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1. DESCRIPTION OF THE DATA STRUCTURE

Adaptive radix tree layout 

FastGT uses adaptive radix tree for storing SNV data associated with each k-mer. 

k-mers are encoded 2 bits per nucleotide and stored as bitstrings. Branches can thus be
split both between and inside nucleotide (A/C going to one branch and G/T to 
another). 
Each branch may have different number of radix bits from 0 (linear path) to 31 (231 
leaves or sub-branches), plus up to 53 bits of unique part of bitstring between 
branches. 

Each leaf encodes up to 26 bits of string suffix, plus one 32-bit value associated with 
given k-mer. The tree does not have root branch in strict sense, but instead the first 
bits (28 by default) are used to select the subtree. Tree leaves are 64-bit integers. 
Branch nodes are also encoded in single 64-bit integer, plus one additional integer 
value for each 2radix branches. Each branch value is either leaf or link to next 
branching node. The schematic layout of the tree is given in Figure S1 and data 
types in Figure S2.

Figure S1. The schematic layout of FastGT k-mer tree. 
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Trie is composed of 64-bit integers, each interpreted either as rightmost unique 
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Figure S1. The schematic layout of FastGT k-mer tree.



Figure S2. The data types in FastGT k-mer tree. 

Bitstrings are thus stored as compactly as possible with part of them interpreted as 
edge indices and parts as values, encoded in edges. An example encoding of 20-mer 
in tree is shown in Figure S3. 

Figure S3. Simplified layout of the tree storing 20-nucleotide (40-bit) k-mer. The 
initial 20 bits (10 nucleotides, marked with red) form array index into the first subtree 
node. The next 5 bits (2.5 nucleotides, marked with blue) are encoded in branch data 
field. The next two bits (spanning 2 nucleotides, marked with green) are used as index 
into branch descendants (leaves or links to sub-branches). The final 15 bits (7.5 
nucleotides, marked with yellow) are encoded in leaf node. 

6 5 53

nbits_this radix_bits bitstring

15 26 32

nbits_this bitstring value type=0

163

branch_address type=1

Leaf

Reference

Branch

val 0

val 1
...
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Advantages and dis-advantages

The major advantage of trie over hastable-based storage is the inherent ordering. Although not

beneficial to FastGT per se, the binary k-mer trie is meant to be usable in other application where

ordering is important - for example set operations between k-mer lists.
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The major advantage of trie over hastable-based storage is the inherent ordering. 
Although not beneficial to FastGT per se, the binary k-mer trie is meant to be usable 
in other application where ordering is important - for example set operations between 
k-mer lists.
The variable radix layout allows optimizing database for different types of k-mer
lookups. For counting of massive number of k-mers, large root radix and larger
branch radixes for left-side part of k-mer should be used. For looking up sparse, semi-
random set of k-mers, smaller root and binary branches are better suited. FastGT uses
fixed initial radix of 28 bits and all-binary branches (1 bit radix).

The main drawback of tree structure in our tests (compared to hash table) is the need 
of traversing many branches for each k-mer lookup, resulting in many potential cache-
misses, especially for unsorted lookups. Larger branch radixes will partially 
compensate for this while introducing trade-off of memory usage by allocating certain 
number of unoccupied branches. Also inserting unsorted k-mers into tree causes 
adjacent nodes to be spatially separated, resulting in poor cache performance. 

The data structure allows parallel modification using multiple threads. For 
multithreaded insertions blocks of branches and the rootmost radix array are divided 
between threads. 

Performance of the data structure 

Lookups are O(logk) worst case. Insertions are also O(logk) worst case. 
The worst-case memory requirement is O(N) in case of binary tree (1-bit radix) split 
at each bit. 

Advantages and dis-advantages of the data structure 



The Empirical Bayes classifier is used to assign the most likely genotype 
(GT ) to each k-mer pair. To calculate the probability of a particular geno-
type, certain modelling assumptions must be made.

We assume that the k-mer counts CA and CB (corresponding to allele A 
and allele B) for a given genotype have a negative binomial distribution with 
a mean equal to the product of the coverage (λ) and the true k-mer multi-
plicity in the genome (the true multiplicity of a A-specific k-mer, denoted 
by T GCA, is 2 if the genotype is AA):

(CA|GT, T GCA ≥ 1) ∼ NB(mean = TGCA · λ, shape = s1 + s2 · T GCA · λ)

(CB|GT, T GCB ≥ 1) ∼ NB(mean = TGCB · λ, shape = s1 + s2 · T GCB · λ),

where s1 and s2 are unknown parameters estimated from the data.
If the k-mer is not present in the genome (T GCA = 0), then due to se-

quencing errors there is still a small probability of observing the A-specific 
k-mer in the sequencing data. If the true multiplicity of a k-mer is 0, we as-
sume that the k-mer count in sequencing reads will have a negative binomial 
distribution with the parameters

(CA|GT, T GCA = 0) ∼ NB(mean = λerror · λ, shape = s1 + s2 · λerror · λ)

(CB|GT, TGCB = 0) ∼ NB(mean = λerror · λ, shape = s1 + s2 · λerror · λ),

where the parameter λerror describes the frequency of allele-specific k-mers 
caused by sequencing errors.

Using the negative binomial distribution, the probabilities P (CA|GT ) 
and P (CB|GT ) can be calculated. To calculate the probability of a partic-
ular k-mer pair count, we assume the independence of k-mer counts given 
the genotype:

P (CA, CB|GT ) = P (CA|GT ) · P (CB|GT )

2. STATISTICAL FRAMEWORK



To calculate the probability of a true genotype given the k-mer counts
CA, CB, the Bayes formula can be used:

P (GT |CA, CB) = P (CA|GT ) · P (CB|GT ) · P (GT )/P (CA, CB),

where P (CA, CB) is the probability of observing a particular pair of k-mer
counts. The probability P (CA, CB) can be calculated by the following for-
mula

P (CA, CB) =
∑
GT

P (CA|GT ) · P (CB|GT ) · P (GT ).

The most probable genotype is called for each single nucleotide variant
(SNV) :

called genotype = arg max
GT

P (GT |CA, CB).

The genotype probabilities P (GT ) are calculated as follows:

P (GT = AA) = P (A)2 · P (bi-allelic genotype)

P (GT = AB) = 2 · P (A) · P (B) · P (bi-allelic genotype)

P (GT = BB) = P (B)2 · P (bi-allelic genotype)

P (GT = A−) = P (A) · P (mono-allelic genotype)

P (GT = B−) = P (B) · P (mono-allelic genotype)

P (GT = −−) = P (deleted genotype)

P (GT = AAA) = P (A)3 · P (tri-allelic genotype)

P (GT = AAB) = 3 · P (B) · P (A)2 · P (tri-allelic genotype)

...,

where P (A) is A allele frequency and B allele frequency is denoted by 
P (B) := 1 − P (A).

For women 8 free parameters are estimated (for calling SNVs both in 
autosomes and X-chromosome), for men two separate sets of 8 parameters 
are used for calling SNVs positioned in autosomes and for calling SNVs in 
sex chromosomes (16 free parameters altogether).

The A allele frequency (over all SNV’s) is used to estimate P (A).
The remaining parameters — the probabilities P (bi-allelic genotype), 

P (mono-allelic genotype), P (deleted genotype), shape parameters s1 and 
s2, coverage λ and the parameter λerror — are estimated from the data using



maximum likelihood method (by numeric optimization). The probability of
more than 2 alleles is calculated as

1−P (bi-allelic genotype)−P (mono-allelic genotype)−P (deleted genotype).

If the gmer_caller is used with default values, non-canonical genotypes
are replaced with NC (no call). If the option --non_canonical is used, then
also non-canonical (tri-allelic etc) genotypes are called. We discourage the
calling of non-canonical genotypes because they may not be true deletions
or duplications. For example, the deleted genotype may be called due to
the deletion of the region of interest or due to a de-novo mutation near the
target SNV.



3. SUPPLEMENTARY FIGURES

Figure S4. Simplified example of seven k-mer pairs (k=7) that can be used to distinguish two alleles of 
an SNV. 

TAGGCAA TAGGCAG
AGGCAAC AGGCAGC 
GGCAACG GGCAGCG 
GCAACGT GCAGCGT 
CAACGTT CAGCGTT 
AACGTTA AGCGTTA  
ACGTTAG GCGTTAG

Reference	 genome	
and	

variant	of	interest: ...AATTTCTCCAAAATAGGCA[A/G]CGTTAGACTACTGTGACTAAGG... 

Variant	regions	(length	2k-1):	 TAGGCAACGTTAG TAGGCAGCGTTAG

k-mer pair	1:
k-mer pair	2:
k-mer pair	3:
k-mer pair	4:
k-mer pair	5:
k-mer pair	6:
k-mer pair	7:



 
 
 
Figure S5. Pipeline for filtering markers. 
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Figure S6. Principles of using redundant k-mer pairs for genotyping of a given SNV. Three k-mer pairs 
that overlap the SNV are selected as follows. Firstly, the attempt is made to select the leftmost pair, the 
rightmost pair and the pair in the middle of the region. For example, in the case of k=7, as shown in this 
figure, we would prefer to use the 1st, 4th, and 7th k-mer pairs. For 25-mers, we prefer to use the 1st, 
13th, and 25th k-mer pairs. If the most distant k-mer pair cannot be used (is not unique or contains 
SNVs), the next farthest k-mer pair is used. The third k-mer pair is chosen in the middle at an equal 
distance from both k-mers if possible. Thus, if a rare mutation at one side of the SNV changes the 
sequence on that side, we expect the k-mer pair from the other side to still have the expected counts. 
Although the frequencies for all three pairs are counted by gmer_counter, the genotype calling 
software gmer_caller uses only one pair, which is the pair with a total k-mer frequency count that 
is closest to the median k-mer frequency in a given individual. 
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For	rare	mutaEons	in	the	
neighborhood	of	the	SNV	
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4. SUPPLEMENTARY TABLES 
 
 
Table S1. Number and fraction of usable SNVs remaining after subsequent filtering steps. 
 

Dataset All SNVs from 
dbSNP 

Autosomal SNVs from 
HumanOmniExpress 

Bi-allelic validated SNVs 
 

46,954,719 (100%) 650,307 (100%) 

After filtering step 1 (removal of closely located 
SNVs) 

40,946,100 (87%) 596,806 (92%) 

After filtering step 2 (removal of SNVs without 
unique k-mer pair) 

34,463,965 (73%) 594,762 (91%) 

After filtering step 3 (removal of SNVs with 
abnormal behavior in real data) 

30,238,283 (64%) 504,173 (78%) 

 
 
Table S2. Distribution of all autosomal genotypes inferred by FastGT (rows) from the raw sequencing 
data of 10 individuals from the Estonian Genome Center and the Illumina HumanOmniExpress 
microarray genotypes (columns) from the same individuals. The depth of coverage of NGS data in 
these individuals was between 21 and 35.  

  Microarray genotype calls 
    AA AB BB 

Fa
st

G
T 

ge
no

ty
pe

 c
al

ls
 

AA 2,750,130 (54.55%) 1,602 (0.03%) 1,204 (0.02%) 

AB 1,695 (0.03%) 1,477,508 (29.31%) 3,580 (0.07%) 

BB 2 (0.00%) 815 (0.02%) 804,828 (15.96%) 

NC 89 (0.00%) 253 (0.01%) 24 (0.00%) 

 concordant (%) 99.94% 99.84% 99.41% 
 

 

Table S3. Differences in all Y chromosome genotypes inferred by FastGT (rows) and the genotypes in 
the VCF files of 11 men from the HGDP panel. 

  VCF genotype calls 

    AA AB BB 

Fa
st

G
T 

ge
no

ty
pe

 
ca

lls
 A 247,246 (94.42%) 3,797 (1.45%) 38 (0.01%) 

B 43 (0.02%) 148 (0.06%) 7,446 (2.84%) 

NC 3,026 (1.16%) 82 (0.03%) 41 (0.02%) 

 Concordant (%) 99.98% 0% 99.49% 
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