes any contribution of the tensor ~∇T~n in the normal direction to the surface ~r. Consequently,
~∇T~n only depends on tangential derivatives, or in other words, only values of ~n = ~n0 on ∂Ω. Making use of ~∇T~n, we
can rewrite Eq. S28 as: [(

~∇~n
)
~n −

(
~∇ · ~n

)
~n
]
· ~r = ni, jn jri − ni,in jr j (S30)

=
(
ni, j − ni,krkr j

)
n jri −

(
ni,i − ni,krkri

)
n jr j

=
[(
~∇T~n

)
~n − tr

(
~∇T~n

)
~n
]
· ~r.

From Eq. S30, we see that the Gaussian contribution Eq. S28 is only a function of normals ~n0 on the boundary.
Consequently, if ~n0 is fixed as part of the boundary conditions, then there is no variation of the Gaussian energy EG

with respect to ~n at the boundary (δ(EG)/δ~n = 0) and there is no contribution of the Gaussian component to the
minimization equations. Thus, Eq. S28 does not influence the minimum energy configuration, but it must be included
to determine the total energy of the system.

S4.5.1. Gaussian bending modulus KG

Let c1 and c2 be the two principal curvatures such that mean curvature is 2H = c1 + c2 and the Gaussian curvature
is K = c1 · c2. Then the energy density associated with changes in curvature is given by(9):

G =
1
2

Kc(H2) + KG(K) = [c1, c2] · [A] · [c1, c2]T , A =

[
Kc Kc + KG

Kc + KG Kc

]
, (S31)

where Kc is the bending modulus. For the free energy G to have a minimum, the matrix A must be positive definite,
which requires 2Kc > −KG > 0. In the main text, we have used KG ∼ −0.9Kc as recently measured from simulation
(33).

S5. Boundary conditions at the membrane-protein contact curve

The total energy of the membrane-protein system (GT ) is given by the sum of the membrane elastic energy (G(me)),
the electrostatic energy (G(e)), and the nonpolar energy G(np). For the elastic energy G(me), we assume that the only
unknowns are the fields u+(x, y) and u−(x, y). The energy minimization is obtained using the variational formulation:

δG(me)(u+, u−) = δG(me)
u+ + δG(me)

u− = 0, (S32)

where δGu+ and δGu− represent the variation in energy resulting from variables u+ and u−, respectively. Eq. S32 yields
the equilibrium shape equations of the membrane as well as a set of requirements (boundary conditions BCs) that the
membrane deformation variables must satisfy at the boundary interface(34).

To see the role and physical significance of the BCs, we write the membrane’s elastic energy functional δG(me) as
the sum of the interior membrane surface contributions (δG(me)

Ω
) and the contribution at the boundary edge (δG(me)

B )
(34):

δG(me) (u+, u−
)

= δG(me)
Ω

(
u+, u−

)
+ δG(me)

B
(
u+, u−

)
. (S33)

Under the assumption that no external forces are acting over the interior surface of the membrane and that the only
perturbations are due to the inclusion on the internal edge-boundaries, then the first term δG(me)

Ω
over the interior

surface yields the Euler-Lagrange equations presented in the main text:

∇4u+ − ∇2J+
0 − γ∇

2u+ + β
(
u+ − u−

)
= 0, in ΩM , (S34)

∇4u− + ∇2J−0 − γ∇
2u− + β

(
u− − u+) = 0, in ΩM , (S35)

∇4u− + ∇2J−0 − γ∇
2u− +

β

2
(
u− − u+

B
)

= 0, in Ω1, (S36)

∇4u+ − ∇2J+
0 − γ∇

2u+ +
β

2
(
u+ − u−B

)
= 0, in Ω2, (S37)
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The second term δG(me)
B in Eq. S33 must account for the external shearing force p±ext and mechanical moments m±ext

imposed by the inclusion at the edges (interior boundary) of the upper and lower leaflets, respectively. The latter
yields the following set of allowable BCs (24):

δu+ [
p+(u+, u−) − p+

ext
]
+ δ

(
∇u+ · ~r2

) [
m+(u+, u−) − m+

ext
]

= 0 at the upper leaflet boundary, (S38)
δu−

[
p−(u+, u−) − p−ext

]
+ δ

(
∇u− · ~r1

) [
m−(u+, u−) − m−ext

]
= 0 at the lower leaflet boundary, (S39)

where ~r1 is the unit vector pointing perpendicular to the curve described by the lower leaflet-protein interface and ~r2 is
the unit vector pointing perpendicular to the curve described by the upper leaflet-protein interface (see Fig. 1 B in the
main text). The variable p± represents the internal forces and m± are the internal moments generated at the interface
by the stressed upper and lower leaflets.

From Eq. S38 and Eq. S39, we see that there there are several different BCs that satisfy the physical situation.
The first, and most intuitive situation, is fixed BCs, where u± and ~∇u± are predetermined at the boundaries. In this
case, variations on the deformation variables at the boundary are zero (δu± = δ∇u± = 0) and Eq. S38 - Eq. S39 are
immediately satisfied. For the protein induced membrane distortion problem, we have following set of fixed conditions
(See Refs. (24)):

u±= 0, ~∇u± = 0 far away from inclusion, and (S40)

u±= u±B, ~∇u− · ~r1 = S −, ~∇u+ · ~r2 = S + at the protein-monolayer interface,

where S ± reflects the monolayer slope, or contact angle, at the point of contact with the protein. The fixed conditions
far away from the inclusion in Eq. S40 are commonly used in the literature since it is expected that the protein induced
membrane deformations should decay to bulk values; however, there is more disagreement about the appropriate BCs
at the protein-monolayer interface in Eq. S40 (22). Earlier work found that setting the slopes equal to zero at the
protein-membrane interface yielded compatible energetics with experiments carried out on gramicidin (24, 36, 37).
Yet there is no formal justification for the zero slope condition, and more recent comparison with MD simulations
suggests that the zero slope boundary condition fails to properly describe membrane deformations near the protein
(22).

A second set of BCs compatible with Eq. S38 and Eq. S39 arise from the physical constraints of forces and torques
at the membrane-protein interface (24):

p+(u+, u−) = p+
ext and m+(u+, u−) = m+

ext at the upper leaflet boundary, (S41)
p−(u+, u−) = p−ext and m−(u+, u−) = m−ext at the lower leaflet boundary. (S42)

It is not possible to know the analytic form of the constraints p±ext and m±ext, thus precluding an easy implementation
of these conditions. However, a special situations, referred to as natural BCs, arises when u± and/or S ± are allowed
to freely and independently adjust to the effects of the inclusion (22, 24). When u± is free to adjust, it implies no
external forces are being applied (p± = 0), while freely adjusting slopes (S ±) imply no externally applied moments
(m± = 0) (24). For instance, instead of fixing the value of S ± at the boundary, many authors have used the alternative
natural BCs of prescribing the curvature (∇2u± = 0). For the case of gramicidin, it was determined that natural BCs on
the curvature poorly correlated with experimental energies (22). Moreover, a formal mathematical derivation shows
that the spontaneous J0 and Gaussian modulus KG should directly influence the curvature boundary condition (38).
Both of these quantities are usually neglected in continuum elastic models that use the natural boundary condition
on curvatures (22, 38). This could potentially contribute to the discrepancies reported between continuum elastic
predictions and simulation/experiment.

S5.1. What are the correct boundary conditions for real proteins?

The unknown functional form of the forces p±ext and torques m±ext at the boundary precludes the use of a purely
elastic continuum model for the membrane. Instead we use a hybrid continuum-atomistic model that couples the
membrane deformation energy (G(me)), non-polar energy (G(np)) and electrostatic energy (G(e)). The set of boundary
conditions of the elastic model that minimizes the total energy of the system (GT ) is the key coupling element between
the three explicit energies appearing in our hybrid approach. In the main text, we describe the optimization procedure
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used to minimize the energy by optimally choosing BCs, and these optimized displacement values at the protein-
membrane boundary (u±B) are shown in Fig. 3 of the main text.

For completeness, the optimized slope boundary conditions (S ±) together with the slopes extracted from MD are
shown in Fig. S6. The MD slope data is rather noisy due to the highly fluctuating nature of the gramicidin protein
(center of mass translations, rotations, off axis tilting, and rotamer flipping), but our continuum slope predictions are in
good agreement with the average values from MD. Convergence of the search over the boundary conditions depends
on the protein’s geometry and size, but generally it requires 500 to 1500 iterations to achieve an absolute convergence
in the energy of 0.5 kcal/mol. Typical optimization times are about 2 to 7 hours on a desktop computer using a single
core. As shown in Fig. S6, our optimized slopes are slightly positive and not zero as suggested by previous authors
(13, 36, 37). Our solutions show evidence that at the protein-membrane interface, the slopes adapt in order to reduce
the elastic penalty. This result agrees with the expected physical behavior for an elastic slab that is compressed. The
hydrophobic region of gramicidin is slightly smaller than the hydrophobic thickness of the membrane (POPC), and in
order to reduce the compression penalty near the protein the membrane returns to its undeformed shape more quickly
resulting in non-zero slope. Having a positive slope will have a favorable effect to reduce compression at the expense
of introducing curvature into the system. Including lipid hardening effects near the protein tends to increase the degree
of the slope since the compression penalty increases. Despite our finding of a non-zero slope, the values reported here
are smaller than the values reported previously (24) when using using lipid hardening in a membrane elastic model
together with natural boundary conditions (free slope).

Figure S6: Predicted slopes at the protein-membrane boundary obtained from continuum calculations. The dotted line represents the optimal slope
at the upper leaflet, and the dashed line corresponds to the slope values at the lower leaflet. The x-axis is the angular parameterization of the
displacement along the membrane-protein boundary.

S6. Convergence of the continuum elastic energy.

We tested the convergence of our numeric solver for three different cases: an idealized cylindrical inclusion
with r0 = 15 Å, a configuration of gramicidin A examined in the main text, and the configuration of nhTMEM16
examined in our previous work (10). Each case has its own advantage. The cylinder has an analytic solution that
we used to assess the absolute convergence of our method, while the later two cases are real proteins. Gramicidin
is small and largely cylindrical, while nhTMEM16 is a large dimer with 20 transmembrane helices total (10). For
the cylinder and gramicidin, solutions were calculated on a 100 Å by 100 Å grid, but nhTMEM16 is much larger,
it was calculated on a 200 Å by 200 Å grid (10). For each boundary, we applied symmetric displacement boundary
conditions: u±B = ∓1.5 ± 1.5 · Sin(2t) ∓ 1.5 · Cos(t). For the cylinder, a slope of zero was applied with no Partenskii-
Jordan hardening near the protein, while the other two systems employed a hardening factor of 4.27 and a slope factor
of -0.04. The error on the membrane displacement field was evaluated using the L∞-norm, while the relative error was
used to assess convergence of the total membrane energy (GT ). Analytic solutions do not exists for the gramicidin
and nhTMEM16 cases, so the errors were calculated relative to the solution obtained at the highest grid density. In all
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cases, the greatest error over the entire displacement field is less than 0.7 Å when the grid spacing is less than 1.5 Å,
which is greater than 64 grid points for A and B and greater than 128 grid points for C (Fig. S7). For the cylindrical
inclusion, the error in the L∞-norm asymptotically approaches 0.065 Å rather than 0 Å. The element corresponding to
this maximum error is located on the outer boundary at 50 Å, where we assumed that the displacement field returned
to zero in the numeric calculation, but we assume boundaries at infinity in the analytic solution. Thus, the true error in
the numeric solver is even smaller than what is presented, due to inconsistencies between our numeric calculation and
our analytic reference. The relative energies have converged to approximately 5 % in all cases when the grid spacing
is 1 Å (Fig. S7 D-F). For all calculations in the main text, we use a grid spacing of 1 Å.

Figure S7: Convergence of membrane distortions on boundaries of different size and complexity. (A-C) L∞-norm of the membrane shape variable
for a cylinder of radius 15 Å, gramicidin, and nhTMEM16, respectively. The error is E∞ = max{unumeric

i, j − uanalytic
i, j } for the cylinder and E∞ =

max{unumeric
i, j − unumeric max refinement

i, j } for the two real proteins, and the indices i, j correspond to all elements in the xy-plane. Note that this error
is identical to the maximum component of the L1-norm as indicated in the figure label. (D-F) Relative error in the elastic energy for the cylinder,
gramicidin, and nhTMEM16, respectively. The total energy for each test case was 8.8, 17.9, and 31.5 kcal/mol, respectively, where the last two
values were determined from the numeric solution at the highest grid density and the former was determined analytically.

S7. Membrane height profiles from hybrid continuum-atomistic model.

Finally, we wanted to show the full 2D membrane profile predicted from our hybrid-continuum atomistic model
(Fig. S8) using the self-consistently optimized membrane boundary displacements (shown in Fig. 4 of the main text)
and slopes (Fig. S6). At the outer edges of the solution domain, we have imposed far field boundary conditions
(u± = ∇u± = 0). The corresponding membrane shape is quite similar in nature to the profiles from MD shown in
Fig. 2A,B (main text); however, they are not identical for several important reasons. First, the MD simulations impose
periodic boundaries and the continuum calculation in (Fig. S8) do not. Second, the profiles from the MD simulations
are averaged over the entire simulation trajectory, while the continuum boundary conditions were taken from a small
subset of protein configurations around the most populated orientation. As discussed throughout the manuscript, it is
not advisable to closely compare deformation profiles of averaged membranes with static snapshots.
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