# Supplemental Materials Molecular Biology of the Cell

Barros and Tzagoloff

## SUPPLEMENTAL MATERIAL

# Table S1. Properties of different *aep3* mutants

Phenotype

| Genotype                                      | Mutation                    | % p <sup>-/o</sup> | Mito. Translation                                                                                                      | Ref                   |
|-----------------------------------------------|-----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|
| aep3                                          | Δ36–661                     | ~90                | Atp8p and Atp6p more<br>affected than other mit.<br>gene products                                                      | Ellis et al.,<br>2004 |
| ∆aep3 nATP8 <sup>GPD</sup>                    | Δ36–661                     | ~90                | Atp6p and other<br>mitochondrial gene<br>products very low<br>because of high<br>percentage of $\rho^{-/0}$<br>mutants | This study            |
| $\Delta aep3 sup^+ nATP8^{GPD}$               | Δ36–661                     | ~20                | Normal except<br>Atp8p is expressed<br>from allotropic<br><i>nATP8</i>                                                 | This study            |
| Δaep3 nATP8 <sup>GPD-CYCI</sup>               | Δ36–661                     | ND                 | Normal except<br>Atp8p is expressed<br>from allotropic<br><i>nATP8</i>                                                 | This study            |
| aep3-6b                                       | A379E                       | ~90                | Severely depressed                                                                                                     | This study            |
| aep3-6b sup <sup>+</sup> nATP8 <sup>GPD</sup> | A379E                       | ~10                | Normal except Atp8p is<br>expressed from allotropic<br><i>nATP8</i>                                                    | This study            |
| aep3-1s                                       | Δ416-606                    | ~90                | Severely depressed                                                                                                     | This study            |
| aep3-1s sup <sup>+</sup> nATP8 <sup>GPD</sup> | Δ416-606                    | ~10                | Normal except<br>Atp8p is expressed<br>from allotropic<br><i>nATP8</i>                                                 | This study            |
| aep3-1c                                       | A379E,<br>N331E<br>Δ416-606 | ~90                | Severely depressed                                                                                                     | This study            |
| aep3-1c sup <sup>+</sup> nATP8 <sup>GPD</sup> | A379E,<br>N331E<br>Δ416-606 | ~60                | Normal except<br>Atp8p is expressed<br>from allotopic<br><i>nATP8</i>                                                  | This study            |
| aep3                                          | Y305N                       | Not<br>reported    | Not affected in wild type<br>background. General<br>decrease in a <i>fmt1</i> mutant                                   | Lee et al., 2009      |
| ∆fmt1                                         | Deletion                    | ND                 | Normal                                                                                                                 | This study            |

| $\Delta aep3 \Delta fmt1$               | $\Delta 36-661$<br>Deletion                                     | ND | Severely depressed                                                     | This study |
|-----------------------------------------|-----------------------------------------------------------------|----|------------------------------------------------------------------------|------------|
| $\Delta aep3 \Delta fmt1 nATP8$         | $\begin{array}{c} \Delta 36-661 \\ \text{Deletion} \end{array}$ | ND | Severely depressed                                                     | This study |
| $\Delta aep3 \Delta fmt1 sup^+ nATP8^2$ | Δ36–661<br>Deletion                                             | ND | Normal except<br>Atp8p is expressed<br>from allotropic<br><i>nATP8</i> | This study |

<sup>1</sup> The percentage of  $\rho^{-}$  and  $\rho^{0}$  mutants differs in different strains. The difference in the values reported for the *aep3* null and the point mutants could stem from the differences in the genetic background of iLL20 and W303, respectively. <sup>2</sup>The suppressor in this strain has not been determined.

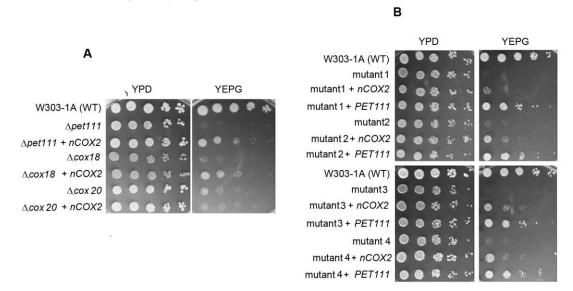
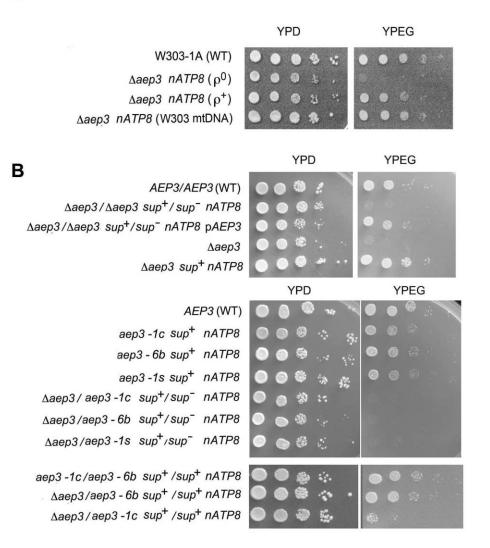

| Strain                                     | Genotype                                                                                                                                                         | Source                 |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| W303-1A                                    | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1                                                                                                                | а                      |
| W303-1B                                    | MATα ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1                                                                                                                | a                      |
| DFK/W303                                   | MATα kar1-1 ade2-101 leu2Δ ura3-52 lys2<br>Δarg8::URA3 with W303 mtDNA                                                                                           | This study             |
| MR10                                       | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 arg8::HIS3 atp6::ARG8 <sup>m</sup>                                                                             | Rak et al., 2007       |
| MR6                                        | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 arg8::HIS3                                                                                                     | Rak et al., 2007       |
| MR6ΔATP8                                   | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 arg8::HIS3 atp8::ARG8 <sup>m</sup>                                                                             | Barros et al.,<br>2011 |
| MR6\[Delta ATP8/ST4]                       | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 arg8::HIS3 atp8::ARG8 <sup>m</sup> +<br>pATP8/ST4 (nATP8 <sup>ADH1</sup> )                                     | Barros et al.,<br>2011 |
| a/αW303                                    | MATa/α ade2-1/ade2-1 his3-1,15/his3-1,15<br>leu2-3,112/leu2-3,112 trp1-1/trp1-1 ura3-<br>1/ura3-1                                                                | а                      |
| aW303 ΔΑΕΡ3                                | MATa ade2-1 his3-1,15 leu2-3,112 trp1-<br>1ura3-1 aep3::HIS3                                                                                                     | Ellis et al.,<br>2004  |
| aW303 ΔΑΕΡ3/S <sup>+</sup> /22             | MATa ade2-1 his3-1,15 leu2-3,112 trp1-<br>1ura3-1 aep3::HIS3 nrd1 + pATP8-22                                                                                     | This study             |
| W303 ΔΑΕΡ3/S <sup>+</sup> /22              | MATα ade2-1 his3-1,15 leu2-3,112 trp1-<br>1ura3-1 aep3::HIS3 pta1 + pATP8-22                                                                                     | This study             |
| a/αW303ΔAEP3/22                            | MATa/α.ade2-1/ade2-1 his3-1,15/his3-1,15<br>leu2-3,112/leu2-3,112 trp1-1/trp1-1 ura3-<br>1/ura3-1 aep3::HIS3/aep3::HIS3 + pATP8-22<br>(nATP8)                    | This study             |
| a/αW303ΔAEP3/ST4                           | MATa/a. ade2-1/ade2-1 his3-1,15/his3-1,15<br>leu2-3,112/leu2-3,112 trp1-1/trp1-1 ura3-<br>1/ura3-1 aep3::HIS3/aep3::HIS3 +<br>pATP8/ST4 (nATP8 <sup>ADH1</sup> ) | This study             |
| W303∆FMT1                                  | MATα ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1<br>fmt1::ura3                                                                                                     | This study             |
| W303 ΔΑΕΡ3ΔFMT1                            | MATα ade2-1 his3-1,15 leu2-3,112 trp1-<br>1ura3-1 fmt1::ura3 aep3::HIS3                                                                                          | This study             |
| aW303 $\Delta AEP3 \Delta FMT1 / S^+ / 22$ | MATa $ade2-1$ his $3-1,15$ leu $2-3,112$ trp $1-1$<br>ura $3-1$ fmt1::ura $3$ aep $3::HIS3$<br>+ pATP8-22 sup <sup>+</sup>                                       | This study             |

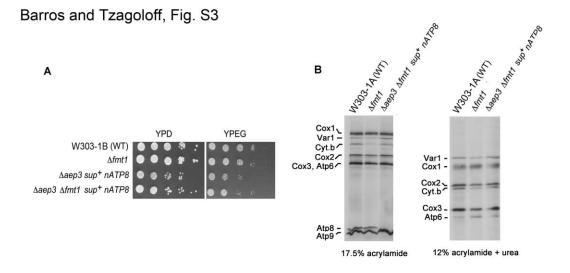
Table S2. Genotypes and Sources of Saccharomyces cerevisiae Strains

| aW303 ∆AEP3∆FMT1/22                    | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 fmt1::ura3 aep3::HIS3<br>+ pATP8-22                                                                                          | This study              |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| W303 ΔΑΕΡ3ΔSMT1                        | MATα ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 smt1::ura3 aep3::HIS3                                                                                                        | This study              |
| aW303∆AEP3/ S <sup>+</sup> / SMT1/22   | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 aep3::HIS3 LEU2::SMT1 sup <sup>+</sup><br>+ pATP8-22                                                                         | This study              |
| W303 ΔΑΕΡ3ΔSMT1/22                     | MATα ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 smt1::ura3 aep3::HIS3<br>+ pATP8-22                                                                                          | This study              |
| aW303/1c                               | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 leu2::aep3-1c + nrd1                                                                                                         | This study <sup>b</sup> |
| aW303/1c/S <sup>+</sup> /22            | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1<br>aep3-1c nrd1 + pATP8-22                                                                                                      | This study              |
| aW303ΔAEP3/1c/ S <sup>+</sup> /22      | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 aep3::HIS3 leu2::aep3-1c sup <sup>+</sup><br>+ pATP8-22                                                                      | This study              |
| aW303∆AEP3/1c/ S <sup>+</sup> /SMT1/22 | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 aep3::HIS3 leu2::aep3-1c<br>LEU2::SMT1sup <sup>+</sup> + pATP8-22                                                            | This study              |
| aW303∆AEP3/1s/S <sup>+</sup> /22       | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 aep3::HIS3 leu2::aep3-1s sup <sup>+</sup><br>+ pATP8-22                                                                      | This study <sup>b</sup> |
| aW303/6b                               | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1<br>trp1::aep3-6b nrd1                                                                                                           | This study <sup>c</sup> |
| aW303/6b/S <sup>+</sup> /22            | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1 ura3-1<br>aep3-6b sup <sup>+</sup> + pATP8-22                                                                                          | This study              |
| aW303ΔAEP3/6b/ S <sup>+</sup> /22      | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 aep3::HIS3 trp1::aep3-6b sup <sup>+</sup> +<br>pATP8-22                                                                      | This study              |
| aW303∆AEP3/6b/ S <sup>+</sup> /SMT/22  | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 aep3::HIS3 trp1::aep3-6b<br>LEU2::SMT11 sup <sup>+</sup> + ATP8-22                                                           | This study              |
| aW303∆AEP3/ST4                         | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 aep3::HIS3 + pATP8/ST4<br>(nATP8 <sup>ADH1</sup> )                                                                           | This study              |
| aW303∆AEP3/ST5                         | MATa ade2-1 his3-1,15 leu2-3,112 trp1-1                                                                                                                                        | This study              |
| αW303ΔAEP3/22T                         | ura3-1 aep3::HIS3 pta1 + pATP8-ST5 <sup>d</sup><br>(nATP8 <sup>GPD</sup> )<br>MATα ade2-1 his3-1,15 leu2-3,112 trp1-1<br>ura3-1 aep3::HIS3 + pATP8-22T (nATP8 <sup>GPD</sup> - | This study              |
|                                        |                                                                                                                                                                                |                         |

<sup>a</sup> Dr. R. Rothstein, Department of Human Genetics, Columbia University, New York, NY


<sup>b</sup> The *aep3-1c* and *aep3-1s* alleles were cloned in YIp351 (a *LEU2* integrative plasmid). <sup>c</sup> The *aep-6b* allele was cloned in YIp349 (a *TRP1* integrative plasmid). <sup>d</sup> pATP8/ST5 consists of *nATP8* downstrem of the *GPD* promoter in the high copy plasmid YEp352.




### Barros and Tzagoloff, Fig. S1

**Figure S1** Proof of principle for selection of mutants involved in mitochondrial gene expression. Respiratory growth of mutants involved in mitochondrial *COX2* expression is partially complemented by *nCOX2*, a recoded nuclear version of the mitochondrial gene. *nCOX2* contained the W56R in the first trans-membrane domain, which was shown to be needed for complementation of *cox2* mutations (Supekova et al, 2010). **A.** Mutants with null alleles in the *COX2* translational activator ( $\Delta pet111$ ) and chaperone of pre-Cox2p processing/translocation ( $\Delta cox18$  and  $\Delta cox20$ ) were transformed with allotopic *nCOX2*. Growth on YPD (rich glucose) and YEPG (rich ethanol/glycerol) was photographed after two day incubation at 30°C. **B**. Mutants 1, 2, 3 and 4 obtained by EMS mutagenesis were transformed with *nCOX2* and as a control with *PET111*. Growth was measured as in **A**.

Α



**Figure S2**. Genetic properties of *aep3* revertants. **A**. Test of the spontaneous suppressor for dominance and recessiveness. The wild type diploid and a diploid strain homozygous for the *aep3* null allele but heterozygous for the suppressor ( $\Delta aep3/\Delta aep3 sup^+/sup^$ *nATP8*) was obtained from a cross of the *aep3* null mutant W303 $\Delta$ AEP3 ( $\Delta aep3 sup^-$ ) to the respiratory competent strain aW303 $\Delta$ AEP3/nATP8/sup ( $\Delta aep3 sup^+ nATP8$ ). The diploid strain obtained from this cross was also transformed with wild type *AEP3* ( $\Delta aep3/\Delta aep3 sup^+/sup^- nATP8 pAEP3$ ). The respiratory deficient haploid strain aW303 $\Delta$ AEP3 ( $\Delta aep3$ ) and the respiratory competent revertant aW303 $\Delta$ AEP3/nATP8/sup ( $\Delta aep3 sup+ nATP8$ ) used in the cross are also shown. The mutants and revertant were serially diluted and spotted on YPD and YPEG. The two plates were incubated at 30°C for 3 days. **B**. Upper panel: Same as **A** except the mutants had the *aep3* 1c, 6b and 1s alleles. Lower panel: growth of diploid cells with the indicated genotypes on YPEG indicates they contain the same suppressor.



**Figure S3.** Growth and mitochondrial translation of *aep3-fmt1* double mutants. **A.** Serial dilutions of the wild type strain W303-1B, the *fmt1* null mutant ( $\Delta fmt1$ ), the revertant of the *aep3* null mutant ( $\Delta aep3 sup^+ nATP8$ ) and the double mutant  $\Delta aep3$  ( $\Delta fmt1 sup^+ nATP8$ ). Serial dilutions of each strain were spotted on YPD and YPEG and photographed 3 days after incubation at 30°C **B**) The strains described in **A** were labeled with [<sup>35</sup>S] in the presence of cycloheximide as described in the Materials and Methods section and total mitochondrial protein separated on 17.5% and 12% polyacrylamide gel containing 5M urea. The urea gel resolves Cox2p and Atp6p. Proteins were transferred to nitrocellulose and the blot exposed to X-ray film. The mitochondrial translation products are identified in the left-hand margin of each gel.

#### REFERENCES

Barros MH, Rak M, Paulela JA, Tzagoloff A (2011). Characterization of Gtf1p, the connector subunit of yeast mitochondrial tRNA-dependent amidotransferase. J Biol Chem 286, 32937-32947.

Ellis TP, Helfenbein KG, Tzagoloff A, Dieckmann CL (2004). Aep3p stabilizes the mitochondrial bicistronic mRNA encoding subunits 6 and 8 of the H+-translocating ATP synthase of *Saccharomyces cerevisiae*. J Biol Chem 279, 15728-15733.

Lee C, Tibbetts AS, Kramer G, Appling DR. (2009). Yeast *AEP3p* is an accessory factor in initiation of mitochondrial translation. J Biol Chem 284, 34116-34125.

Rak M, Tetaud E, Godard F, Sagot I, Salin B, Duvezin-Caubet S, Slonimski PP, Rytka J, di Rago JP (2007). Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology. J Biol Chem 282, 10853–10864.

Supekova L, Supek F, Greer JE, Schultz PG. (2010). A single mutation in the first transmembrane domain of yeast COX2 enables its allotopic expression. Proc Natl Acad Sci USA 107, 5047-5052.