
Supplementary Material

FastGT: an alignment-free method for calling common

SNVs directly from raw sequencing reads
Fanny-Dhelia Pajuste1*, Lauris Kaplinski1*, Märt Möls1,2, Tarmo Puurand1, Maarja Lepamets1

& Maido Remm1

1. DESCRIPTION OF THE DATA STRUCTURE

Adaptive radix tree layout

FastGT uses adaptive radix tree for storing SNV data associated with each k-mer.

k-mers are encoded 2 bits per nucleotide and stored as bitstrings. Branches can thus be
split both between and inside nucleotide (A/C going to one branch and G/T to
another).
Each branch may have different number of radix bits from 0 (linear path) to 31 (231
leaves or sub-branches), plus up to 53 bits of unique part of bitstring between
branches.

Each leaf encodes up to 26 bits of string suffix, plus one 32-bit value associated with
given k-mer. The tree does not have root branch in strict sense, but instead the first
bits (28 by default) are used to select the subtree. Tree leaves are 64-bit integers.
Branch nodes are also encoded in single 64-bit integer, plus one additional integer
value for each 2radix branches. Each branch value is either leaf or link to next
branching node. The schematic layout of the tree is given in Figure S1 and data
types in Figure S2.

Figure S1. The schematic layout of FastGT k-mer tree.

val 1

val 0

val 2

val 3

val 2n_bits_root-4

val 2n_bits_root-3

val 2n_bits_root-2

val 2n_bits_root-1

Root

data

val A0

val A1
data

val B0

val B1

Adaptive radix tree layout

FastGT uses adaptive radix tree for storing SNV data associated with each k-mer.

k-mers are encoded 2 bits per nucleotide and stored as bitstrings. Branches can thus be split both

between and inside nucleotide (A/C goint to one branch and G/T to another).

Each branch may have different number of radix bits from 0 (linear path) to 31 (231 leaves or sub-

branches), plus up to 53 bits of unique part of bitstring between branches.

Each leaf encodes up to 26 bits of string suffix, plus one 32-bit value associated with given k-mer. The
tree does not have root branch in strict sense, but instead the first bits (28 by default) are used to select
the subtree. Tree leaves are 64-bit integers. Branch nodes are also encoded in single 64-bit integer, plus
one additional integer value for each 2radix branches. Each branch value is either leaf or link to next
branching node. The schematic layout of the tree is given in figure S1 and data types in

Trifiguree i

Trie is composed of 64-bit integers, each interpreted either as rightmost unique
part of k-mer (leaf) or reference (to sub-branch). The interpretation is defined by
type bit.

val A2

val A3

Trie root is a table of 64-bit
values with 2root_radix
elements. Each value can
be either leaf or link to
branch.

Branch is single 64-bit data
field, encoding middle part
of bitstring shared by its
descendants, and table of
2branch_radix values

Branch A
(2-bit radix)

Branch B
(1-bit radix)

Figure S1. The schematic layout of FastGT k-mer tree.

Figure S2. The data types in FastGT k-mer tree.

Bitstrings are thus stored as compactly as possible with part of them interpreted as
edge indices and parts as values, encoded in edges. An example encoding of 20-mer
in tree is shown in Figure S3.

Figure S3. Simplified layout of the tree storing 20-nucleotide (40-bit) k-mer. The
initial 20 bits (10 nucleotides, marked with red) form array index into the first subtree
node. The next 5 bits (2.5 nucleotides, marked with blue) are encoded in branch data
field. The next two bits (spanning 2 nucleotides, marked with green) are used as index
into branch descendants (leaves or links to sub-branches). The final 15 bits (7.5
nucleotides, marked with yellow) are encoded in leaf node.

6 5 53

nbits_this radix_bits bitstring

15 26 32

nbits_this bitstring value type=0

163

branch_address type=1

Leaf

Reference

Branch

val 0

val 1
...

Figure S2. The data types in FastGT k-mer tree.

Bitstring are thus stored as compactly as possible with part of them interpreted as edge indices and

parts as values, encoded in edges. An example encoding of 20-mer in tree is shown on figure S3.

empty/link

root array (20 bit radix)

Example: storing 20-mer in trie

bitstring:

0 (00000000000000000000)

empty/link1 (00000000000000000001)

11110171534 (00101001111000001110)

Branch node with 2-bit array
and 5-bit sequence

link

empty/link/leaf0 (00)

empty/link/leaf1 (01)

leaf 0101011000010012 (10)

empty/link/leaf3 (11)

empty/link171533 (00101001111000001101)

empty/link171535 (00101001111000001111)

empty/link1048576 (11111111111111111111)

Sequence: A G G C T G A A T G T T C C G T A A G C

0010100111100000111011110101101100001001

Figure S3. Simplified layout of the tree storing 20-nucleotide (40-bit) k-mer. The initial 20 bits (10

nucleotides, marked with red) form array index into the first subtree node. The next 5 bits (2.5

nucleotides, marked with blue) are encoded in branch data field. The next two bits (spanning 2

nucleotides, marked with green) are used as index into branch descendants (leaves or links to sub-

branches). The final 15 bits (7.5 nucleotides, marked with yellow) are encoded in leaf node.

Advantages and dis-advantages

The major advantage of trie over hastable-based storage is the inherent ordering. Although not

beneficial to FastGT per se, the binary k-mer trie is meant to be usable in other application where

ordering is important - for example set operations between k-mer lists.

6 5 53

nbits_this radix_bits bitstring

15 26 32

nbits_this bitstring value type=0

163

branch_address type=1

Leaf

Reference

Branch

val 0

val 1
...

Figure S2. The data types in FastGT k-mer tree.

Bitstring are thus stored as compactly as possible with part of them interpreted as edge indices and

parts as values, encoded in edges. An example encoding of 20-mer in tree is shown on figure S3.

empty/link

root array (20 bit radix)

Example: storing 20-mer in trie

bitstring:

0 (00000000000000000000)

empty/link1 (00000000000000000001)

11110171534 (00101001111000001110)

Branch node with 2-bit array
and 5-bit sequence

link

empty/link/leaf0 (00)

empty/link/leaf1 (01)

leaf 0101011000010012 (10)

empty/link/leaf3 (11)

empty/link171533 (00101001111000001101)

empty/link171535 (00101001111000001111)

empty/link1048576 (11111111111111111111)

Sequence: A G G C T G A A T G T T C C G T A A G C

0010100111100000111011110101101100001001

Figure S3. Simplified layout of the tree storing 20-nucleotide (40-bit) k-mer. The initial 20 bits (10

nucleotides, marked with red) form array index into the first subtree node. The next 5 bits (2.5

nucleotides, marked with blue) are encoded in branch data field. The next two bits (spanning 2

nucleotides, marked with green) are used as index into branch descendants (leaves or links to sub-

branches). The final 15 bits (7.5 nucleotides, marked with yellow) are encoded in leaf node.

Advantages and dis-advantages

The major advantage of trie over hastable-based storage is the inherent ordering. Although not

beneficial to FastGT per se, the binary k-mer trie is meant to be usable in other application where

ordering is important - for example set operations between k-mer lists.

The major advantage of trie over hastable-based storage is the inherent ordering.
Although not beneficial to FastGT per se, the binary k-mer trie is meant to be usable
in other application where ordering is important - for example set operations between
k-mer lists.
The variable radix layout allows optimizing database for different types of k-mer
lookups. For counting of massive number of k-mers, large root radix and larger
branch radixes for left-side part of k-mer should be used. For looking up sparse, semi-
random set of k-mers, smaller root and binary branches are better suited. FastGT uses
fixed initial radix of 28 bits and all-binary branches (1 bit radix).

The main drawback of tree structure in our tests (compared to hash table) is the need
of traversing many branches for each k-mer lookup, resulting in many potential cache-
misses, especially for unsorted lookups. Larger branch radixes will partially
compensate for this while introducing trade-off of memory usage by allocating certain
number of unoccupied branches. Also inserting unsorted k-mers into tree causes
adjacent nodes to be spatially separated, resulting in poor cache performance.

The data structure allows parallel modification using multiple threads. For
multithreaded insertions blocks of branches and the rootmost radix array are divided
between threads.

Performance of the data structure

Lookups are O(logk) worst case. Insertions are also O(logk) worst case.
The worst-case memory requirement is O(N) in case of binary tree (1-bit radix) split
at each bit.

Advantages and dis-advantages of the data structure

The Empirical Bayes classifier is used to assign the most likely genotype
(GT) to each k-mer pair. To calculate the probability of a particular geno-
type, certain modelling assumptions must be made.

We assume that the k-mer counts CA and CB (corresponding to allele A
and allele B) for a given genotype have a negative binomial distribution with
a mean equal to the product of the coverage (λ) and the true k-mer multi-
plicity in the genome (the true multiplicity of a A-specific k-mer, denoted
by T GCA, is 2 if the genotype is AA):

(CA|GT, T GCA ≥ 1) ∼ NB(mean = TGCA · λ, shape = s1 + s2 · T GCA · λ)

(CB|GT, T GCB ≥ 1) ∼ NB(mean = TGCB · λ, shape = s1 + s2 · T GCB · λ),

where s1 and s2 are unknown parameters estimated from the data.
If the k-mer is not present in the genome (T GCA = 0), then due to se-

quencing errors there is still a small probability of observing the A-specific
k-mer in the sequencing data. If the true multiplicity of a k-mer is 0, we as-
sume that the k-mer count in sequencing reads will have a negative binomial
distribution with the parameters

(CA|GT, T GCA = 0) ∼ NB(mean = λerror · λ, shape = s1 + s2 · λerror · λ)

(CB|GT, TGCB = 0) ∼ NB(mean = λerror · λ, shape = s1 + s2 · λerror · λ),

where the parameter λerror describes the frequency of allele-specific k-mers
caused by sequencing errors.

Using the negative binomial distribution, the probabilities P (CA|GT)
and P (CB|GT) can be calculated. To calculate the probability of a partic-
ular k-mer pair count, we assume the independence of k-mer counts given
the genotype:

P (CA, CB|GT) = P (CA|GT) · P (CB|GT)

2. STATISTICAL FRAMEWORK

To calculate the probability of a true genotype given the k-mer counts
CA, CB, the Bayes formula can be used:

P (GT |CA, CB) = P (CA|GT) · P (CB|GT) · P (GT)/P (CA, CB),

where P (CA, CB) is the probability of observing a particular pair of k-mer
counts. The probability P (CA, CB) can be calculated by the following for-
mula

P (CA, CB) =
∑
GT

P (CA|GT) · P (CB|GT) · P (GT).

The most probable genotype is called for each single nucleotide variant
(SNV) :

called genotype = arg max
GT

P (GT |CA, CB).

The genotype probabilities P (GT) are calculated as follows:

P (GT = AA) = P (A)2 · P (bi-allelic genotype)

P (GT = AB) = 2 · P (A) · P (B) · P (bi-allelic genotype)

P (GT = BB) = P (B)2 · P (bi-allelic genotype)

P (GT = A−) = P (A) · P (mono-allelic genotype)

P (GT = B−) = P (B) · P (mono-allelic genotype)

P (GT = −−) = P (deleted genotype)

P (GT = AAA) = P (A)3 · P (tri-allelic genotype)

P (GT = AAB) = 3 · P (B) · P (A)2 · P (tri-allelic genotype)

...,

where P (A) is A allele frequency and B allele frequency is denoted by
P (B) := 1 − P (A).

For women 8 free parameters are estimated (for calling SNVs both in
autosomes and X-chromosome), for men two separate sets of 8 parameters
are used for calling SNVs positioned in autosomes and for calling SNVs in
sex chromosomes (16 free parameters altogether).

The A allele frequency (over all SNV’s) is used to estimate P (A).
The remaining parameters — the probabilities P (bi-allelic genotype),

P (mono-allelic genotype), P (deleted genotype), shape parameters s1 and
s2, coverage λ and the parameter λerror — are estimated from the data using

maximum likelihood method (by numeric optimization). The probability of
more than 2 alleles is calculated as

1−P (bi-allelic genotype)−P (mono-allelic genotype)−P (deleted genotype).

If the gmer_caller is used with default values, non-canonical genotypes
are replaced with NC (no call). If the option --non_canonical is used, then
also non-canonical (tri-allelic etc) genotypes are called. We discourage the
calling of non-canonical genotypes because they may not be true deletions
or duplications. For example, the deleted genotype may be called due to
the deletion of the region of interest or due to a de-novo mutation near the
target SNV.

3. SUPPLEMENTARY FIGURES

Figure S4. Simplified example of seven k-mer pairs (k=7) that can be used to distinguish two alleles of
an SNV.

TAGGCAA TAGGCAG
AGGCAAC AGGCAGC
GGCAACG GGCAGCG
GCAACGT GCAGCGT
CAACGTT CAGCGTT
AACGTTA AGCGTTA
ACGTTAG GCGTTAG

Reference	 genome	
and	

variant	of	interest: ...AATTTCTCCAAAATAGGCA[A/G]CGTTAGACTACTGTGACTAAGG...

Variant	regions	(length	2k-1):	 TAGGCAACGTTAG TAGGCAGCGTTAG

k-mer pair	1:
k-mer pair	2:
k-mer pair	3:
k-mer pair	4:
k-mer pair	5:
k-mer pair	6:
k-mer pair	7:

Figure S5. Pipeline for filtering markers.

NO
Are	there	any	k-mers	covering	

this	SNV,	but	not	containing	 any	other	
known	SNVs	or	indels?

Remove SNV
from the database

Step	2.	Test	the	uniqueness	 of	all	k-mer pairs	for	a	given	
SNV	in	the	expanded	reference	 genome.	Remove	k-mer
pairs	if	at	least	one	k-mer in	the	pair	is	not	unique.	Keep	
up	to	3	k-mer pairs.

Step	1. Test	the	spacing	of	SNVs

Final	list	of	SNVs

Does	this	SNV	have	at	least	one	unique	
k-mer pair?

NO

Step	3.	Test	the	k-mer	frequencies	 and	genotypes	in	the	
sequencing	data	of	50	individuals.	Remove	the	k-mer	pairs	
that	have	a	abnormally	high	frequency	or	non-canonical	
genotype	in	more	than	one	individual.

NO

Remove SNV
from the database

Remove SNV
from the database

Validated	and	bi-allelic	 SNVs	
from	dbSNP

YES

YES

NGS	sequencing	data	of	50	individuals

Expanded	reference	 genome	(all	25-
mers	from	reference	genome	plus	all	
25-mers	with	alternative	alleles	of	all	
validated	SNVs	and	indels	from	dbSNP)	

Does	this	SNV	have	canonical	genotype	and	
k-mer	frequencies	 in	expected	 range	in	

>	48	out	of	50	individuals?

YES

Figure S6. Principles of using redundant k-mer pairs for genotyping of a given SNV. Three k-mer pairs
that overlap the SNV are selected as follows. Firstly, the attempt is made to select the leftmost pair, the
rightmost pair and the pair in the middle of the region. For example, in the case of k=7, as shown in this
figure, we would prefer to use the 1st, 4th, and 7th k-mer pairs. For 25-mers, we prefer to use the 1st,
13th, and 25th k-mer pairs. If the most distant k-mer pair cannot be used (is not unique or contains
SNVs), the next farthest k-mer pair is used. The third k-mer pair is chosen in the middle at an equal
distance from both k-mers if possible. Thus, if a rare mutation at one side of the SNV changes the
sequence on that side, we expect the k-mer pair from the other side to still have the expected counts.
Although the frequencies for all three pairs are counted by gmer_counter, the genotype calling
software gmer_caller uses only one pair, which is the pair with a total k-mer frequency count that
is closest to the median k-mer frequency in a given individual.

Reference	sequence:				...TAGGCAACGTTAG...	

Frequencies	of	k-mer	pair	1: 15 0
Frequencies	of	k-mer	pair	4: 15 0
Frequencies	of	k-mer	pair	7: 15 15 AB

k-mer	pair	1:	
	
	
k-mer	pair	4:	
	
	
k-mer	pair	7: 	

...TAGGCAACGTTAG...

...TAGTCAGCGTTAG...

TAGGCAA
TAGGCAG

 GCAACGT  
 GCAGCGT

 ACGTTAG
 GCGTTAG

TAGGCAA
TAGGCAG
 GCAACGT  
 GCAGCGT
 ACGTTAG
 GCGTTAG

15
 0
15
 0
15
15

For	each	SNV	(shown	in	
green),	three	k-mer	pairs	
located	as	far	away	from	
each	other	as	possible	are	
selected.		

For	rare	mutaEons	in	the	
neighborhood	of	the	SNV	
(shown	in	red),	certain	k-mer	
pairs	show	abnormal	
frequencies.	In	this	situaEon,	
at	least	one	k-mer	pair	
should	sEll	be	usable.		

The	k-mer	pair	with	the	
total	frequency	closest	to	
the	median	total	
frequency	of	all	k-mer	
pairs	in	the	enEre	genome	
is	selected	for	genotype	
calling.	

k-mer	pair	1:	
	
k-mer	pair	4:	
	
k-mer	pair	7: 	

Diploid	genome	sequenced	to		
coverage	depth	of	ca	30x	:		

4. SUPPLEMENTARY TABLES

Table S1. Number and fraction of usable SNVs remaining after subsequent filtering steps.

Dataset All SNVs from
dbSNP

Autosomal SNVs from
HumanOmniExpress

Bi-allelic validated SNVs

46,954,719 (100%) 650,307 (100%)

After filtering step 1 (removal of closely located
SNVs)

40,946,100 (87%) 596,806 (92%)

After filtering step 2 (removal of SNVs without
unique k-mer pair)

34,463,965 (73%) 594,762 (91%)

After filtering step 3 (removal of SNVs with
abnormal behavior in real data)

30,238,283 (64%) 504,173 (78%)

Table S2. Distribution of all autosomal genotypes inferred by FastGT (rows) from the raw sequencing
data of 10 individuals from the Estonian Genome Center and the Illumina HumanOmniExpress
microarray genotypes (columns) from the same individuals. The depth of coverage of NGS data in
these individuals was between 21 and 35.

 Microarray genotype calls
 AA AB BB

Fa
st

G
T

ge
no

ty
pe

 c
al

ls

AA 2,750,130 (54.55%) 1,602 (0.03%) 1,204 (0.02%)

AB 1,695 (0.03%) 1,477,508 (29.31%) 3,580 (0.07%)

BB 2 (0.00%) 815 (0.02%) 804,828 (15.96%)

NC 89 (0.00%) 253 (0.01%) 24 (0.00%)

 concordant (%) 99.94% 99.84% 99.41%

Table S3. Differences in all Y chromosome genotypes inferred by FastGT (rows) and the genotypes in
the VCF files of 11 men from the HGDP panel.

 VCF genotype calls

 AA AB BB

Fa
st

G
T

ge
no

ty
pe

ca

lls
 A 247,246 (94.42%) 3,797 (1.45%) 38 (0.01%)

B 43 (0.02%) 148 (0.06%) 7,446 (2.84%)

NC 3,026 (1.16%) 82 (0.03%) 41 (0.02%)

 Concordant (%) 99.98% 0% 99.49%

	Pajuste_2016_V14_SupplementaryMaterial.pdf
	Pajuste_2016_V13_SupplFile2
	Pajuste_2016_V13_SupplFile2
	Pajuste_2016_V13_SupplFile2
	Pajuste_2016_V14_SupplementaryMaterial

