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Introduction

To further validate our modeling approach, we aimed to compare our predictive coding model to

established models of bistable perception. We chose three exemplary models belonging to three

different model classes: ”oscillator models”, ”noise-driven atttractor models” and ”intermediate

models”.

Alternations in bistable perception have been related to the interaction between two ore more

competing neuronal populations coding for the alternative percepts, where the currently domi-

nant population is subject to adaptation [1, 2, 3]. Here, we chose the model proposed by [4] as

a classical representative of such ”oscillator” models.

Alternative approaches have considered noise to be the driving force behind transitions in

bistable perception. In this framework, the alternative percepts during bistable perception have

been conceived as stable states in a a dynamic neural network, while internal noise (e.g. vari-

ability in vesicular release, spiking rate or neurotransmitter levels) and external noise (e.g. eye

blinks) lead to alternations between the two attractors. For model comparison, we chose the

model presented by [5] as an example of such ”attractor” models.
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Lastly, we considered an ”intermediate” model proposed by [6], which relates transitions in

bistable perception to both adaptation of the dominant neuronal population and noise.

Methods

Oscillator Model

Theoretical Background

Oscillator models of bistable perception are based on mutual inhibition and adaptation [7, 4]

and posit that two distinct neuronal populations represent the two distinct percepts compatible

with a bistable stimulus. First, these models incorporate strong mutual inhibition between the

two neuronal populations, which ensures that only one neuronal population will be active at any

given time between perceptual transitions, thereby producing two mutually exclusive percepts.

Second, these models incorporate adaptation of each neuronal population, meaning that the

active neuronal population will eventually decrease in activity so that the suppressed neuronal

population will become active, thereby producing perceptual transitions. Here, we implemented

one established mutual-inhibition and adaptation model suggested by [4]. Crucial to our pur-

pose, this model permits the estimation of the timepoints of perceptual transitions as a function

of the underlying parameters, which allowed us to fit the model to behavioural data.

[4] assumes a simple threshold nonlinearity for the neural bistable perception model:

[X]+ = max(X, 0) (1)
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The model (adapted for clockwise and counter-clockwise rotation of the Lissajous figure) is

defined by four differential equations:

τ
dELeft
dt

= −ELeft +M [Left(t)− aERight + eELeft − gHLeft]+ (2)

τH
dHLeft

dt
= −HLeft + ELeft (3)

τ
dERight
dt

= −ERight +M [Right(t)− aELeft + eERight − gHRight]+ (4)

τH
dHRight

dt
= −HRight + ERight (5)

Equations 2 and 3 describe the activity of neurons responding to clockwise rotation. Here,ELeft

describes the activity of neurons responsive to clockwise rotation, which are driven by the input

Left(t) and are inhibited by activity of neurons responsive to counter-clockwise rotationERight

according to the inhibitory synaptic strength a (−aERight). Furthermore, ELeft is driven by a

weak recurrent excitatory contribution defined byELeft as well as a excitatory synaptic strength

e (+eELeft), and by self-adaptation defined by a slow self-depolarizing current HLeft and gain

g (−gHLeft).
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The time constant for the evolution of ELeft is given by τ (approx. 15 ms), whereas the time

constant for the adaptation HLeft is described by τH (approx. 1000 ms). M describes the

increase in neural firing rate as the excitatory input increases.

Equation 4 and 5 represent analogous differential equations for neurons responding to counter-

clockwise rotation during ambiguous stimulation. The inputs Left(t) and Right(t) were set to

1 for ambiguous stimulation.

Under simplifying assumptions (τ << τH , [4]), it can be shown that:

ELeft(t) =
M × Left(t)

1−Me
− M2g × Left(t)

(1−Me)(1 +Mg −Me)
×(1−exp(−(1 +Mg −Me)t

(1−Me)τH
)) (6)

Here, t denotes the beginning of dominance period. Likewise, HRight is given by:

HRight(t) =
M ×Right(t)
1 +Mg −Me

× exp(−t/τH) (7)

Analogous equations hold for ERight and HLeft. With these expressions, the time of perceptual

transitions can be calculated. This will occur when the [X]+ function for ELeft or ERight just
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reaches zero, respectively:

Right(t)− aELeft(t)− gHRight(t) = 0 (8)

or

Left(t)− aERight(t)− gHLeft(t) = 0 (9)

Starting with the percept indicated by the participant at the beginning of an ambiguous block,

perceptual transitions were predicted using Equation 8 and 9. We then used the resulting hidden

variables ELeft(t) and ERight(t) to predict the subjects response θ, which is 0 for perception of

clockwise and 1 for counter-clockwise rotation:

θ =


1 : → (rotation)

0 : ← (rotation)

(10)

In order to obtain a prediction of the subjects in the unit interval (ypredicted), we calculated

calculated the sigmoid transform the the difference between ELeft(t) and ERight(t) at every
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timepoint:

ypredicted(t) = sigmoid(ERight(t)− ELeft(t)) (11)

ypredicted(t) was then used to predict the perceptual outcome θ(t).

Since replay stimulation was not included in the original model [4], we added the following

equation to account for disambiguated visual displays: In the disambiguated replay blocks,

clockwise and counter-clockwise stimulation were defined as

simulation(t) =


1 : → (stimulation)

0 : ← (stimulation)

(12)

ypredicted for replay stimulation was then defined by applying the parameter d, accounting for

the effectiveness of disambiguation:

ypredicted =
exp(−d

2
∗ (stimulation− 1)2)

exp(−d
2
∗ (stimulation− 1)2) + exp(−d

2
∗ (stimulation)2)

(13)
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Here, for limd→∞ (i.e. very effective disambiguation), ypredicted(t) approaches 0 or 1, depending

on simulation(t). For limd→0 (i.e. less effective disambiguation), ypredicted(t) approaches 0.5.

Model simulation

To establish that our implementation of the mutual inhibition and adaptation model [4] was

able to reproduce the temporal dynamics of bistable perception, we simulated perceptual time-

courses from some ambiguous input such as the Lissajous figure. We simulated for a total of

40 ∗ 105 ms and assumed a = 3.4, g = 3, M = 1, τH = 1000. We calculated the distribution of

dominance durations as well as the time-courses for ELeft and ERight.

Modelling analysis of bahavioural data

In analogy to our modelling analysis using our predictive coding model, we fitted the mutual

inhibition and adaptation model to the behavioural data collected during the fMRI experiment.

Again, we optimized our model for the prediction of participants’ responses that were aligned to

the overlapping stimulus configurations of the Lissajous figure. For model inversion, parameters

were modelled as log-normal distributions. a, g and d were estimated as free parameters (a:

prior mean of log(3.4) and prior variance of 10; g: prior mean of log(3) and prior variance of 10;

d: prior mean of log(10) and prior variance of 1). All other parameters were fixed to the values

reported in [4] (see Supplementary Table 1). Parameters were optimised using quasi-Newton

Broyden-Fletcher-Goldfarb-Shanno minimisation as implemented in the HGF4.0 toolbox.

To investigate whether the model implemented here adequately captured individual perceptual
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dynamics during bistable perception, we analyzed the model’s posterior parameters using clas-

sical frequentist statistics. Specifically, we calculated the Pearson correlation between conven-

tional transition probabilities during ambiguous stimulation and a-posteriori a/g (the posterior

inhibitory synaptic strength divided by the posterior hyperpolarizing current strength).

Attractor Model

Theoretical Background

Furthermore, we aimed at comparing our prediction error model to an attractor model of bistable

perception, in which noise is crucial for the emergence of transitions in perception. In the model

developed by [5], internal and external sources of noise cause switches between two stable states

of the neuronal dynamics, which represent the two alternative and mutually exclusive percepts

associated with bistable perception. According to this notion, perception would hence cease to

fluctuate in the absence of noise, despite the ambiguity of the sensory signal.

[5] posit that the dominant states of the two populations coding for the alternative percepts Aon

and Bon are defined by their mean firing rates rA and rB: A(rA >> rB) and B(rB >> rA).

The attractor states are then described by an energy function with two minima, representingAon

and Bon:

E(∆r) = ∆r2(r2 − 2) + ga(∆r + 1)2 + gB(∆r + 1)2 (14)
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Here, ∆r denotes the difference in the mean firing rate (rA − rB), while ga and gB denote the

input strengths.

The dynamic variable r moves along the horizontal axis of this energy function. Since its

first derivative is zero at the minima, those points represent the stable attractors. The temporal

evolution of ∆r is given by:

τ
d

dt
(∆r) = −4∆r(r2 − 1) + ga(∆r − 1) + gB(∆r + 1) + n(t) (15)

τ represents the timescale of changes in ∆r. The noise term n(t) is a Ornstein-Uhlenbeck

process with zero mean and deviation σ.

d

dt
n = − n

τs
+ σ

√
(

2

τs
)ζ(t) (16)

Importantly, ζ(t) represents a white noise process with zero mean and variance v. Please note

that in the absence of noise (v = 0), the system settles in one of the two attractors.
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We used ∆r to predict the two perceptual outcomes at each overlapping configuration of the

Lissajous figure:

θ =


1 : → (rotation)

0 : ← (rotation)

(17)

To this end, z-transformed ∆r was thresholded to satisfy the relations A(rA >> rB) and

B(rB >> rA):

ypredicted(t) =


1 : ∆r > threshold

0 : ∆r < −threshold

(18)

In analogy to our implementation of the mutual-inhibition and adaptation model [4], responses

during replay were predicted by applying parameter d as a measure of the effectiveness of

disambiguation:

simulation(t) =


1 : → (stimulation)

0 : ← (stimulation)

(19)
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ypredicted =
exp(−d

2
∗ (stimulation− 1)2)

exp(−d
2
∗ (stimulation− 1)2) + exp(−d

2
∗ (stimulation)2)

(20)

Model simulation

To make sure that our implementation of the noise-driven attractor model [5] was able to re-

produce the temporal dynamics of bistable perception, we simulated perceptual perceptual de-

cisions for a total of a total of 40 ∗ 105 ms and assumed τ = 10, gB = gA = 1, v = 0.0001,

τs = 50, σ = 0.7 and threshold = 0.75. We calculated the distribution of dominance durations

as well as the time-course of ∆r.

Modelling analysis of behavioural data

Modeling analysis was carried out in analogy to the mutual-inhibition and adaptation model

([4], see above). For model inversion, parameters were modelled as log-normal distributions.

v and d were estimated as free parameters (v: prior mean of log(0.1) and prior variance of

1; d: prior mean of log(10) and prior variance of 1). All other parameters were fixed (see

Supplementary Table 2). Parameters were optimised using quasi-Newton Broyden-Fletcher-

Goldfarb-Shanno minimisation as implemented in the HGF4.0 toolbox.
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To investigate whether the model implemented here adequately captured individual perceptual

dynamics during bistable perception, we analyzed the model’s posterior parameters using clas-

sical frequentist statistics. Specifically, we calculated the Pearson correlation between conven-

tional transition probabilities during ambiguous stimulation and a-posteriori v (the variance of

the white Gaussian noise representing the driving force between perceptual transitions during

bistable perception according to [5]).

Intermediate Model

Theoretical Background

Finally, we sought to compare our model to an intermediate model that incorporates both adap-

tation and noise. To this end, we chose the model put forward by [6]. This model was designed

to match the structure of electronic astable mulitvibrators and produces transitions between two

perceptual states associated with a bistable stimulus.

In this framework, the mean activity of the neuronal population coding for the currently domi-

nant percept evolves according to:

dominantt+∆t = a ∗ dominantt + b ∗ δ (21)

Here, δ is set to +1.0 or -1.0 with probability 0.5 at each timestep. a denotes the strength of
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adaptation and b scales the amount of noise desired in the system.

Conversely, the mean activity of the neuronal population coding for the currently suppressed

percept is given by:

suppressedt+∆t = a ∗ suppressedt + (1− a) + b ∗ δ (22)

Once the activity of the dominant population reaches a threshold (dominantt = threshold),

the system reverses.

We extracted the modelled activity of the neuronal population coding for counter-clockwise

rotation activityθ=1. For replay stimulation, activityθ=1 was set to 1 for counter-clockwise

stimulation and to 0 for clockwise stimulation. The perceptual outcomes were predicted by

applying a sigmoid transform to z-normalized activityθ=1.

ypredicted(t) = sigmoid(zscore(activityθ=1(t))) (23)

Model simulation

To verify that our implementation of the intermediate model [6] was able to reproduce the

temporal dynamics of bistable perception, we simulated perceptual perceptual decisions for a

total of a total of 40 ∗ 105 ms and assumed a = 0.9048, b = 0.1 and threshold = 0.2. We
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calculated the distribution of dominance durations as well as the time-course of mean activity

in the neuronal population coding for counter-clockwise rotation.

Modelling analysis of behavioural data

Modeling analysis was carried out in analogy to the mutual-inhibition and adaptation model

([4], see above). For model inversion, parameters were modelled as log-normal distributions.

a and b were estimated as free parameters (a: prior mean of log(0.9048) and prior variance

of 0.1; b: prior mean of log(0.1) and prior variance of 0.1). The parameter threshold was

kept fixed at 0.2. Parameters were optimised using quasi-Newton Broyden-Fletcher-Goldfarb-

Shanno minimisation as implemented in the HGF4.0 toolbox.

To investigate whether the model implemented here adequately captured individual perceptual

dynamics during bistable perception, we analyzed the model’s posterior parameters using clas-

sical frequentist statistics. Specifically, we calculated the Pearson correlation between conven-

tional transition probabilities during ambiguous stimulation and a-posteriori a ∗ b (the strength

of adaptation times the amount of noise within in the system [6]).

Bayesian Model Comparison

Most importantly, in a final step, we aimed to compare the performance of our predictive coding

model to the performance of the established models described above. We therefore performed

Random Effects Bayesian Model Comparison [8], as implemented in SPM12 (http://www.fil.

ion.ucl.ac.uk/spm/software/spm12) between predictive coding, oscillator, attractor and interme-
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diate models, reporting expected ratios and protected exceedance probabilities.

Results

We used data simulations in order to establish whether our implementation of the oscillator,

attractor and intermediate models were able to reproduce perceptual time-courses similar to

bistable perception. Indeed, the distribution of perceptual phase durations followed a sharp rise

and slow fall for all models (Figure 1 a-c), which is typical for bistable perception [9, 10]. Mean

and median simulated phase durations amounted to 1086 and 1084 ms for the oscillator model,

2413 and 1814 ms for the attractor model as well as 1486 and 1300 ms for the intermediate

model. The insets in Figure 1A and C show simulated time-courses of neuronal activity in

neurons coding for clockwise and counter-clockwise rotation. The inlet in Figure 1B shows an

exemplary time-course for ∆r.

To investigate whether the models described above were able to explain the dynamics of per-

ceptual bistability in human observers, we tested whether the a-posterior model parameters

correlated with conventional transition probabilities during ambiguous sitmulation.

For the oscillator model, a/g (the posterior inhibitory synaptic strength divided by the posterior

hyperpolarizing current strength) was positively correlated with perceptual transition frequen-

cies across participants (ρ = 0.5750, p < 0.0080, Pearson correlation, Fig.1D), suggesting that

the model fitted the behavioral data. Furthermore, this correlation was also significant when

we correlated model parameter estimates for a/g averaged over run 1 and 2 with perceptual

transition frequencies from run 3 (Pearson correlation to a/g: ρ = 0.6314, p < 0.0028, Fig.
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1G), indicating that the mutual-inhibition and adaptation model also accounted for observers’

perception evoked by an ambiguous stimulus. Overall, a-posteriori a amounted to 12.6076 ±

2.4048 ms (standard error of the mean) across observers. A posteriori g was 9.0257 ± 1.9121

on average. A-posteriori d amounted to 2.6064 ± 0.3027 ms across observers.

For the noise-driven attractor model, the a-posteriori value of v (variance of the Gaussian noise)

did not correlate with conventional transition probabilities (see Figure 1E and H), indicating

that this model was unable to capture the perceptual dynamics in this specific experiment using

the Lissajous Figure. In this model, a-posteriori value v amounted to 0.1582 ± 0.0223 (stan-

dard error of the mean) across observers. A-posteriori d amounted to 1.1569 ± 0.3512 across

observers.

For the intermediate model, we correlated the product from a-posteriori a (strength of adap-

tation) and a-posteriori b (the amount of noise within in the system) with conventional tran-

sition probabilities. Here, we found a significant positive Pearson correlation (ρ = 0.5355,

p < 0.0140, Fig. 1F) between the two measures. Additionally, this correlation was also

borderline-significant when we correlated model parameter estimates for a ∗ b averaged over

run 1 and 2 with transition probabilities from run 3 (Pearson correlation to a ∗ b: ρ = 0.4381,

p < 0.0533, see Fig. 1I), indicating that the intermediate model successfully accounted for

individual perceptual time-courses during ambiguous stimulation.

In a final step, we compared our predictive coding model to the oscillator, attractor and interme-

diate model using Random Effects Bayesian Model Comparison. This analysis identified our

predictive coding model as a winning model with an expected ratio of 0.8303 and an protected
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exceedance probability of 99.99% (Fig. 2A and B).

Discussion

In this supplementary analysis, we compare our predictive coding approach to three established

models of bistable perception based on adaptation and inhibition [4], noise [5] and an inter-

mediate model [6]. While all three models were able to reproduce the known characteristics

of bistable perception, only the adaptation and inhibition as well as the intermediate model

successfully predicted participants perception during viewing of ambiguous and unambiguous

visual Lissajous stimuli. Conversely, a-posteriori parameters from the noise-driven attractor

model did not correlate with conventional measures of transition frequency.

One possibility for this lack of model-fit in the noise-driven attractor model might the regularity

of perceptual transitions in the Lissajous figure, which almost uniquely occur at overlapping

configurations of the stimulus [11]. Models that rely only on noise as the driving force behind

perceptual transitions [5] and do not incorporate some sort of temporal regularity such as adap-

tive processes [6, 4] thus might be unable to explain the perceptual dynamics of this particular

stimulus.

Crucially, formal model comparison between the established models and our predictive coding

model revealed a superiority of the latter, given the data collected in this study. Importantly, this

model comparison result does not indicate that our modelling approach is superior to oscillator,

attractor or intermediate models. This is because the models described here were developed to

explain neuronal time-courses during bistable perception and were not designed to predict per-
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ceptual decisions during bistable perception timepoint-by-timepoint. Furthermore, the original

models did not include a replay condition, which we added in order to enable a full model com-

parison. Finally, the the earlier models were designed to explain perceptual time-courses mostly

during binocular rivalry or continuous structure-from-motion, which are different to our stimu-

lus in various respects, most importantly due to increased transition probabilities at overlapping

stimulus configurations of the Lissajous figure (see above).

Taken together, the results of our supplementary analyses suggest that - given the specific be-

havioural data collected in this experiment - our predictive coding model is at least equivalent

to established models of bistable perception in explaining perceptual decision during viewing

of an ambiguous stimulus.

18



Figures

Supplementary Figure S1. A-C: Simulating perceptual decisions during ambiguous stimulation.

Data were simulated for a total of 40 ∗ 105 ms. A: Oscillator model with a = 3.4, g = 3, M = 1,

τH = 1000 . The distribution of phase durations was characterized a sharp rise and slow fall resembling

a gamma-distribution with a mean dominance duration of 1086 ms. The inlet shows simulated time-
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courses for neurons coding for counter-clockwise (blue) and clockwise (red) rotation. B: Noise-driven

attractor model with τ = 10, gB = gA = 1, v = 0.0001, τs = 50, σ = 0.7 and threshold = 0.75.

The distribution of phase durations was characterized a sharp rise and slow fall resembling a gamma-

distribution with a mean dominance duration of 2413 ms. The inlet shows the simulated time-course for

the rate difference ∆r in black. C: Intermediate model with a = 0.9048, b = 0.1 and threshold = 0.2.

The distribution of phase durations was characterized a sharp rise and slow fall resembling a gamma-

distribution with a mean dominance duration of 1486 ms. The inlet shows the simulated time-course for

neurons coding for counter-clockwise (blue) and clockwise (red) rotation. D-I: Correlation between

posterior parameters of participants’ behaviour. D: Transition probabilities form the oscillator model

correlated significantly with posterior a/g across participants (ρ = 0.5750, p < 0.0080), providing a

sanity check for model fit. E: Transition probabilities did not correlate significantly with posterior v

from the noise-driven attractor model. F: Transition probabilities form the intermediate model correlated

significantly with posterior a ∗ b across participants (ρ = 0.5355, p < 0.0140,), providing a sanity

check for model fit. G: Transition probabilities from run 3 were predictive of posterior a/g from the

oscillator model averaged over run 1 and 2 (ρ = 0.6314, p < 0.0028), illustrating the explanatory power

of this model. H: Transition probabilities from run 3 did not correlate significantly with posterior v

from the noise-driven attractor model averaged over run 1 and 2. I: Transition probabilities from run 3

were predictive of posterior a ∗ g from the intermediate model averaged over run 1 and 2 (ρ = 0.4381,

p < 0.0533), illustrating the explanatory power of this model.
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Supplementary Figure S2. Random Effects Bayesian Model Comparison of our predictive coding

model to oscillator, attractor and intermediate model. The predictive coding model was identified as

superior (A: expected ratio; B: protected exceedance probability) in explaining participants’ behaviour.
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Supplementary Table 1: Parameters of the mutual inhibition and adaptation model

Parameter Explanation Prior Mean Prior Variance

τ Excitatory neural time constant 15 ms 0

τH Hyperpolarizing time constant 1000 ms 0

M Response gain constant 1 0

a Inhibitory synaptic strength 3.4 10

g Hyperpolarizing current strength 3.0 10

e Excitatory synaptic strength 0 0

Left(t) Time course of clockwise input 1 0

Right(t) Time course of counter-clockwise input 1 0

d Effectivity of perceptual disambiguation 10 1
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Supplementary Table 2: Parameters of the noise-driven attractor model

Parameter Explanation Prior Mean Prior Variance

τ ∆r time constant 10 ms 0

τs Noise time constant 50 ms 0

v Noise variance 0.1 1

gA Input strength percept A 1 0

gB Input strength percept B 1 0

threshold Threshold for predicted responses 0.75 0

d Effectivity of perceptual disambiguation 10 1
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