
A PREDICTIVE CODING ACCOUNT OF BISTABLE PERCEPTION - A MODEL-BASED FMRI

STUDY

Mathematical Appendix

As an example for an ambiguous stimulus, we use the Lissajous figure that - due to its am-

biguous depth structure - is alternately perceived as a clockwise (as viewed fom above, i.e.

movement of the front surface to the left) and counter-clockwise (vice versa) rotating object

(see also supplementary video).

From a predictive coding perspective, the brain entertains and inverts a generative model of how

sensory data are caused. In our case, the sensory environment is constrained to objects which

rotate either clockwise or counter-clockwise, while direction of rotation changes at a specific

frequency. In analogy, our model represents a generative model of how potentially ambiguous

sensory data are caused by objects in the sensory environment, while the frequency of changes

is governed by an implicit prior for stability.

The inversion of this model is based on sensory information µstereo(t) and the prediction of

the perceived direction of rotation y(t). It allows for the estimation of model parameters (i.e.

the initial precision of the stability prior πinit; the precision of sensory stimulation πstereo, the

inverse decision temperature ζ). These model parameters govern the updates in model quantities

(i.e. the mean and precision of the stability prior µstability and πstability; the mean and precision of

the joint prior distribution µm and πm; the probability of perceiving counter-clockwise rotation
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P (θ > 0.5); the predicted perceptual response ypredicted). See Table 7 for a list of model

parameters and model quantities.

As new perceptual decisions on the rotation of the Lissajous figure are made almost exclusively

at overlapping stimulus configurations (’overlaps’, [1, 2]). we can convert the continuous time-

course of stimulus presentation to discrete timepoints t of ’overlaps’. Accordingly, the sampling

rate of our model is given by the frequency at which ’overlaps’ occur and depends on the

rotational speed of the Lissajous figure.

At each timepoint t, the two alternative visual percepts are predicted on the basis of a posterior

probability distbution over θ:

θ =


> 0.5 : → (rotation)

< 0.5 : ← (rotation)

(1)

Participants responded with button-presses indicating the current visual percept:

y(t) =


1 : → (rotation)

0 : ← (rotation)

(2)

Similar to other ambiguous stimuli, the Lissajous figure can be disambiguated by additional

cues - e.g. by stereodisparity between the two eyes - in order to create a ’replay’ condition.
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Here, perception is forced to alternate between a clockwise and counter-clockwise rotating

stimulus with a similar time-course as during bistable perception. Hence, we formalize the

sensory information in both replay and ambiguity by the Gaussian distribution ’stereodisparity’

(N (µstereo, π
−1
stereo)), which is used as a weight on a bimodal likelihood distribution (see Equa-

tion 7 - 10, [3]). The mean of this distribution µstereo is given by the direction of disambiguation

at timepoint t:

µstereo(t) =



1 : → (disambiguation)

0.5 : ↔ (ambiguous)

0 : ← (disambiguation)

(3)

Its precision πstereo (the inverse of its variance) encodes the strength of disambiguation, and is

either chosen as a free parameter or fixed to 0 (thereby eliminating a contribution of a disam-

biguation on the prediction of perceptual decisions).

Furthermore, we hypothesize that the current percept represents an (implicit) prior belief con-

tributing to the stability of visual perception, which is given by the Gaussian distribution ’per-

ceptual stability’ (N (µstabiliy, π
−1
stability)). The mean of this prior µstability at timepoint t is de-

fined by the current percept as indicated by the participant at the preceding overlap:

µstability(t) = y(t− 1) (4)
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In turn, the impact of this prior distribution on visual perception is reflected by its precision

πstability. Central to our model of bistable perception, we allow this precision to be affected by

a prediction error signal.

If a new perceptual decision was made at the preceding timepoint, πstability(t) is set to the initial

perceptual precision πinit:

πstability(t = t0) = πinit (5)

This initial perceptual precision πinit represents the strength of an initial perceptual stabiliza-

tion following a perceptual transition and can be chosen as free parameter or fixed to 0 (thus

eliminating the stability prior from the model).

In all other cases, πstability(t) is calculated by updating the perceptual precision of the preceding

timepoint πstability(t− 1) with the prediction error of the preceding timepoint PE(t− 1):

πstability(t 6= t0) = πstability(t− 1) ∗ exp(−|PE(t− 1)|) (6)
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To compute a posterior distribution, we combine the prior distribution ’perceptual stability’

(parameterized by µstability and πstability) with the ’stereodisparity’-weight of the likelihood (pa-

rameterized by µstereo and πstereo) into a joint distribution m:

πm = πstereo + πstability (7)

µm =
πstereo ∗ µstereo + πstability ∗ µstability

πm
(8)

The joint distribution m is used as weight on a bimodal likelihood distribution [3] in order to

calculate the density ratio of the posterior for the two peak locations θ0 = 0 and θ1 = 1:

r =
P (θ < 0.5)

P (θ > 0.5)
= exp(

(θ0 − µm)2 − (θ1 − µm)2

2 ∗ π−1
m

) (9)

P (θ > 0.5) =
1

r + 1
(10)

Please note that it is an arbitrary choice which of the two directions we consider, as the two

posterior probabilities P (θ > 0.5) and P (θ < 0.5) sum up to 1.

By applying a unit sigmoid function parametrized by the inverse decision temperature ζ to the
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posterior probability of counter-clockwise rotation P (θ > 0.5)(t), we predict the participants

response y(t), which represents the basis for the optimization of model parameters:

ypredicted(t) =
P (θ > 0.5)ζ

P (θ > 0.5)ζ + (1− P (θ > 0.5))ζ
(11)

Most importantly, we use the difference between the current percept y(t) as indicated by the

participant and the posterior probability of counter-clockwise rotation P (θ > 0.5)(t) to calcu-

late a prediction error PE(t) that represents the residual evidence in favour of the suppressed

percept:

PE(t) = y(t)− P (θ > 0.5)(t) (12)

It is noteworthy that the inclusion of a stereodisparity weight allows us to treat both ambiguity

and replay within the same framework: The prediction error PE(t) is also computed in the re-

play condition and shows similar temporal dynamics in the replay condition as in the ambiguity

condition. The stereodisparity weight (µstereo 6= 0.5), however, renders the posterior probability

P (θ > 0.5) more similar to the currently induced percept y(t) as compared to the ambiguity

condition, where the stereodisparity weight (mean µstereo = 0.5) is uninformative with respect
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to the current percept. Hence, the prediction error PE(t) (the difference between P (θ > 0.5)

and y(t)) is expected to be smaller in replay as compared to ambiguity.
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