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Supplemental Figure 1: Genetic lineage tracing models provide high fidelity 

approaches for isolating TAM BMDM and TAM MG. Related to Figure 1. 

(A) Representative tiled immunofluorescence image of brain (top) and spleen 

(bottom) in a Flt:Cre Rosa26:mTmG mouse.  TdTomato is indicated in red, GFP 

in green, and DAPI in blue. Scale bars are indicated on individual panels. 

Representative of n=3 mice.  (B) Representative gating strategy from a Flt3:Cre, 

Rosa26:mTmG GEMM-shP53 tumor depicting TAM, granulocyte (Gran) and 

monocyte (Mono) identification in brain tumors.  Bulk myeloid cells were first 

identified as Cd45+Cd11b+ and further subdivided into Ly6C-Ly6G- TAM, 

Ly6ClowLy6G+ granulocytes, or Ly6C+Ly6G- monocytes. (C) TAMs, as described 

in (B), from a Flt3:Cre Rosa26:mTmG GL261 tumor depicting both 

TdTomato+GFP- microglia and TdTomato-GFP+ BMDM. Representative of n=3 

mice. (D) Quantitation of TdTomato+ and GFP+ monocytes, granulocytes and 

TAMs in GL261 tumors as depicted in (B,C) (left) or donor-GFP+ vs host-GFP- 

TAMs from GL261 tumors in an irradiation-bone marrow transplantation lineage 

tracing model (right). Student’s t-test p≤0.02. Bars represent mean and s.e.m. 

n=3-5 for each group.   (E) Flow plots of TdTomato and eYFP expression in 

normal microglia (top) and blood monocytes (bottom) either 3 days (left) or 21 

days (right) following tamoxifen treatment.  Representative of n=4 mice. (F) 

Histogram of TdTomato (left) and eYFP (right) expression in tumor monocytes, 

TAM BMDM or TAM MG in the Cx3cr1:CreER-IRES-YFP; Rosa26:lslTdTomato; 

GL261 tumor model. Representative of n=6 mice.  (G) Barplots of normalized 

RNA-seq counts for the Ly6c2, Aif1, Mertk, Cx3cr1, P2ry12, and Tmem119 

genes in the indicated cell populations. Bars represent mean ± s.e.m. (H) 

Differentially expressed genes between monocytes and the four TAM populations 

were identified (log2 fold change > ±1 and FDR<1%).  Barchart depicts the 

number of differentially expressed genes that are shared between the different 

groups as in Figure 1I.  
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Supplemental Figure 2: TAM BMDM and TAM MG possess model and cell 

type specific gene expression patterns associated with baseline chromatin 

states.  Related to Figure 2. 

(A) Heatmap of row normalized gene expression values for the indicated genes 

across TAM BMDM and TAM MG from the GL261 and GEMM-shP53 models.  

(B) Barplots of normalized RNA-seq counts for Il1a, Il1b, Il1r2 and Il1rn. Bars 

represent mean ± s.e.m.    (C) Venn diagram of genes upregulated in TAM MG 

or TAM BMDM or both in the GEMM-shP53 model compared to the GL261 

model (left). The right panel references genes that are upregulated in the GL261 

model compared to the GEMM-shP53 model. (D) Venn diagram depicting 

significantly upregulated genes in MG vs BMDM in the GEMM-shP53 model, 

GL261 model, and non-malignant brain (GSE68376 dataset).  The red sector 

(TAM MG genes) indicates genes that are enriched in TAM MG in both GEMM-

shP53 and GL261 tumors, but are not differentially expressed in non-malignant 

brain.  The orange sector (Core MG genes) highlights genes that are enriched in 

all three datasets. Select genes are listed. (E) Mean H3K27-Acetylation signal 

centered around the transcription start site (+/- 1 kb) in Core BMDM genes (left) 

and Core MG genes (right). Monocytes are shown in blue and microglia are 

shown in red.  Data was downloaded and analyzed from GEO accession number 

GSE63339. (F) PU.1 binding intensity at the promoters of microglia, BMDM, 

thyoglycolate elicited peritoneal macrophages (TGEM), small peritoneal 

macrophages (SPM), and large peritoneal macrophages (LPM) for Core BMDM 

and Core MG genes.  Genes were subset for those that showed binding of PU.1 

in at least one of the macrophage populations. For Core BMDM genes with 

microglia vs BMDM p≤ 7.6x10-16; vs TGEM p≤7.4x10-29; vs SPM p≤4.3x10-29; vs 

LPM p≤3.4x10-14. (G) Mean PU.1 binding distribution in enhancers of Core 

BMDM and Core MG genes for microglia (red) and BMDM (blue).  Enhancers 

were defined +/- 50 kb from the transcription start site (excluding the promoter).  

Data for (F) and (G) was downloaded and analyzed from GEO accession number 

GSE62826. n.s. denotes p>0.05, *** denotes p≤1x10-13 evaluated with paired 

Student’s t-test.  
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Supplemental Figure 3: TAM BMDM and TAM MG possess differential open 

chromatin in cell-type specific genes. Related to Figure 3. 

(A) Boxplots for two matched TAM BMDM and TAM MG biological replicates of 

tag normalized log2 ATAC-Seq signal in the promoters of genes from the 

indicated gene sets, where each data point represents a score from a single 

promoter. (B) ATAC-Seq signal tracks for TAM BMDM (top, green) and TAM MG 

(bottom, red) around the transcription start site of Vav3, P2ry12, and Sall1. Y-

axis value indicate tags per 10,000,000 with a range of 0-50. TSS denotes 

transcription start site. (C) Barplot depicting number of ATAC-seq peaks 

significantly enriched in either TAM BMDM or TAM MG in the indicated gene 

sets. (D) Scatterplot depicting differential transcription factor activity values 

between TAM BMDM and TAM MG in the GEMM-shP53 model (x-axis) and 

GL261 model (y-axis).  Color scale and size of dot indicates relative enrichment 

for BMDM or MG specificity with green showing BMDM specificity and red 

showing MG specificity.  (E) Ranked motifs based on –ln(p value) from HOMER 

for enrichment in either TAM BMDM (top) or TAM MG (bottom) genes.  (F) 

Barplot depicting normalized gene counts of Hdac7, Hdac9, and Hdac11 in the 

indicated TAM populations. Bars represent mean ± s.e.m.    
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Supplemental Figure 4: Cd49d and Cd11a are enriched in TAM BMDM 

compared to TAM MG in multiple mouse models of brain malignancy. 

Related to Figure 4. 

(A) Barchart indicating normalized gene read counts from GSE62826 for Itga4 

and Itgal in BMDM, small peritoneal macrophages (SPM), large peritoneal 

macrophages (LPM), thyoglycolate elicited peritoneal macrophages (TGEM), and 

microglia.  Log10 y-axis as indicated. (B) Flow cytometry for Cd45 and either 

Cd49d (top) or Cd11a (bottom) on TAMs isolated from GL261 tumors in 

Cx3cr1:CreER-IRES-YFP Rosa26:lslTdTomato mice.  The adjacent histogram 

depicts TdTomato expression in the indicated populations. (C) As in (B), but for 

the Flt3:Cre Rosa26:mTmG GL261 model. (D) Flow cytometry for Cd45 and 

Cd49d on TAMs isolated from a Ptenflox-GEMM tumor in a mouse that underwent 

IR-BMT reconstituted with GFP+ donor cells.  The adjacent histogram shows 

GFP expression in the indicated populations. (E) Histogram of eYFP expression 

in TdTomato- BMDM and TdTomato+ MG from 99LN-BrM brain metastasis in the 

Cx3cr1:CreER-IRES-YFP Rosa26:lslTdTomato lineage tracing model. (F) Flow 

cytometry and associated histogram for Cd45 and Cd49d on TAMs isolated from 

a representative MDA-MD-231 xenograft brain metastasis in a IR-BMT mouse 

reconstituted with mRFP donor cells.  The adjacent histogram depicts mRFP 

expression in the indicated populations.  All flow plots are representative of n=5-8 

mice. 
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Supplemental Figure 5: ITGA4 and markers of TAM BMDM are present in 

purified cell types and in whole tumor expression data from patients.  

Related to Figure 5. 

(A) Histogram of CD49D expression in non-classical monocytes 

(CD45+CD11B+CD66B-CD16+CD14low), classical monocytes (CD45+CD11B+ 

CD66B-CD16-CD14+), CD16- granulocytes (CD45+CD11B+CD66B+CD16-

CD14low) and CD16+ granulocytes (CD45+CD11B+CD66B+CD16+CD14low) from 

human healthy donor blood. Representative of n=6 samples. (B) Boxplot of 

FPKM (Fragments Per Kilobase of transcript per Million mapped reads) values 

from GSE80338 dataset for ITGA4 (top) and P2RY12 (bottom) across the 

indicated sample sets. (Student’s t-test). (C) Stripchart of normalized array 

intensities from GSE77043 dataset for ITGA4 (top) and P2RY12 (bottom) across 

the indicated sample sets.  Dashed lines indicate matched samples. (Student’s t-

test). (D) Normalized log2 RNAseq counts from TCGA-GBM dataset for ITGA4 in 

non-malignant brain and GBM tissue. (Student’s t-test).  (E) Pairwise correlation 

matrix of TAM BMDM (green column marks) and TAM MG (red column marks) 

genes from the TCGA-GBM RNA-seq dataset.  Blue indicates negative 

correlation between gene pairs and red indicates positive correlation.  (F-G) Z-

scored TAM MG signature scores across (F) tumor subtype (ANOVA p≤0.041), 

and (G) IDH1 mutation status (Student’s t-test p≤0.153). n.s. denotes non-

significant p value, * p≤0.05, ** p≤0.005, ***  p≤0.0005. 
 



 

SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Mouse models and cell lines 

Mice 

Flk2-switch (Flt3:Cre, Rosa26:mTmG) mice were kindly provided by Dr. Camilla 

Forsberg (UCSC) (Benz et al., 2008; Boyer et al., 2011; Muzumdar et al., 2007).  Only 

male mice showed expression or transmittance of Cre, and as such only male mice 

could be used for these experiments.  Cx3cr1:CreER-IRES-YFP mice were obtained 

from Jackson Labs and bred to Rosa26:lsl-TdTomato reporter mice (Jackson Labs) 

(Madisen et al., 2010; Parkhurst et al., 2013).  Nestin:Tva (nTva) mice in a mixed 

background, as described previously, were bred to C57BL/6 background for 10 

generations (Holland et al., 1998; Quail et al., 2016). PtenFlox/Flox mice (C57BL/6 

background) were obtained from Dr. Charles Sawyers and Dr. Brett Carver (MSKCC) 

(Trotman et al., 2003). CAG:GFP mice (Okabe et al., 1997) were obtained from Jackson 

labs. Athymic nude mice were obtained from NCI Frederick and maintained at MSKCC.  

CAG:RFP mice (Long et al., 2005) were obtained from Jackson labs and crossed to 

Athymic nude mice for 10 generations. All animal procedures and studies were 

approved by the MSKCC Institutional Animal Care and Use Committee (protocol 04-08-

022). 

 

Brain tumor models 

For the glioma models, intracranial injections were performed on 5-6 week old mice as 

previously described (Pyonteck et al., 2013).  Briefly, mice were fully anesthetized with 



ketamine/xylazine and bupivacaine was applied as a local anesthetic. Using a 

stereotactic apparatus, cells were injected into the right frontal cortex (1 mm caudal, 1.5 

mm lateral from bregma, 2-3 mm deep).  For the GEMM-shP53 model, 3x105 DF1 cells 

(1:1 mixture of DF1: RCAS-PDGFB-HA, and DF1:RCAS:shP53)  were injected at 6 

weeks of age. For the GEMM-Ptenflox model, 3x105
 cells were injected (1:1 mixture of 

DF1:RCAS-PDGFB-HA and DF1:RCAS-Cre) at 8 weeks  of age, 4 weeks after bone 

marrow transplantation. For the GL261 model, 2x104 cells were injected at 6 weeks of 

age, or 8 weeks of age if in the Cx3cr1:CreER-IRES-YFP lineage tracing background, 3 

weeks after tamoxifen administration. 

For brain metastasis models, 6-8 week old athymic nude mice or C57BL/6 mice were 

intracardially injected with 1x104 MDA-BrM cells or 99LN-BrM cells respectively, as 

previously described (Bos et al., 2009; Sevenich et al., 2014). For the 99LN-BrM model 

in the Cx3cr1:CreER-IRES-YFP lineage tracing background, mice were injected with 

tamoxifen at 4 weeks of age, and then intracardially injected 3 weeks later, at 7 weeks 

of age. 

 

Cells 

DF1 chicken fibroblasts were obtained from the ATCC.  RCAS vectors expressing 

PDGFB-HA, Cre or a short hairpin against mouse p53 (shP53) were kindly provided by 

Dr. Tatsuya Ozawa and Dr. Eric Holland (Ozawa et al., 2014).  GL261 murine glioma 

cells were kindly provided by Dr. Sal Coniglio and Dr. Jeff Segall (Albert Einstein). MDA-

MB-231 brain-homing variant cells (MDA-BrM) were kindly provided by Dr. Joan 

Massague (MSKCC) and labeled with a triple imaging vector (Tk-GFP-Luc) as 



previously described (Bos et al., 2009; Ponomarev et al., 2004; Sevenich et al., 2014). 

99LN cells were derived from a metastatic lesion in the lymph node of the MMTV:PyMT 

genetically engineered breast cancer model (C57BL/6 background). Cells were 

screened in vitro for their invasive capacity in a transwell assay, passaged once in vivo 

in a C57BL/6 mouse and selected in vivo for their brain homing capacity as described 

previously for the MDA-MB-231 BrM variant (Bos et al., 2009). All cell lines were 

maintained in DMEM with 10% fetal bovine serum with penicillin and streptomycin.   

 

Tamoxifen lineage tracing and bone marrow transplantation 

For the Cx3cr1:CreER-IRES-YFP Rosa26:lsl-TdTomato lineage tracing system, 4 week-

old mice were injected twice, 48 hours apart, i.p. with 1 mg of tamoxifen citrate 

dissolved in corn oil.  Mice were used for intracranial injection of DF1 cells 3 weeks after 

tamoxifen administration.  For bone marrow transplantation, recipient mice were 

irradiated (Gammacell-40 Exator) with a split dose scheme of 2x4.5 Gy with a window of 

4 hours between doses.  Whole bone marrow was isolated from the femurs of a 

CAG:GFP donor mouse (6-8 weeks old) and 1x106 cells were injected i.v. into 

previously irradiated recipients.  Athymic nude mice were irradiated with a split dosage 

scheme of 2x4 Gy, and were reconstituted using Athymic CAG:RFP donor 

cells.  Experimental mice were intracranially injected with DF1 cells or intracardially 

injected with MDA-BrM cells 4 weeks after bone marrow transplantation. 

 



Flow cytometry and immunohistochemistry 

All antibodies for flow cytometry were titrated in a lot-dependent manner and used as 

follows: anti-mouse Cd45 (Biolegend 103128), anti-mouse/human Cd11b (BD 

Biosciences 563553), anti-mouse Ly6C (Biolegend 128026), anti-mouse Ly6G (BD 

Biosciences 563005), anti-mouse Cd49d (Biolegend 103618), anti-mouse Cd11a 

(Biolegend 101120), anti-human CD45 (Biolegend 304042), anti-human CD66B 

(Biolegend 305106), anti-human CD14 (Biolegend 325610), anti-human CD16 

(Biolegend 302026), and anti-human CD49D (Biolegend 304308).  

 

For tissue collection for histology, mice were anesthetized with 1.25% Avertin, and 

transcardially perfused with PBS and 4% paraformaldehyde (PFA).  Tissues were 

macrodissected and the brain was post fixed in 4% PFA overnight and then placed in 

sucrose, while the spleen was immediately placed in 30% sucrose.  Tissue was 

transferred to 30% sucrose for 2 days, embedded in OCT, and 10 µM cryosections were 

cut.  Immunofluorescence staining followed. First, slides were rehydrated with two 

washes of PBS for 5 minutes. Tissue was then permeabilized with 0.2% Triton-X in PBS 

and washed twice with PBS for 5 minutes.  Hydrophobic circles were drawn around 

tissue sections, followed by 2 more washes with PBS for 5 minutes.  Tissue was 

blocked with 0.5% PNB blocking buffer.  Primary antibody was applied in 0.25% PNB 

blocking buffer overnight at 4 degrees Celsius.  Tissues were washed 3 times with PBS 

for 5 minutes.  Secondary antibody was applied (1:500, Molecular Probes) for 1 hour at 

room temperature followed by 3 washes of PBS for 5 minutes.  Slides were 

counterstained with DAPI (1:5000, Molecular Probes) for 5 minutes at room 



temperature, washed 3 times with PBS, and mounted with Dako fluorescent mounting 

media.  Primary antibodies used were:  chicken-anti GFP (AbCam 13970, 1:500), rat 

anti-Cd68 (Serotec MCA1957, 1:500), and rabbit anti-Iba1 (Wako, 01-1974, 

1:500).  Endogenous TdTomato was visible without immunofluorescence staining from 

both the Rosa26:mTmG and Rosa26:lsl-TdTomato reporter mice.  When combined with 

Cd68 staining (Figure 1J, Figure 2D), the TdTomato signal was assessed using a filter 

set centered around 546nm, with negligible signal present in the 594nm filter set used to 

collect the Cd68 signal. Images were obtained on a Zeiss Z1 AxioImager equipped with 

a TissueGnostics stage. Tiling images were acquired at 20x magnification using 

TissueFAXS (Tissuegnostics). Single images at 20x and 40x were either acquired using 

Axiovision (Zeiss), or extracted as single images from the TissueFAXS tiling image 

acquisition application (for representative images shown in Figure 1C, 1F, 1J, 2D and 

4D). 

 

External dataset download and analysis 

All TCGA data was analyzed using the web-portal Gliovis (http://gliovis.bioinfo.cnio.es).  

Normalized gene expression data for the Immunological Genome Project (ImmGen) 

was obtained from the GEO under accession GSE15907 (Gautier et al., 2012).  RNA-

seq, ATAC-Seq and ChIP-Seq datasets for tissue resident macrophage transcriptional 

and epigenetic profiling were downloaded from the SRA using the NCBI SRA-toolkit 

from the following GEO accession numbers: GSE62826, GSE63338, and GSE63339 

(Gosselin et al., 2014; Lavin et al., 2014). RNA-sequencing data on microglia and 

peripherally-derived macrophages in the non-malignant brain were downloaded under 



accession number GSE68376 (Bruttger et al., 2015).  Each of these datasets was 

mapped to the mouse genome mm10 as described above.  For ChIP-seq and ATAC-

seq datasets the STAR parameter “--alignIntronMax” was set to 1.  PU.1 ChIP-Seq 

peak calling was performed with HOMER (Heinz et al., 2010).  Peaks were considered 

within a promoter if they fell within 2kb upstream or 0.5kb downstream of the nearest 

transcription start site.  Enhancer regions were considered up to 50kb upstream and 

downstream of the nearest transcription start site, excluding the promoter region.  

Deeptools was used to assess ChIP-seq and ATAC-seq density over the indicated 

windows surrounding either transcription start sites, or PU.1 binding sites within 

enhancers (Ramirez et al., 2014).  The findPeaks script with HOMER was used to 

identify peaks for PU.1 binding with default parameters. The annotatePeaks.pl scripts in 

the HOMER suite was used to find enriched motifs in ChIP-seq peaks and in gene sets 

identified through RNA-sequencing.  For promoter motif enrichment, only known motifs 

were considered in regions 300bp upstream and 50bp downstream of the transcription 

start site.  

 

Transcription factor activity analysis: 

Transcription factor (TF) activity analysis was performed as an adaptation of two 

previously published methods: RegulatorInference (Setty et al., 2012) and ISMARA 

(Balwierz et al., 2014).  Briefly, a set of transcription factor binding sites (TFBS) was 

screened across the promoters (500bp upstream and 50bp downstream of the 

transcription start site) of each gene present in the mouse genome (mm10). TFBS were 

predicted from known motifs provided by HOMER. The AnnotatePeaks.pl script in 



HOMER was used to make presence and absence calls for each TFBS in each 

promoter region. This was then tabulated into a matrix with TFBS motifs as columns 

and genes as rows. This tabulated matrix was used in a ridge regression to model log2 

gene expression values generated by ‘varianceStabilizingTransformation’ function in the 

DESeq2 package in R. The glmnet function in R was used to perform the ridge 

regression. Lambda, the regularization parameter, was determined for each sample by 

10-fold cross validation (Friedman et al., 2010). The model coefficients for each TFBS 

motif were z-scored. Differentially enriched TFBS motifs were determined by evaluating 

the z-scored values in limma with a fold change cutoff of +/-2 and a false discovery rate 

of 5% (Ritchie et al., 2015). 

 

Statistical analysis and graph generation: 

All statistical analyses were completed using R (version 3.0.1), GraphPad Prism Pro v6, 

Gliovis (http://gliovis.bioinfo.cnio.es/) or as indicated in the bioinformatics section of the 

methods.  Heatmaps were drawn with the ggplot2, gplots (Warnes et al., 2015) 

packages in R.  Flow cytometry biplots and histograms were plotted in FlowJo v10.8. 

ATAC-sequencing tracks were visualized in IGV v2.3.66. Venn diagrams were drawn 

with the VennDiagram (Chen, 2015) and Vennerable (Swinton) packages in R. All other 

scatterplots, barplots, and boxplots were plotted with the ggplot2 package in R or with 

GraphPad Prism Pro v6.  All boxplots are depicted as Tukey-boxplots with median 

values, boxes indicating 25% and 75%, and whiskers extending to 1.5 times the 

interquartile range.  All code used in this study can be found at the following website: 

https://bitbucket.org/bowmanr/joycelab-brain-tme. 
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