
Supplementary Note 1 – Introduction

Nonlinear dynamical systems provide a powerful framework to describe the time evolution of
interacting quantities in natural and engineered systems [1]. Dynamical systems have a rich his-
tory, spanning centuries of investigation on the leading problems of the day, from predicting the
motion of planets [2], to understanding turbulent fluid dynamics [3, 4, 5, 6, 7], to forecasting the
changing weather and climate of our own planet [8, 9, 10, 11, 12].

Historically, the two dominant perspectives on dynamical systems have either been geometric
or statistical [13]. In the geometric perspective, illustrated in Supplemental Figure 1, the organiza-
tion and topology of trajectories in phase space provides a qualitative picture of global dynamics
and enables detailed quantitative descriptions of local dynamics near fixed points or periodic or-
bits [1, 14, 15, 16, 17, 18]. Phase space transport is largely mediated by saddle points, and even
in relatively simple systems, such as the double pendulum or Lorenz system in Supplemental
Figure 1, the dynamics may give rise to chaotic behavior. The statistical perspective trades the
analysis of a single trajectory with the description of an ensemble of trajectories, providing a no-
tion of mixing and uncertainty, while balancing the apparent structure and disorder in chaotic
systems [19, 20, 21, 22, 23, 24, 25]. Currently, a third operator-theoretic perspective, based on the
evolution of measurement functions of the system, is gaining traction. This approach is not new,
being introduced in 1931 by Koopman [26], although the recent deluge of measurement data has
renewed interest.

Chaotic dynamics describe an important class of systems that have a sensitive dependence
on initial conditions, causing nearby trajectories to diverge exponentially in time. This divergent
behavior often gives rise to strange attractors that are densely filled by chaotic trajectories. The
sensitivity to initial conditions gives chaos a strange flavor of deterministic unpredictability, with
increasing uncertainty as a prediction is forecast further into the future. Balancing the intrinsic
structure and randomness in chaotic dynamics remains a central challenge, with potential to pro-
vide better forecasting and enable effective control strategies in myriad applications. In this work,
we leverage the Koopman operator theory to provide a data-driven decomposition of chaotic sys-
tems that separates the linear evolution and intermittent forcing.
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Supplementary Figure 1: Chaotic dynamical systems are often viewed as a progression of increasing
nonlinearity.
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Supplementary Note 2 – Background

The results in this paper are presented in the context of modern dynamical systems, specifically in
terms of the Koopman operator. In this section, we provide a brief overview of relevant concepts
in dynamical systems, including a discussion of Koopman operator theory, data-driven dynamical
systems regression techniques, and delay embedding theory.

Throughout this work, we will consider dynamical systems of the form:

d

dt
x(t) = f(x(t)). (1)

We will also consider the induced discrete-time dynamical system

xk+1 = F(xk) (2)

where xk may be obtained by sampling the trajectory in (1) discretely in time, so that xk = x(k∆t).
The discrete-time propagator F is given by the flow map

F(xk) = xk +

∫ (k+1)∆t

k∆t
f(x(τ)) dτ. (3)

The discrete-time perspective is often more natural when considering experimental data.

Koopman operator theory

Koopman spectral analysis was introduced in 1931 by B. O. Koopman [26] to describe the evolu-
tion of measurements of Hamiltonian systems, and this theory was generalized in 1932 by Koop-
man and von Neumann to systems with continuous spectra [27]. Koopman analysis provides
an alternative to the more common geometric and statistical perspectives, instead describing the
evolution operator that advances the space of measurement functions of the state of the dynam-
ical system. The Koopman operator K is an infinite-dimensional linear operator that advances
measurement functions g of the state x forward in time according to the dynamics in (2):

Kg , g ◦ F =⇒ Kg(xk) = g(xk+1). (4)

Because this is true for all measurement functions g, K is infinite dimensional and acts on the
Hilbert space of functions of the state. For a detailed discussion on the Koopman operator, there
are many excellent research articles [28, 29, 30, 31, 32] and reviews [13, 33].

A linear description of nonlinear dynamics is appealing, as many powerful analytic techniques
exist to decompose, advance, and control linear systems. However, the Koopman framework
trades finite-dimensional nonlinear dynamics for infinite-dimensional linear dynamics. Aside
from a few notable exceptions [34, 35], it is rare to obtain analytical representations of the Koop-
man operator. Obtaining a finite-dimensional approximation (i.e., a matrix K) of the Koopman
operator is therefore an important goal of data-driven analysis and control; this relies on a mea-
surement subspace that remains invariant to the Koopman operator [36]. Consider a measurement
subspace spanned by measurement functions {g1, g2, . . . , gp} so that for any measurement g in this
subspace

g = α1g1 + α2g2 + · · ·+ αpgp (5)

then it remains in the subspace after being acted on by the Koopman operator

Kg = β1g1 + β2g2 + · · ·+ βpgp. (6)
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Supplementary Figure 2: Schematic illustrating the ability of the Koopman operator to globally
linearize a nonlinear dynamical system with an appropriate choice of observable functions g.

In this case, we may restrict the Koopman operator to this p-dimensional measurement subspace
and obtain a p × p matrix representation, K, as illustrated in Supplemental Figure 2. It has been
shown previously that such a representation is useful for prediction and control of certain non-
linear systems that admit finite-dimensional Koopman invariant subspaces [36]. If such a matrix
representation exists, it is possible to define a linear system that advances the measurement func-
tions, restricted to the subspace in (5), as follows:

yk+1 = Kyk, (7)

where yk =
[
g1(xk) g2(xk) · · · gp(xk)

]T is a vector of measurements in the invariant subspace
evaluated at xk. Left eigenvectors ξ of K yield Koopman eigenfunctions according to ϕ = ξy.

In practice, however, it is extremely challenging to obtain such a representation in terms of a
Koopman invariant subspace. Moreover, it is impossible to obtain such an invariant subspace that
contains linear measurements of the full state x for systems with more than one attractor, peri-
odic orbit, and/or fixed point. This is simple to see, since a finite-dimensional linear system does
not admit multiple fixed points or attracting structures. In addition, it is not always the case that
the Koopman operator even has a discrete spectrum, as in mixing chaotic systems. However, the
perspective of a data-driven linear approximation to a dynamical system is still valuable. Linear
models can be obtained in entire basins of attraction of fixed points or periodic orbits using Koop-
man theory with the correct choice of measurement functions [32, 37]. Regression based methods
to obtain a finite approximation of the Koopman operator have become standard in the literature,
although these methods all rely on a good choice of measurement functions. Identifying good
measurement coordinates that approximately or exactly yield linear evolution equations will be
one of the central challenges in dynamical systems in the coming years and decades. In the follow-
ing, we will demonstrate the ability of delay coordinates to provide an approximately invariant
measurement space for chaotic dynamics on an attractor.

Data-driven dynamic regression models

With increasingly large volumes of data, it is becoming possible to obtain models using modern
regression techniques. This vibrant field will continue to grow as new techniques in machine
learning make it possible to extract more information from data. In this section, we provide a
brief overview of two leading regression-based system identification techniques: 1) the dynamic
mode decomposition (DMD), which provides a best-fit linear operator from high-dimensional
snapshot data, and may approximate the Koopman operator in some cases, and 2) the recent
sparse identification of nonlinear dynamics (SINDy) algorithm, which produces parsimonious
nonlinear models through sparse regression onto a library of nonlinear functions.
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Dynamic mode decomposition (DMD)

Dynamic mode decomposition (DMD) was originally introduced in the fluid dynamics commu-
nity to decompose large experimental or numerical data sets into leading spatiotemporal coherent
structures [38]. Shortly after, it was shown that the DMD algorithm provides a practical numeri-
cal framework to approximate the Koopman mode decomposition [29]. This connection between
DMD and the Koopman operator was further strengthened and justified in a dynamic regression
framework [39, 40, 41].

The DMD algorithm seeks a best-fit linear model to relate the following two data matrices

X =


x1 x2 · · · xm−1


 X′ =


x2 x3 · · · xm


 . (8)

The matrix X contains snapshots of the system state in time, and X′ is a matrix of the same snap-
shots advanced a single step forward in time. These matrices may be related by a best-fit linear
operator A given by

X′ = AX =⇒ A ≈ X′X†, (9)

where X† is the pseudo-inverse, obtained via the singular value decomposition (SVD). The matrix
A is a best-fit linear operator in the sense that it minimizes the Frobenius norm error ‖X′−AX‖F .

For systems of moderately large dimension, the operator A is intractably large, and so instead
of obtaining A directly, we often seek the leading eigendecomposition of A:

1. Take the SVD of X:

X = UΣV∗. (10)

Here, ∗ denotes complex conjugate transpose. Often, only the first r columns of U and V are
required for a good approximation, X ≈ ŨΣ̃Ṽ, where˜denotes a rank-r truncation.

2. Obtain the r × r matrix Ã by projecting A onto Ũ:

Ã = Ũ∗AŨ = Ũ∗X′ṼΣ̃−1. (11)

3. Compute the eigendecomposition of Ã:

ÃW = WΛ. (12)

The eigenvalues in Λ are eigenvalues of the full matrix A.

4. Reconstruct full-dimensional eigenvectors of A, given by the columns of Φ:

Φ = X′ṼΣ̃−1W. (13)

DMD, in its original formulation, is based on linear measurements of the state x of the system,
such as velocity measurements from particle image velocimetry (PIV). This means that the mea-
surement function g is the identity map on the state. Linear measurements are not rich enough
for many nonlinear dynamical systems, and so DMD has recently been extended to an augmented
measurement vector including nonlinear functions of the state [37]. However, choosing the correct
nonlinear measurements that result in an approximately closed Koopman-invariant measurement
system is still an open problem. Typically, measurement functions are either determined using
information from the dynamical system (i.e., using quadratic nonlinearities for the Navier-Stokes
equations), or by a brute-force search in a particular basis of Hilbert space (i.e., searching for poly-
nomial functions or radial basis functions).
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Sparse identification of nonlinear dynamics (SINDy)

A recently developed technique, the sparse identification of nonlinear dynamics (SINDy) algo-
rithm, identifies the nonlinear dynamics in (1) from measurement data [42]. The SINDy algorithm
uses sparse regression [43] in a nonlinear function space to determine the few active terms in
the dynamics. Earlier related methods based on compressed sensing have been used to predict
catastrophes in dynamical systems [44]. There are alternative methods that employ symbolic re-
gression (i.e., genetic programming [45]) to identify dynamics [46, 47]. This work is part of a
growing literature that is exploring the use of sparsity in dynamics [48, 49, 50] and dynamical
systems [51, 52, 53].

The SINDy algorithm is an equation-free method [54] to identify a dynamical system (1) from
data, much as in the DMD algorithm above. The basis of the SINDy algorithm is the observation
that for many systems of interest, the function f only has a few active terms, making it sparse in
the space of possible functions. Instead of performing a brute-force search for the active terms in
the dynamics, sparse regression makes it possible to efficiently identify the few non-zero terms.

To determine the function f from data, we collect a time-history of the state x(t) and the deriva-
tive ẋ(t); note that ẋ(t) may be approximated numerically from x. The data is sampled at several
times t1, t2, · · · , tm and arranged into two large matrices:

X =

state−−−−−−−−−−−−−−−−−−−−−−−−→


x1(t1) x2(t1) · · · xn(t1)
x1(t2) x2(t2) · · · xn(t2)

...
...

. . .
...

x1(tm) x2(tm) · · · xn(tm)




y

tim
e

Ẋ =




ẋ1(t1) ẋ2(t1) · · · ẋn(t1)
ẋ1(t2) ẋ2(t2) · · · ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)


 . (14)

Next, we construct an augmented library Θ(X) consisting of candidate nonlinear functions of the
columns of X. For example, Θ(X) may consist of constant, polynomial and trigonometric terms:

Θ(X) =


 1 X XP2 XP3 · · · sin(X) cos(X) sin(2X) cos(2X) · · ·


 . (15)

Each column of Θ(X) is a candidate function for the right hand side of (1). Since only a few
of these nonlinearities are likely active in each row of f , sparse regression is used to determine the
sparse vectors of coefficients Ξ =

[
ξ1 ξ2 · · · ξn

]
indicating which nonlinearities are active.

Ẋ = Θ(X)Ξ. (16)

Once Ξ has been determined, a model of each row of the governing equations may be con-
structed as follows:

ẋk = fk(x) = Θ(xT )ξk. (17)

We may solve for Ξ in (16) using sparse regression. In many cases, we may need to normalize the
columns of Θ(X) first to ensure that the restricted isometry property holds [44]; this is especially
important when the entries in X are small, since powers of X will be minuscule.

Note that in the case the library Θ contains linear measurements of the state, the SINDy
method reduces to a linear regression, closely related to the DMD above, but with transposed
notation. The SINDy algorithm also generalizes naturally to discrete-time formulations.
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Time-delay embedding

It has long been observed that choosing good measurements is critical to modeling, predicting,
and controlling dynamical systems. The concept of observability in a linear dynamical system
provides conditions for when the full-state of a system may be estimated from a time-history
of measurements of the system, providing a rigorous foundation for dynamic estimation, such
as the Kalman filter [55, 56, 57, 58, 59]. Although observability has been extended to nonlinear
systems [60], significantly fewer results hold in this more general context.

The Takens embedding theorem [6] provides a rigorous framework for analyzing the infor-
mation content of measurements of a nonlinear dynamical system. It is possible to enrich a mea-
surement, y(t), with time-shifted copies, y(t− τ), known as delay coordinates. Under certain con-
ditions, the attractor of a dynamical system in delay coordinates is diffeomorphic to the original
attractor. Thus, in some cases it may be possible to reconstruct the entire attractor of a turbulent
fluid from a time series of a single point measurement. Similar differential embeddings may be
constructed using derivatives of the measurement. Takens embedding theory is related to nonlin-
ear observability [61, 62], providing a connection between these two important fields.

Delay embedding has been widely used to analyze and characterize chaotic systems [63, 64,
65, 66, 67, 68, 69]. Several approaches exist for estimating the embedding dimension for time-delay
coordinates based on invariants on the attractor [70], the SVD of the Hankel matrix [71], or using
the false neighbors method to evaluate the proximity of points in the reconstructed space [72]. The
minimal embedding dimension can generally be reduced by choosing an optimized time delay.
The use of generalized delay coordinates are also used for linear system identification with the
eigensystem realization algorithm (ERA) [73] and in climate science with the singular spectrum
analysis (SSA) [74] and nonlinear Laplacian spectrum analysis (NLSA) [10]. All of these methods
are based on a singular value decomposition of a Hankel matrix, which is discussed below.

Hankel matrix analysis

Both the eigensystem realization algorithm (ERA) [73] and the singular spectrum analysis (SSA) [74]
are based on the construction of a Hankel matrix from a time series of measurement data. In the
following, we will present the theory for a single scalar measurement, although this framework
generalizes to multiple input, multiple output (MIMO) problems.

The following Hankel matrix H is formed from a time series of a measurement y(t):

H =




y(t1) y(t2) · · · y(tp)
y(t2) y(t3) · · · y(tp+1)

...
...

. . .
...

y(tq) y(tq+1) · · · y(tm)


 . (18)

Taking the singular value decomposition (SVD) of the Hankel matrix,

H = UΣVT , (19)

yields a hierarchical decomposition of the matrix into eigen time series given by the columns of
U and V. These columns are ordered by their ability to express the variance in the columns and
rows of the matrix H, respectively. When the measurement y(t) comes from the impulse response
of an observable linear system, then it is possible to use the SVD of the matrix H to reconstruct an
accurate model of the full dynamics. This ERA procedure is widely used in system identification,
and it has been recently connected to DMD [40, 75]. In the following, we will generalize system
identification using the Hankel matrix to nonlinear dynamical systems via the Koopman analysis.
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Supplementary Note 3 – HAVOK analysis on the chaotic Lorenz system

To understand the decomposition of a chaotic system into linear dynamics with intermittent forc-
ing, we illustrate the HAVOK analysis in Supplemental Figure 3 on the chaotic Lorenz system [76]:

ẋ = σ(y − x) (20)
ẏ = x(ρ− z)− y (21)
ż = xy − βz, (22)

with parameters σ = 10, ρ = 28, and β = 8/3. The Lorenz system is among the simplest and most
well-studied examples of a deterministic dynamical system that exhibits chaos. A trajectory of
the Lorenz system is shown in Supplemental Figure 4, integrated using the parameters in Supple-
mental Tables 2 and 3. The trajectory moves along an attractor that is characterized by two lobes,
switching back and forth between the two lobes intermittently by passing near a saddle point in
the middle of the domain at (x, y, z) = (0, 0, 0).

The panels of Supplemental Figure 3 are provided in more detail below with labels and units.
First, a time series of the x variable is measured and plotted in Supplemental Figure 5. By stacking
time-shifted copies of this measurement vector as rows of a Hankel matrix, as in (18), it is possible
to obtain an eigen-time-delay coordinate system through the singular value decomposition. These
eigen-time-delay coordinates, given by the columns of the matrix V, are the most self-similar time
series features in the measurement x(t), ordered by the variance they capture in the data.
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Supplementary Figure 3: Decomposition of chaos into a linear dynamical system with intermittent forc-
ing. First, a time series x(t) of of the chaotic Lorenz system is measured and time-shifted copies are stacked
into a Hankel matrix H. Next, the singular value decomposition of H yields a hierarchical decomposition
of eigen time series that characterize the measured dynamics. In these coordinates, given by the columns
of V, we obtain a delay-embedded attractor. Finally, a best-fit linear model is obtained on the time-delay
coordinates v; the linear fit for the first r − 1 variables is excellent, but the last coordinate vr is not well-
modeled with linear dynamics. Instead, we consider vr as an input that forces the first r − 1 variables. The
rare events in the forcing correspond to lobe switching in the chaotic dynamics.
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It is known from Takens embedding theory [6] that time-delay coordinates provide an embed-
ding of the scalar measurement x(t) into a higher dimensional space. The resulting attractor in
Supplemental Figure 6 is diffeomorphic to the original attractor in Supplemental Figure 4.
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Supplementary Figure 4: Lorenz attractor from (20), simulated using the parameters in Supple-
mental Tables 2 and 3.
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Supplementary Figure 5: A time series of the variable x(t) in the Lorenz system.
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Next, a HAVOK model is developed using the time-delay coordinates. In particular, a linear
model is obtained for the first 14 coordinates (v1, v2, . . . , v14) with linear forcing from the 15th coor-
dinate v15, given by the 15th column of V. This model is depicted schematically in Supplemental
Figure 7, and exact values are provided in Supplementary Figure 12. The model may be obtained
through a straightforward linear regression procedure, and an additional sparsity penalizing term
may be added to eliminate terms in the model with very small coefficients [42]; in the following
example, the SINDy algorithm is used with a sparsity knob of λ = 0.025k for the vk equation. The
resulting model has a striking skew-symmetric structure, and the terms directly above and below
the diagonal are nearly integer multiples of 5. This fascinating structure is explored below.
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Supplementary Figure 6: Time-delay embedded attractor using the eigen-time-delay coordinates
obtained from the singular value decomposition of the Hankel matrix in (18).
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Supplementary Figure 7: HAVOK model obtained on time-delay coordinates of the Lorenz sys-
tem. Exact coefficients are provided in Supplementary Figure 12.
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Using the HAVOK model with the signal v15 as an input, it is possible to reconstruct the em-
bedded attractor, as shown in Supplemental Figure 8. Figure 9 shows the model prediction of the
dominant time-delay coordinate, v1, as well as the input forcing signal from v15. From this figure,
it is clear that for most times the forcing signal is nearly zero, and this signal begins to burst when
the trajectory is about to switch from one lobe of the attractor to another.
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Supplementary Figure 8: Reconstructed embedded attractor using linear HAVOK model with
forcing from v15.
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Supplementary Figure 9: Reconstruction of v1 using linear HAVOK model with forcing from v15.
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Supplementary Figure 10: Modes ur (columns of the matrix U), indicating the short-time history
that must be convolved with x(t) to obtain vr.
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Supplementary Figure 11: Probability density function of the forcing term in v15 (red), plotted
against the probability density function of an appropriately scaled normal distribution (black
dash).

In practice, it is possible to measure v15 from a streaming time series of x(t) by convolution
with the u15 mode (15th column in the matrix U), shown in Supplemental Figure 10. Finally,
the probability density function of the forcing term v15 is shown in Supplemental Figure 11; the
long tails, compared with the normal distribution, indicate the rare intermittent switching events.
Dynamic rare events are well-studied in climate and ocean waves [77, 78, 79].
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Neighboring HAVOK Model with Integer Coefficients

Supplementary Figure 12: HAVOK model for Lorenz system.

Supplementary Note 4 – Structure and integrability of the HAVOK model
for the Lorenz system

The HAVOK model for the Lorenz system, provided in Supplementary Figure 12, is highly struc-
tured. The A matrix of the linear dynamics is nearly skew-symmetric, and the terms directly above
and below the diagonal are remarkably close to integer multiples of 5. Intrigued by this structure,
we have constructed an approximate system below that represents the idealized structure in the
HAVOK model for the Lorenz system:

d

dt




v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12
v13
v14




=




0 −5 0 0 0 0 0 0 0 0 0 0 0 0
5 0 −10 0 0 0 0 0 0 0 0 0 0 0
0 10 0 −15 0 0 0 0 0 0 0 0 0 0
0 0 15 0 −20 0 0 0 0 0 0 0 0 0
0 0 0 20 0 25 0 0 0 0 0 0 0 0
0 0 0 0 −25 0 −30 0 0 0 0 0 0 0
0 0 0 0 0 30 0 −35 0 0 0 0 0 0
0 0 0 0 0 0 35 0 −40 0 0 0 0 0
0 0 0 0 0 0 0 40 0 45 0 0 0 0
0 0 0 0 0 0 0 0 −45 0 −50 0 0 0
0 0 0 0 0 0 0 0 0 50 0 −55 0 0
0 0 0 0 0 0 0 0 0 0 55 0 60 0
0 0 0 0 0 0 0 0 0 0 0 −60 0 −65
0 0 0 0 0 0 0 0 0 0 0 0 65 0







v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12
v13
v14




+




0
0
0
0
0
0
0
0
0
0
0
0
0
−70




v15. (23)

This idealized system is forced with the signal v15 from the full Lorenz system, and the dy-
namic response is shown in Supplemental Figure 13. As shown in the zoom-ins in Figs. 14 and 15,
the agreement is remarkably good for the first 50 time units, although the idealized model perfor-
mance degrades over time, as shown for the final 50 time units.

The eigenvalues of the HAVOK model and the integer-valued approximation are in Supple-
mentary Table 1. There is good agreement between the eigenvalues, with the integer-valued model
being exactly integrable, so that trajectories reside on a quasi-periodic orbit. This is to be expected
with a Koopman operator model of a dynamical system. A number of the imaginary parts of the
eigenvalue pairs are near multiples of each other (e.g., 22.0058 is nearly a multiple of 11.1600). This
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is also to be expected in a Koopman model, as integer multiples of an eigenvalue of the Koopman
operator are also eigenvalues corresponding to that integer power of the Koopman eigenfunction.
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Supplementary Figure 13: Response of idealized HAVOK model with integer coefficients, forced
by the v15 time series from the Lorenz system.
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Supplementary Figure 14: First 50 time unites of response of idealized HAVOK model with integer
coefficients, forced by the v15 time series from the Lorenz system.
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Supplementary Figure 15: Last 50 time unites of response of idealized HAVOK model with integer
coefficients, forced by the v15 time series from the Lorenz system.

Supplementary Table 1: Eigenvalues of the HAVOK model and integer-valued approximation.

HAVOK Model Integer-Valued Model
±2.9703i ±3.0725i

±11.0788i ±11.1600i

±21.2670i ±22.0058i

±34.5458i ±35.5714i

±51.4077i ±52.3497i

±72.7790 ±73.5112i

±101.6732i ±102.2108i
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Supplementary Note 5 – Choice of model order r

There are a number of important factors to consider when choosing the model order, r, including:
1) Model accuracy on training data and on validation data (not used for training); 2) Clear distil-
lation of forcing signature that is active during important events and quiescent otherwise; 3) The
signal to noise in the data and singular value decomposition; 4) Prediction of intermittent events
and coloring of attractor; and 5.) Structure of the resulting linear model.

The choice of model order r is intimately related to the choice of singular value thresholding
of the matrix H. In the Lorenz system, we choose r = 15 because it is the highest order model
that accurately reconstructs attractor dynamics, retains neutral stability, provides a forcing sig-
nature that correlates with important lobe switching events, and has a meaningful sparse model
structure. This is purely an artifact of the precision of the data used to train the model. If higher
precision data is used, it is possible that a higher order model may be identified. Similarly, if the
data is corrupted with noise, then a lower model order must be used. In this case, the optimal
singular value hard threshold result of Gavish and Donoho [80] may be used to identify the dom-
inant singular values that are above the noise floor in the data. However, this optimal threshold
assumes Gaussian white noise, which may not be realistic for noisy data from a chaotic system; in
fact, we find highly non-Gaussian distributions in low-energy singular vectors in many systems,
motivating an extension to the Gavish and Donoho result for structured noise distributions.

Fortunately, the main results are not particularly sensitive to the model order. Figure 16 shows
the delay embedded attractor colored by forcing activity for a number of different values of r. The
qualitative behavior is quite insensitive to the exact model order from about r = 9 to r = 15, with
a slight difference in the attractors for even and odd model order (likely because pure conjugate
eigenvalue pairs are only possible for even model order r − 1).

For a principled selection of model order, we recommend testing the various models on a hold-

r = 5 r = 6 r = 7 r = 8

r = 9 r = 10 r = 11 r = 12

r = 13 r = 14 r = 15 r = 16

r = 17 r = 18 r = 19 r = 20

Supplementary Figure 16: Delay-embedded attractor color-coded by the activity of the forcing
term vr for various truncation values r. Note that the odd model orders r = 9, r = 11, r = 13 and
r = 15 are all quite similar (even model orders from r = 10 to r = 14 are also similar. However,
attractor coloring degrades significantly for r ≥ 17, along with model accuracy.
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Supplementary Figure 17: (a) The model accuracy on test data (distinct from training data) is
plotted against model order r. The reconstruction of the first delay coordinate (V1) as well as the
first three delay coordinates V1:3) are shown. (b) The colored attractor, model reconstruction of v1

given forcing vr, and the modeled attractor in (v1, v2, v3) are shown for increasing model order r;
subplots correspond to Figs. 16, 9, and 8, respectively for r = 15, computed on training data.

out data set that was not used for training, as shown in Supplemental Figure 17 (a). In general, it is
relatively inexpensive to construct and test models of various orders, as the expensive steps tend to
be collecting data and performing the SVD on the Hankel matrix. As the model order is increased,
there is little increase in error on the validation data up until r = 16, at which point the error climbs
significantly; at this point numerical roundoff corrupts the singular vectors. In Supplemental
Figure 17 (b), we see that at r = 17, the model has large reconstruction errors. Comparing models
with r = 15 and r = 16, we find that the forcing signal becomes noisier in r = 16 and is no
longer as quiescent between bursts; moreover, the attractor reconstruction (bottom) becomes less
well behaved, and the error on the validation set increases. Comparing models with r = 9 and
r = 15, again, the forcing signal with r = 15 is slightly more quiescent between lobe switching. In
practice, the r = 9 model would likely work just as well as the r = 15 model, although we choose
the higher model order to explore the sparse structure in Supplemental Figure 7.
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Supplementary Figure 18: Correlation of v̇k(t) with HAVOK approximation Ak,:v(t) + Bvr(t) for
each model order r, for the Lorenz system. Ak,: denotes the kth row of A. Note that the model fit
is excellent for k < r, but the vr term is never well-modeled with the first r delay coordinates.

Goodness of fit of model with order r

We have stated in the main text that the dynamics of the first r − 1 eigen-time-delay coordinates
are well-modeled by the first r delay coordinates, where the last coordinate vr(t) is considered
a forcing term. We also note that the last delay coordinate vr(t) is not well-modeled by the first
r terms. Supplementary Figure 18 quantifies this goodness of fit of the HAVOK model for the
delay coordinates across many model orders, r. For each r, it is seen that the first r − 1 terms are
accurately modeled, and the HAVOK model is highly correlated with the actual derivative data.
Similarly, for each model order r, the vr term is not well-captured by a linear model of the first r
terms.
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Supplementary Note 6 – Examples

All systems in this paper are described in this section, including details about the equations of
motion, data collection, and key characteristics of each system. The simulation parameters for

¨

Supplementary Figure 19: Summary of HAVOK analysis applied to numerous examples, including an-
alytical examples (Lorenz and Rössler), delay differential equations (Mackey-Glass), stochastic equations
(stochastic magnetic field reversal), and systems characterized from real-world data (electrocardiogram,
electroencephalogram, and measles outbreaks). The model prediction is extremely accurate for the first
five analytical cases, providing faithful attractor reconstruction and predicting dominant transient and in-
termittent events. Although the stochastic and data examples are not as accurate, they predict the attractor
topology and switching dynamics. In the case of measles outbreaks, the forced linear model predicts large
transients corresponding to outbreaks. The majority of the examples have nearly symmetric forcing distri-
butions with fat tails (Gaussian forcing shown in black dashed line), corresponding to rare forcing events.
Credit for images in the left column: (Earth’s magnetic field) Zureks on Wikimedia Commons; (human
heart) Public domain; (human brain) Sanger Brown M.D. on Wikimedia Commons; (measles) CDC/ Cyn-
thia S. Goldsmith, William Bellini, Ph.D.
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the numerical examples are in Supplemental Table 2, and the parameters used for the HAVOK
analysis are in Supplemental Table 3.

The example systems range from ordinary differential equation (ODE) models to delay differ-
ential equations (DDE) and stochastic differential equations (SDE), as well as systems character-
ized purely by measurement data.

Supplementary Table 2: Parameters used to simulate the various numerical example systems.

System Parameters Initial Conditions
Lorenz σ = 10, ρ = 28, β = 8/3 (−8, 8, 27)

Rössler a = 0.1, b = 0.1, c = 14 (1, 1, 1)

Mackey-Glass β = 2, τ = 2, n = 9.65, γ = 1 0.5

Double Pendulum l1 = l2 = m1 = m2 = 1, g = 10 (π/2, π/2,−0.01,−0.005)

Magnetic Field B1 = −0.4605i, B2 = −1 + 0.12i, 0.1
B3 = 0.4395i, B4 = −0.06− 0.12i,

b1 = b4 = 0.25, and b2 = b3 = 0.07, µ = ν = 0

Supplementary Table 3: Summary of systems and HAVOK analysis parameters for each exam-
ple. *For the measles data, the original 431 data samples are spaced 1 month apart; this data is
interpolated at 0.1 month resolution, and the new data is stacked into q = 50 rows.

System Type Measured # Samples Time step # Rows in H Rank Energy in r
Variable m ∆t q r modes (%)

Lorenz ODE x(t) 200,000 0.001 100 15 100
Rössler ODE x(t) 500,000 0.001 100 6 99.9999997

Mackey-Glass DDE x(t) 100,000 0.001 100 4 99.9999
Double Pendulum ODE sin(θ1(t)) 250,000 0.001 100 5 99.997

Magnetic Field SDE Re(A) 100,000 1 year 100 4 55.2
ECG Data Voltage 45,000 0.004 s 25 5 67.4

Sleep EEG Data Voltage 100,000 0.01 s 1,000 4 7.7
Measles Outbreak Data Cases 431 1 month 50∗ 9 99.78

Chaotic Lorenz system

The Lorenz system [76] is a canonical model for chaotic dynamics:

ẋ = σ(y − x) (24)
ẏ = x(ρ− z)− y (25)
ż = xy − βz. (26)

Rössler system

The Rössler system is given by

ẋ = −y − z (27)
ẏ = x+ ay (28)
ż = b+ z(x− c) (29)

This system exhibits interesting dynamics, whereby the trajectory is characterized by oscillation
in the x−y plane punctuated by occasional transient growth and decay in the z direction. We refer
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to this behavior as bursting, as it corresponds to a transient from an attractor to itself, as opposed
to the lobe switching between attractor lobes in the Lorenz system.

Mackey-Glass delay differential equation

The Mackey-Glass equation is a canonical example of a delay differential equation, given by

ẋ(t) = β
x(t− τ)

1 + x(t− τ)n
− γx(t), (30)

with β = 2, τ = 2, n = 9.65, and γ = 1. The current time dynamics depend on the state x(t− τ) at
a previous time τ in the past.

Double pendulum

The double pendulum is among the simplest physical systems that exhibits chaos. The numerical
simulation of the double pendulum is sensitive, and we implement a variational integrator based
on the Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (31)

where the Lagrangian L = T − V is the kinetic (T ) minus potential (V ) energy. For the double
pendulum, q =

[
θ1 θ2

]T , and the Lagrangian becomes:

L = T − V =
1

2
(m1 +m2)l1θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 +m2l1l2θ̇1θ̇2 cos(θ1 − θ2) (32)

− (m1 +m2)l1g(1− cos(θ1))−m2l2g (1− cos(θ2)) . (33)

We integrate the equations of motion with a variational integrator derived using a trapezoidal
approximation to the action integral:

δ

∫ b

a
L(q, q̇, t)dt = 0. (34)

Because the mean of θ1 drifts after a revolution, we use x(t) = cos(2θ1(t)) as a measurement.

Earth’s magnetic field reversal

The Earth’s magnetic field is known to reverse over geological time scales [81, 82]. Understanding
and predicting these rare events is an important challenge in modern geophysics. It is possible to
model the underlying dynamics that give rise to magnetic field switching by considering the tur-
bulent magnetohydrodynamics inside the Earth. A simplified model [83, 84, 85] may be obtained
by modeling the turbulent fluctuations as stochastic forcing on a dynamo.

This is modeled by the following differential equation in terms of the magnetic field A:

d

dt
A = µA+ νĀ+B1A

3 +B2A
2Ā+B3AĀ

2 +B4Ā
3 + f (35)

where Ā is the complex conjugate of A and the stochastic forcing f is given by

f = (b1ξ1 + ib3ξ3) Re(A) + (b2ξ2 + ib4ξ4) Im(A). (36)
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Supplementary Figure 20: Prediction of Earth’s magnetic field reversal using the forcing term vr.
Zoom-in of field reversal events in Supplemental Figure 21.

The variables ξ are Gaussian random variables with a standard deviation of 5. The other parame-
ters are given by µ = 1, ν = 0, B1 = −0.4605i, B2 = −1 + 0.12i, B3 = 0.4395i, B4 = −0.06− 0.12i,
b1 = b4 = 0.25, and b2 = b3 = 0.07.

Figure 20 shows the v1 and vr eigen time series for the Earth magnetic field reversal data. The
signal in v1 accurately represents the global field switching dynamics. Color-coding the trajectory
by the magnitude of the forcing in vr, it is clear that the field reversal events correspond to large
forcing. Analyzing two of these field switching events more closely in Supplemental Figure 21, it
appears that the forcing signal becomes active before the signal in v1 exceeds the expected vari-
ance. This means that the forcing signal provides a prediction of field reversal before there is a
clear statistical signature in the dominant v1 time series.

Electrocardiogram (ECG)

An electrocardiogram (ECG) measures the electrical activity of the heart, producing the charac-
teristic spiking pulses associated with each heartbeat. Data from ECG has long been analyzed
using delay embeddings to quantify the fractal dimension of ECG recordings, among other quan-
tities [86, 87]. In this analysis, we use the ECG signal qtdb/sel102 that was used in [88], adapted
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Supplementary Figure 21: Prediction of Earth’s magnetic field reversal using the forcing term vr.

from the PhysioNet database [89, 90]. This signal corresponds to T = 380 seconds of data with a
sampling rate of 250 Hz.

Electroencephalogram (EEG)

An electroencephalogram (EEG) is a nonintrusive measurement of brain activity achieved through
electrodes placed on the scalp. A time series of voltage is recorded from these electrodes, and
although typically the spectral content of EEG is analyzed, there are also numerous examples of
time series EEG analysis [91, 92, 93, 94, 95]. Although it is possible to obtain vast quantities of data,
possibly using an array of electrodes, the voltage signal is only a rough proxy for brain activity, as
signals must pass through thick layers of dura, cerebrospinal fluid, skull, and scalp.

Data is available at [90, 96]: https://physionet.org/pn4/sleep-edfx/
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Measles outbreaks

Time series analysis has long been applied to understand and model disease epidemics. Measles
outbreaks have been particularly well studied, partially because of the wealth of accurate histor-
ical data. The seminal work of Sugihara and May [65] use Takens embedding theory to analyze
Measles outbreaks. It was also shown that Measles outbreaks are chaotic [97]. Here, we use data
for Measles outbreaks in New York City (NYC) from 1928 to 1964, binned every 2 weeks [98].

Figure 22 shows the v1 and vr eigen time series for the Measles outbreaks data. The v1 signal
provides a signature for the severity of the outbreak, with larger negative values corresponding
to more cases of Measles. The forcing signal accurately captures many of the outbreaks, most
notably the largest outbreak after 1940. This outbreak was preceded by two small dips in v1,
which may have resulted in false positives using other prediction methods. However, the forcing
signal becomes large directly preceding the outbreak.
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Supplementary Figure 22: Prediction of Measles outbreaks using the forcing term vr.
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[13] Budišić, M., Mohr, R. & Mezić, I. Applied Koopmanism a). Chaos: An Interdisciplinary Journal
of Nonlinear Science 22, 047510 (2012).

[14] Marsden, J. E. & McCracken, M. The Hopf bifurcation and its applications, vol. 19 (Springer-
Verlag, 1976).

[15] Abraham, R., Marsden, J. E. & Ratiu, T. Manifolds, Tensor Analysis, and Applications, vol. 75 of
Applied Mathematical Sciences (Springer-Verlag, 1988).

[16] Chorin, A. J. & Marsden, J. E. A mathematical introduction to fluid mechanics, vol. 3 (Springer,
1990).

[17] Marsden, J. E. & Ratiu, T. S. Introduction to mechanics and symmetry (Springer-Verlag, 1999),
2nd edn.

24



[18] Koon, W. S., Lo, M. W., Marsden, J. E. & Ross, S. D. Heteroclinic connections between periodic
orbits and resonance transitions in celestial mechanics. Chaos: An Interdisciplinary Journal of
Nonlinear Science 10, 427–469 (2000).

[19] Dellnitz, M., Froyland, G. & Junge, O. The algorithms behind GAIO—set oriented numerical
methods for dynamical systems. In Ergodic theory, analysis, and efficient simulation of dynamical
systems, 145–174 (Springer, 2001).

[20] Dellnitz, M. & Junge, O. Set oriented numerical methods for dynamical systems. Handbook of
dynamical systems 2, 221–264 (2002).

[21] Dellnitz, M. et al. Transport in dynamical astronomy and multibody problems. International
Journal of Bifurcation and Chaos 15, 699–727 (2005).

[22] Froyland, G. & Padberg, K. Almost-invariant sets and invariant manifolds – connecting prob-
abilistic and geometric descriptions of coherent structures in flows. Physica D 238, 1507–1523
(2009).

[23] Froyland, G., Santitissadeekorn, N. & Monahan, A. Transport in time-dependent dynamical
systems: Finite-time coherent sets. Chaos 20, 043116–1–043116–16 (2010).

[24] Froyland, G., Gottwald, G. A. & Hammerlindl, A. A computational method to extract macro-
scopic variables and their dynamics in multiscale systems. SIAM Journal on Applied Dynamical
Systems 13, 1816–1846 (2014).

[25] Kaiser, E. et al. Cluster-based reduced-order modelling of a mixing layer. J. Fluid Mech. 754,
365–414 (2014).

[26] Koopman, B. O. Hamiltonian systems and transformation in Hilbert space. PNAS 17, 315–
318 (1931). URL http://www.pnas.org/content/17/5/315.short. http://www.
pnas.org/content/17/5/315.full.pdf+html.

[27] Koopman, B. O. & Neumann, J.-v. Dynamical systems of continuous spectra. Proceedings of
the National Academy of Sciences of the United States of America 18, 255 (1932).
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