



Supplementary Figure 1 Kazemier et al., 2016

Supplementary Figure 2 Kazemier et al., 2016

Supplementary Figure 3 Kazemier et al., 2016

Supplementary Information

Supplementary Figure 1.

1H6 appears to react with subsets of DNA fibers.

(A-C) DNA fibers from mouse embryonic stem cells were stained with 1H6 antibody (green) and a DNA dye (purple). Note that DNA fibers show variable staining with 1H6 (boxed area) and that antibody staining is more apparent after separation of the fibers (red arrows). (B) Inverted image of DNA dye; (C) Inverted image of 1H6 antibody staining. Assuming DNA is fully stretched (300 nm for 1000 base pairs) and dots represents individual binding sites of 1H6 the spacing of individual antibodies is estimated to be in the order of 1 per every 2 kb. Scale bar 8 μ m.

Supplementary Figure 2.

Binding of 1H6 to DNA fibers depends on the acidity of the fixative.

DNA fibers from HEK cells were fixed by immersion in different fixatives containing methanol and acetic acid followed by immediate washes with PBS (no air drying), 1H6 staining was only observed when the fixative contained acetic acid at a 2:1 ratio relative to methanol and not when the fixative contained methanol and acetic acid at a 3:1 ratio. This observation provides an explanation for the finding shown in Supplementary Figure 1. When fibers were allowed to dry to air after fixation the DNA could be exposed to variable acidity with variable DNA denaturation of DNA fibers as a result. **Supplemental Figure 3: G4 structures are denatured under various conditions**. **(A)** G4 structures were folded as described in the methods. After formation, structures were incubated with 3M HCl (purple line), or 3M NaOH (light brown line) and CD analysis was performed to reveal formation state of the oligonucleotides. In both cases CD measurements reveal that DNA is no longer in G4 formation. **(B, C)** CD analysis of G4 structures. Circular Dichroism spectroscopy shows characteristic maximum at 260 nm and minimum at 240 nm that confirmed G4 formation. **(B)** CD analysis of (T4G4)2, (A4G4)2, (C4G4)2. All tested regions formed G4 structures. **(C)** CD analysis of (T4G4)2, (T3G4)2 (T2G4)2, (T4G3)2 (T4G2)2.

Supplementary Table S1										
Name	5'	sequence	n	3'	Binding	G4	Assav			Reference
Oxy2 = (T4G4)2		TTTTGGGGTTTTGGGG	16	5	у	þ	ELISA,	CD.	MST	(1)
Tet4		TTGGGGTTGGGGTTGGGGG	24		y Y	Р	ELISA	027		(2)
Ver3		TGGGGGTTAGGGTTAGGGT	19		ÿ		ELISA			(3)
Ver4		AGGGTTAGGGTTAGGG	22		'n		ELISA			(4)
GQ		TAGAAACTACGGCGGCGGCGGAATCGTAGA	30		n		ELISA			Data not shown
Mutant	bio	GGGTTGCGGAGGGTGGGCCTGGGAGGGGGGGGGGGCCAT	38		n		ELISA			Data not shown
hTR GQ	bio	TAGACCCTGCAACGTCAGCGTAGTCGTAGC	30		n		ELISA			Data not shown
0xy2 duplex	bio	TTTTGGGGTTTTGGGG	16		n		ELISA			Data not shown
		AAAACCCCAAAAACCCC	16		n		ELISA			Data not shown
gp054a	bio	GGGGTTGGGGCTGGGGTTGGGGGTTTTT	27		У		ELISA			(5)
un2	bio	GGGGGCGAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	34		У		ELISA			(5)
un3	bio		29		У		ELISA			(5)
hTel		TCGAGGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAC	54		У		ELISA			(5)
ssDNA	bio	AAAAACTACTGCACGCTCGCTACGACGACACTGTCGCGCATACAAGCTGCAAAAA	55		n	×	ELISA,	CD		(5)
Motif_1_RepB		GGGCCTGGGGCTAGGACTGGGGCTGGGG		bio	n		ELISA			Data not shown
Motif_2_RepB		GGGCTGGACTGGATTGG		bio	n		ELISA			Data not shown
Motif_3_RepB		GGGGCAGGGGCAGGGGG		bio	n		ELISA			Data not shown
Motif_4_RepB		GGGGCTGGGGCTGGGGG		bio	У		ELISA			Data not shown
Motif_5_RepB		GGGGCAGGGGCTGGGGCTGGGGCAGGGG		bio	У		ELISA			Data not shown
Motif_6_RepB		GGGGCTGGGGCTGGGGCAGGGG		bio	n		ELISA			Data not shown
Motif_7_RepB		GGGGCTGGGCCTGGGGCTGGG		bio	У		ELISA			Data not shown
4G		TTTTTTTTTTGGGG	15		У		ELISA			Data not shown
3G		TTTTTTTTTTTGGG	15		У		ELISA			Data not shown
2G		TTTTTTTTTTTTTGG	15		У		ELISA			Data not shown
1G		TTTTTTTTTTTTTG	15		У		ELISA			Data not shown
noG = poly(T)			15 15		У	×		ĊD,	MST	this study
3G_TT		TTTTTTTTTGGGTT	15		У		ELISA ELISA			Data not shown
2G_TT		TTTTTTTTTTTTGGTT TTTTTTTTTTTTTGTT	17		У					Data not shown
1G_TT Poly(T)13AG		TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	15		У		ELISA ELISA			Data not shown Data not shown
Poly(C)14G		CCCCCCCCCCCCG	15		y n		ELISA			Data not shown
Poly(A)14G		AAAAAAAAAAAAAAG	15		n		ELISA			Data not shown
(T4C4)2		TTTTCCCCTTTTCCCC	16		n		ELISA			This study
(T4A4)2		ТТТТААААТТТТАААА	16		n		ELISA			This study
(A4G4)2		AAAAGGGGAAAAGGGG	16		n	þ		CD	MST	This study
(C4G4)2		CCCCGGGGCCCCGGGG	16		n	þ				This study
(T3G4)2		TTTGGGGTTTGGGG	14		у	þ				This study
(T2G4)2		TTGGGGTTGGGG	12		'n	þ	ELISA,			This study
(T4G3)2		TTTTGGGTTTTGGG	14		n	×			MST	This study
(T4G2)2		TTTTGGTTTTGG	12		n	×	ELISA,			This study
Poly(T)8		 TTTTTTTT	8		n		ELISA			This study
Poly(T)6		 TTTTTT	6		n		ELISA			This study
Poly(T)4	bio	TTTT	4		n		ELISA			This study
Poly(T)2	bio	TT	2		n		ELISA			This study
poly(A)	bio	ААААААААААААА	15		n		ELISA			This study
poly(C)		ссссссссссссс	15		n		ELISA			This study
Bio-poly(T)4-Bic	bio	ТТТТ	4	bio	У		ELISA			This study
Hairpin		GCGCTTTTGCGCTTTTGCGCCC	28		'n		ELISA			This study
RNA Öxy2	bio	TTTTGGGGTTTTGGGG	16		n		ELISA			Data not shown

Supplementary Table 1 Kazemier et al., 2016

REFERENCES

- 1. Sen, D. and Gilbert, W. (1990) A sodium-potassium switch in the formation of fourstranded G4-DNA. *Nature*, **344**, 410-414.
- 2. Williamson, J.R. (1994) G-quartet structures in telomeric DNA. *Annu Rev Biophys Biomol Struct*, **23**, 703-730.
- 3. Williamson, J.R., Raghuraman, M.K. and Cech, T.R. (1989) Monovalent cationinduced structure of telomeric DNA: The G-Quartet model. *Cell*, **59**, 871-880.
- 4. Wang, Y. and Patel, D.J. (1993) Solution structure of a parallel-stranded G-quadruplex DNA. *J Mol Biol*, **234**, 1171-1183.
- Artusi, S., Perrone, R., Lago, S., Raffa, P., Di Iorio, E., Palu, G. and Richter, S.N. (2016) Visualization of DNA G-quadruplexes in herpes simplex virus 1-infected cells. *Nucleic acids research*, 44, 10343-10353.