Expanded View Figures

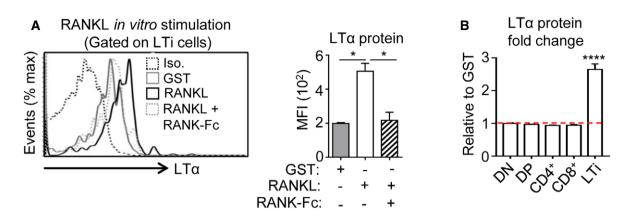


Figure EV1. In vitro stimulation with RANKL induces the upregulation of LTα specifically in thymic LTi cells.

- A LTα protein expression was analyzed by flow cytometry in thymic LTi cells from sublethally irradiated WT mice treated *in vitro* for 24 h with GST, RANKL-GST, or RANKL-GST + RANK-Fc. The histogram shows the MFI of LTα for each condition. Iso: Isotype control.
- B LTα protein was analyzed in DN, DP, CD4+, and CD8+ SP as well as in LTi cells purified from sublethally irradiated WT mice and treated *in vitro* for 24 h with GST or RANKL-GST. Results are represented as fold change relative to the GST condition.

Data information: Data are shown as mean \pm SEM and are pooled of two independent experiments with similar results (n = 3 mice per group). *P < 0.05; ****P < 0.0001. Exact P-values and statistical tests used to calculate them are provided in Appendix Table S2.

EV1 EMBO Molecular Medicine © 2017 The Authors

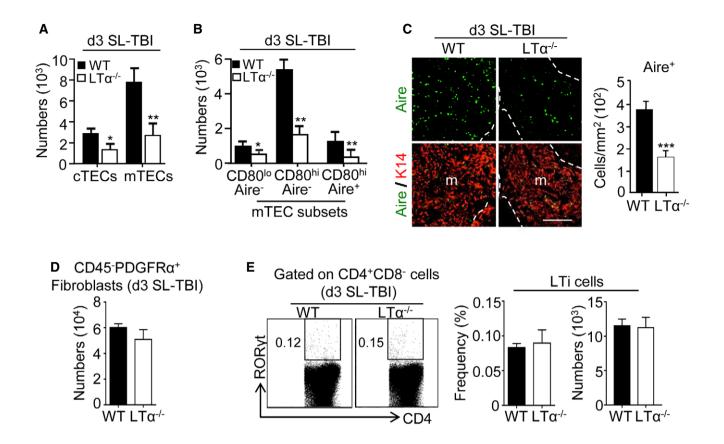


Figure EV2. TECs but not fibroblasts and LTi cells are severely reduced in LT $\alpha^{-\prime-}$ mice at d3 SL-TBI.

- A, B Histograms show numbers of cTECs and mTECs (A) as well as mTEC subsets (B) in WT and $LT\alpha^{-/-}$ mice at d3 SL-TBI.
- C Thymic sections from WT and LT $\alpha^{-/-}$ mice at d3 SL-TBI were stained for the expression of K14 and Aire. The histogram shows the density of Aire⁺ cells in medullary area. m, medulla. Fifteen sections were quantified; scale bar: 100 μ m.
- D The histogram shows numbers of CD45 $^-$ PDFR α^+ fibroblasts in WT and LT $\alpha^{-/-}$ mice at d3 SL-TBI.
- E Flow cytometry profiles and frequencies of thymic LTi cells from WT or $LT\alpha^{-/-}$ mice at d3 SL-TBI.

Data information: Data are shown as mean \pm SEM and are pooled of five independent experiments with similar results (n = 3 mice per group). *P < 0.05; **P < 0.05;

© 2017 The Authors EMBO Molecular Medicine EV2

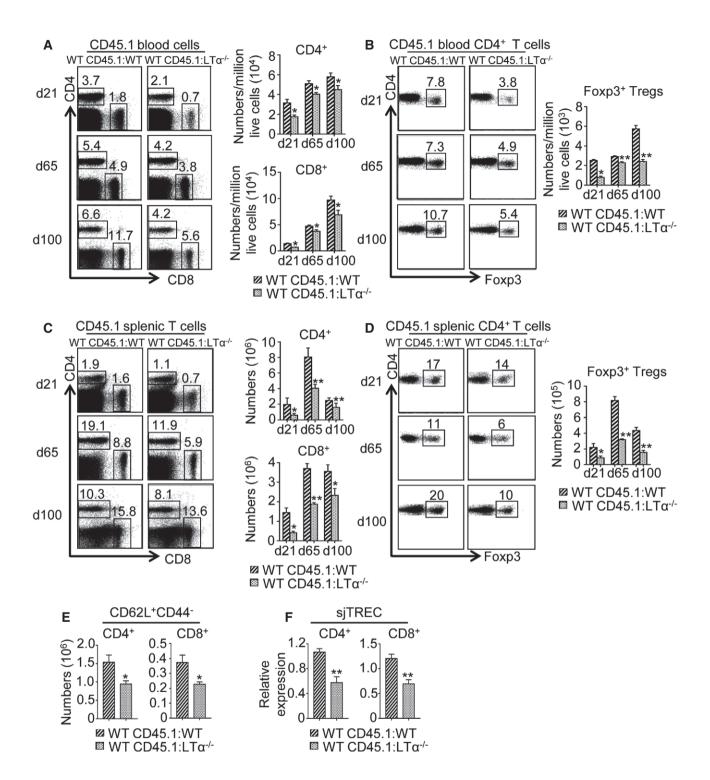


Figure EV3. $LT\alpha$ expression during BMT is required for peripheral T-cell reconstitution.

EV3

- A–D Flow cytometry profiles and numbers of CD4 $^+$ and CD8 $^+$ T cells (A, C) as well as CD4 $^+$ Foxp3 $^+$ Tregs (B, D) from CD45.1 donor origin in blood (A, B) and spleen (C, D) of WT CD45.1:WT and WT CD45.1:LT $\alpha^{-/-}$ mice at d21, d65, and d100 upon BMT. Significance relative to WT CD45.1:WT chimeras.
- E Histograms show numbers of CD62L $^+$ CD44 $^-$ naïve CD4 $^+$ and CD8 $^+$ T cells in the spleen of WT CD45.1:WT and WT CD45.1:LT $\alpha^{-/-}$ mice at d21 pBMT.
- F sjTREC were quantified by qPCR from genomic DNA of cell-sorted splenic CD4 $^+$ and CD8 $^+$ T cells from WT CD45.1:WT and WT CD45.1:LT $\alpha^{-/-}$ mice at d21 pBMT.

Data information: Data are shown as mean \pm SEM and are pooled of two independent experiments with similar results (n = 3-5 mice per group). *P < 0.05; **P < 0.05; one-tailed Mann–Whitney U-test. Exact P-values are provided in Appendix Table S2.

EMBO Molecular Medicine © 2017 The Authors

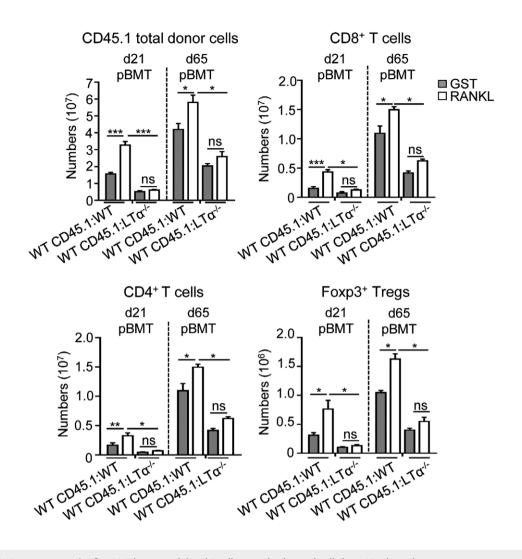


Figure EV4. RANKL treatment early after BMT boosts peripheral T-cell reconstitution optimally in an LT α -dependent manner. Histograms show numbers of total cells and CD4⁺ and CD8⁺ T cells as well as CD4⁺Foxp3⁺ Tregs from CD45.1 donor origin in the spleen of WT CD45.1:WT and WT CD45.1:LT $\alpha^{-/-}$ mice treated with GST or RANKL proteins at d2, d4, and d6 pBMT and analyzed at d21 and d65 pBMT. pBMT: post-bone marrow transplantation. Data are shown as mean \pm SEM and are pooled of three independent experiments with similar results (n=3–5 mice per group). *P<0.05; **P<0.05; **P<0.05; one-tailed Mann–Whitney U-test. Exact P-values are provided in Appendix Table S2.

© 2017 The Authors EMBO Molecular Medicine EV4

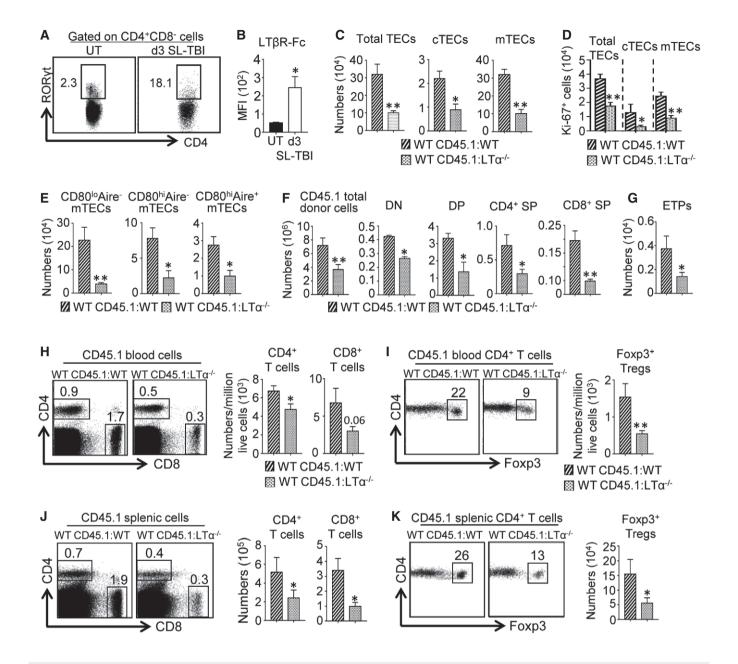


Figure EV5. The critical role of $LT\alpha$ in thymic regeneration and peripheral T-cell reconstitution persists with age.

- A CD4⁺CD8⁻ thymic cells from 8-month-old UT WT mice (n = 9) or at d3 SL-TBI (n = 6) were analyzed for the expression of ROR γ t by flow cytometry.
- B MFI of LTβR-Fc staining in thymic LTi cells from 6- to 8-month-old UT WT mice or at d3 SL-TBI.

EV5

- C–G Histograms show numbers of total TECs, cTECs, mTECs (C); Ki-67* TEC subsets (D); mTEC subsets (E); total thymic cells, T-cell subsets (DN, DP, CD4* SP, and CD8* SP) (F); and ETPs (G) in the thymus from WT CD45.1:WT and WT CD45.1:LTa^{-/-} chimeras of 6–8 months of age at d21 upon BMT.
- H–K Flow cytometry profiles and numbers of CD4⁺ and CD8⁺ T cells (H, J) as well as CD4⁺Foxp3⁺ Tregs (I, K) from CD45.1 donor origin in blood (H, I) and spleen (J, K) of WT CD45.1:WT and WT CD45.1:LT $\alpha^{-/-}$ mice of 6–8 months of age at d21 pBMT. Significance relative to WT CD45.1:WT chimeras.

Data information: Data are shown as mean \pm SEM and are pooled of two independent experiments with similar results (n=3 mice per group). *P<0.05; **P<0.05; **P<0.05; one-tailed Mann–Whitney U-test. Exact P-values are provided in Appendix Table S2.

EMBO Molecular Medicine © 2017 The Authors