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A Validity of Approximations

In section 2.2, we showed the generalization of the Michaelis-Menten model by granting the
enzyme access to an active and inactive conformation. We then analyzed this system using
two assumptions: the quasi-steady-state approximation Eq (17) and the cycle condition
Eq (19). In this section, we will formally determine when these approximations are valid
for an MWC enzyme and discuss what happens when we relax these assumptions. It is
straightforward to extend these results to the more complicated MWC enzyme models where
we introduce allosteric regulators, add competitive inhibitors, and consider enzymes with
multiple binding sites.

A.1 De�nitions

In section 2.2, we characterized an MWC enzyme using the reaction scheme

[EA] [EAS ]
kon[S ]A

[EI ] [EIS ]

ktransA ktransI

kon[S ]I
ktransAS ktransIS

koff   
+kcatA A

koff   
+kcatI I

(77)

which we will now discuss in detail. We will use the following de�nitions freely:1

• An edge of a reaction scheme denotes the value of an arrow from one enzyme state
to another. The edges on the left of (77) are kAtrans (linking [EA] to [EI ]) and kItrans
(linking [EI ] to [EA]).

• A path along enzyme states is the product of edges along this path. For example, the
path from [EI ] to [EA] to [EAS] for the MWC scheme above is given by kItransk

A
on[S].

• A system is in steady state if the concentration of every enzyme conformation does not
change over time. For the scheme above this implies d[EAS]

dt
= d[EA]

dt
= d[EIS]

dt
= d[EI ]

dt
= 0.

• The cycle condition states that the product of edges going clockwise around any cycle
must equal the product of edges going counterclockwise. For scheme (77), the product
of edges clockwise equals

(
kAon[S]

) (
kAStrans

) (
kIoff + kIcat

) (
kItrans

)
and the product of edges

moving counter-clockwise equals
(
kAoff + kAcat

) (
kAtrans

) (
kIon[S]

) (
kIStrans

)
.

• Detailed balance implies that the �ow between two enzyme states is the same in the
forward and backwards direction. For the scheme above, if the �ow of enzymes from
the [EA] state to the [EAS] state (given by [EA][S]kAon) equals the �ow from [EAS]
to [EA] (given by [EAS]

(
kAoff + kAcat

)
) then the pair of edges between [EA] and [EAS]

obeys detailed balance. A reaction scheme is in equilibrium if and only if every edge
obeys detailed balance which occurs if and only if the system is in steady state and
obeys the cycle condition.
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A.2 Cycle Condition

In this section we consider why the cycle condition is necessary to ensure that a system in
steady state is in equilibrium. Assume the MWC enzyme scheme (77) is in steady state,

d[EAS]

dt
=
d[EA]

dt
=
d[EIS]

dt
=
d[EI ]

dt
= 0. (78)

The cycle condition ensures that equilibrium holds around the cycle in (77) regardless of
which path is traversed. For example, suppose the system is in equilibrium and we want
to use detailed balance to determine the relation between EAS and EI . Detailed balance
provides a relation between adjacent vertices (i.e. any two enzyme states connected by
arrows) such as EAS and EIS or EIS and EI . Hence we can �nd a relation between two
non-adjacent edges such as EAS and EI by following two di�erent paths,

[EA] [EAS ]
kon[S ]A

[EI ] [EIS ].

ktransA ktransI

kon[S ]I
ktransAS ktransIS

koff   
+kcatA A

koff   
+kcatI I

(79)

We could travel clockwise and follow the blue path around (79), �rst using detailed balance
between EAS and EIS and then between EIS and EI ,

[EAS]

[EI ]
=

[EAS]

[EIS]

[EIS]

[EI ]
=
kIStrans
kAStrans

kIon[S]

kIoff + kIcat
. (80)

On the other hand, we could have moved counter-clockwise around (79) along the orange
path, �rst using the relationship between EAS and EA and then between EA and EI ,

[EAS]

[EI ]
=

[EAS]

[EA]

[EA]

[EI ]
=

kAon[S]

kAoff + kAcat

kItrans
kAtrans

. (81)

Setting Eqs (80) and (81) equal to each other yields the cycle condition!

A.3 Quasi-Steady-State Approximation

We will now consider the dynamics of the MWC enzyme,

[EA]+[S ] [EAS ]konA

koffA

[EI ]+[S ] [EIS ]
koffI

ktransA ktransI

konI
ktransAS ktransIS

kcatA

kcatI

[EA]+[P ]

[EI ]+[P ].

(82)
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At time t = 0, the enzyme and substrate are mixed together and the rate of product formation
is measured over time. The system starts o� with all enzymes in the unbound forms EA or
EI and there are no enzyme-substrate complexes EAS or EIS.

To gain some intuition into this system, we �rst consider Figure 15 which shows how this
MWC enzyme can behave over time for reasonable parameter values. On the long time scales
in Figure 15B, the substrate concentration will appreciably diminish to 1/e of its original
value after a long time τS. On the other hand, Figure 15A shows that within a time τE � τS
the enzymes reach 1/e of what appears to be a �steady state.� Of course, this is not a true
steady-state, since after a time τS the substrate concentration will appreciably decrease and
the enzyme conformations will correspondingly change. Instead, we call the situation after
one second a quasi-steady-state, meaning that the enzyme conformations have all reached a
steady-state value assuming the current substrate concentration is �xed.

When τE is signi�cantly smaller than τS (typically τE only needs to be roughly 100
times smaller than τS), the dynamics of the enzymes and substrate can be separated. In
other words, we can assume that the fast step (where the enzymes equilibrate to the current
concentration of substrate) happens instantly when considering the slow dynamics of the
substrate concentration diminishing over time. This is the quasi-steady-state approximation
that we formally made in Eq (17) of section 2.2. We will next show what relationship between
the rate constants must hold so that the quasi-steady-state approximation is valid.
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Figure 15: The quasi-steady-state approximation. (A) The fast dynamics of the system
in Eq (82) begins by mixing unbound enzymes (EA and EI) and substrate. The enzyme
conformations quickly reach steady state on a time scale of τE ≈ 0.04 s. During this pe-
riod, the substrate concentration remains very nearly constant. (B) The substrate changes
appreciably over the much longer time scale τS ≈ 11 s. Over this longer time scale, we
can assume the quasi-steady-state approximation: the enzymes conformations are always in
quasi-steady-state with the slowly diminishing substrate concentration. Concentrations used

were [Etot] = 1µM, [Stot] = 1mM, [EAS] = [EIS] = 0, and [EA]
[EI ]

=
kItrans
kAtrans

≡ e−β(εA−εI). The

rate constants used were kAon = 1 s−1M−1, kIon = 10−1 s−1M−1, kAoff = 1 s−1, kIoff = 10−3 s−1,
kAcat = 102 s−1, kIcat = 10 s−1, kAStrans = kIStrans = kAtrans = 10 s−1, and kItrans = 102 s−1.

We �rst calculate the time scale τE for the enzyme conformations to equilibrate. We will
assume that the substrate concentration equals the constant value [Stot] throughout this short
timescale (which, as shown in Figure 15A, is reasonable) and then invoke a self-consistency
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condition to ensure that the actual change in substrate concentration during the period τE
was negligible.

As a warm up, we �rst consider the Michaelis-Menten enzyme which we redraw here

[E ]+[S ] [ES ]kon
koff

kcat [E ]+[P ]. (83)

The Michaelis-Menten enzyme is governed by the multiple di�erential equations

d[E]

dt
= [ES] (koff + kcat)− [E] [Stot] kon = −d[ES]

dt
(84)

and the constraint [E] + [ES] = [Etot]. As stated above, we �x the substrate concentration
at [Stot] and assume that the system starts o� with [E] = [Etot] and [ES] = 0. Solving the
di�erential equation Eq (84) yields

[E] = [Etot]
KM + [Stot] e

−t/τ

KM + [Stot]
(85)

[ES] = [Etot] [Stot]
1− e−t/τ

KM + [Stot]
(86)

where τ = 1
kon[Stot]+koff+kcat

is the time scale for the system to equilibrate. Interestingly, 1
τ

equals the sum of all rates between the states [E] and [ES] (i.e. the sum of all time scales
in this system). Furthermore, τ does not depend on the initial conditions of the system.

We now turn to the harder case of the MWC enzyme whose kinetics we describe using
the scheme

[EA]+[S ] [EAS ]konA

koffA

[EI ]+[S ] [EIS ]
koffI

ktransA ktransI

konI
ktransAS ktransIS

kcatA

kcatI

[EA]+[P ]

[EI ]+[P ].

(87)

As we just saw for the Michaelis-Menten enzyme, if we just considered any edge of the
MWC enzyme separately, its corresponding time constant would be 1

sum of rates along this edge
:

1
kAon[Stot]+kAoff+kAcat

between [EA] and [EAS] (blue); 1
kAtrans+k

I
trans

between [EA] and [EI ] (red);
1

kIon[Stot]+kIoff+kIcat
between [EI ] and [EIS] (green); and 1

kAStrans+k
IS
trans

between [EAS] and [EIS]

(brown). We can approximate the time scale τE of this system as the maximum of these four
time scales between adjacent edges,
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τE ≈ max

(
1

kAon[Stot] + kAoff + kAcat
,

1

kAtrans + kItrans
,

1

kIon[Stot] + kIoff + kIcat
,

1

kAStrans + kIStrans

)
=

1

min
(
kAtrans + kItrans, k

A
on [Stot] + kAcat + kAoff , k

AS
trans + kIStrans, k

I
on [Stot] + kIcat + kIoff

) . (88)

This result is very similar (and in fact overestimates) the exact derivation of τE discussed in
the next section, Appendix A.4.

With this form of τE in hand, we could proceed in several ways to determine when the
quasi-steady-state approximation holds. For example, we could compute the time scale τS for
the substrate to diminish and then enforce τE � τS as the quasi-steady-state approximation.
However, Segel and Slemrod2 determined a tighter constraint by demanding that the amount
of substrate converted into product during the transient period 0 < t < τE only amounts to
a tiny fraction of the initial substrate concentration. The amount of substrate turned into
product ∆[S] after time τE can be overestimated as

∆[S] ≈
∣∣∣∣d[S]

dt

∣∣∣∣
max

τE (89)

so that the quasi-steady-state approximation can be written as

∆[S]

[Stot]
≈ 1

[Stot]

∣∣∣∣d[S]

dt

∣∣∣∣
max

τE � 1. (90)

From (82), the rate of change of substrate concentration for the MWC enzyme is

d[S]

dt
= − [EA] [S]kAon − [EI ] [S]kIon + [EAS] kAoff + [EIS] kIoff . (91)

Recall that at t = 0, the system starts o� with all enzymes unbound: [EAS] = [EIS] = 0

and [EA] + [EI ] = [Etot]. Then
∣∣∣d[S]
dt

∣∣∣
max

occurs at t = 0 (when [S] = [Stot]) and an upper

bound is given by∣∣∣∣d[S]

dt

∣∣∣∣
max

= [Stot]
(
[EA] kAon + [EI ] k

I
on

)
≤ [Etot] [Stot] max

(
kAon, k

I
on

)
. (92)

Substituting this result and the time scale Eq (88) into Eq (90), we �nd a su�cient condition
for the quasi-steady state approximation to hold for an MWC enzyme:

[Etot]
max

(
kAon, k

I
on

)
min

(
kAtrans + kItrans, k

A
on [Stot] + kAcat + kAoff , k

AS
trans + kIStrans, k

I
on [Stot] + kIcat + kIoff

) � 1.

(93)
We could repeat this analysis for a Michaelis-Menten enzyme where only the EA and

EAS states exist. This is equivalent to disregarding all terms except for kAon, k
A
off , and
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kAcat in the max and min of Eq (93), so that the quasi-steady-state conditions reduces to

[Etot]
kAon

kAon[Stot]+kAcat+k
A
off

= [Etot]

[Stot]+KA
M
� 1 which is identical to the condition found by Segel.2

A.4 Time Constants for the Quasi-Steady-State Approximation

In this section we derive an exact expression for the time constant for which the MWC enzyme
(16) will attain its steady state for each enzyme conformation assuming that the substrate
concentration [S] = [Stot] remains �xed. The rate of change of each enzyme conformation
can be written in matrix form (with bold denoting vectors and matrices) as

dE

dt
= KE (94)

where

K =


kAcat + kAoff −kAon [Stot]− kAtrans 0 kItrans

−kAcat − kAoff − kAS
trans kAon [Stot] kIStrans 0

0 kAtrans kIcat + kIoff −kItrans − kIon [Stot]

kAS
trans 0 −kIcat − kIoff − kIStrans kIon [Stot]

 , E =


[EAS]

[EA]

[EIS]

[EI ]

 .

(95)
This matrix can be decomposed as

K = V −1ΛV (96)

where V 's columns are the eigenvectors of K and Λ is a diagonal matrix whose entries
are the eigenvalues of K. In general, it is known that the eigenvalues of such a matrix K
representing the dynamics of any graph such as (16) from the text has one eigenvalue that
is 0 while the remaining eigenvalues are non-zero and have negative real parts.3 (Indeed,
because all of the columns of K add up to zero, K is not full rank and hence one of its
eigenvalues must be zero.) De�ning the vector

Ẽ ≡ V E =


Ẽ1

Ẽ2

Ẽ3

Ẽ4

 , (97)

Eq (94) can be rewritten as

dẼ

dt
= ΛẼ. (98)

If the eigenvalues of Λ are λ1, λ2, λ3, and 0, then Ẽj = cje
λjt for j = 1, 2, 3 and Ẽ4 = c4 where

the cj's are constants determined by initial conditions. Since the Ẽj's are linear combinations
of [EAS] , [EA] , [EIS] , and [EI ], this implies that the 1

λ1
, 1
λ2
, and 1

λ3
are the time scales for

the system to come to equilibrium. Therefore, we can compute the overall time scale for the
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system to come to equilibrium as

τ
(exact)
E = max

(
1

λ1

,
1

λ2

,
1

λ3

)
. (99)

Although the eigenvalues of this matrix can be calculated in closed form, they are long and
complicated expressions that contribute less intuition than the approximation

τE = max

(
1

kAon[S] + kAoff + kAcat
,

1

kAtrans + kItrans
,

1

kIon[S] + kIoff + kIcat
,

1

kAStrans + kIStrans

)
(100)

used in Eq (88) in the text. However, given the exact form, we can compare how well our
approximation Eq (100) matches the exact form Eq (99).

When the four time scales in Eq (100) are comparable to each other, the approximation is
very close to the exact form. However, when at least one pair of edges in the MWC enzyme
rates diagram,

[EA] [EAS ]
kon[S ]A

[EI ] [EIS ],

ktransA ktransI

kon[S ]I
ktransAS ktransIS

koff   
+kcatA A

koff   
+kcatI I

(101)

is very small the approximation tends to overshoot the exact value of τE. For example, if
kAtrans ≈ kItrans ≈ 0), Eq (100) implies τE →∞ whereas Eq (99) can remain �nite.

A.5 Generalizing the Cycle Condition

We now consider what happens if an enzyme does not obey the cycle condition. Provided
that the quasi-steady-state approximation holds, then on the long time scales the enzyme
conformations quickly equilibrate to the current substrate concentration. From (82), the
rate of change of each enzyme species obeys

d [EAS]

dt
= 0 = [EA] [S]kAon − [EAS]

(
kAoff + kAcat + kAStrans

)
+ [EIS] kIStrans (102)

d [EA]

dt
= 0 = [EAS]

(
kAoff + kAcat

)
− [EA] [S]kAon − [EA] kAtrans + [EI ] k

I
trans (103)

d [EIS]

dt
= 0 = [EI ] [S]kIon − [EIS]

(
kIoff + kIcat + kIStrans

)
+ [EAS] kAStrans (104)

d [EI ]

dt
= 0 = [EIS]

(
kIoff + kIcat

)
− [EI ] [S]kIon − [EI ] k

I
trans + [EA] kAtrans. (105)

This system of equations, together with the conservation of total enzyme, [Etot] = [EAS] +
[EIS] + [EA] + [EI ], can be solved to obtain the quasi-steady-state values of each enzyme

species. Using the Michaelis constants KA
M =

kAoff+kAcat
kAon

and KI
M =

kIoff+kIcat
kIon

, we can write the
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solutions as the three ratios

[EAS]

[EA]
=

[S]

KA
M

(
KI
Mk

I
on + kItransγ + [S]kIonγ

)
+ kAtransαγ

(KI
Mk

I
on + kItransγ + [S]kIonγ) + kAtransαβδ

(106)

[EIS]

[EI ]
=

[S]

KI
M

(
KA
Mk

A
on + kAtransδ + [S]kAonδ

)
+ kItrans

δ
α

(KA
Mk

A
on + kAtransδ + [S]kAonδ) + kItrans

γ
αβ

(107)

[EA]

[EI ]
=
kItrans
kAtrans

(
KI
Mk

I
on + kItransγ + kAtransαβδ

)
+ [S]kIonγ

(KI
Mk

I
on + kItransγ + kAtransαβδ) + [S]kIonβδ

(108)

where we have de�ned α ≡ kIon
kAon

, β ≡ KI
M

KA
M
, γ ≡ kIStrans

kItrans
, δ ≡ kAStrans

kAtrans
to simplify the results. Notice

that the terms in parenthesis in the numerator and denominator of these three ratios are the
same. Indeed, the large fractions in all three equations equal 1 if we set γ = βδ so that

[EAS]

[EA]
=

[S]

KA
M

(109)

[EIS]

[EI ]
=

[S]

KI
M

(110)

[EA]

[EI ]
=
kItrans
kAtrans

. (111)

This fortuitous choice of γ is equivalent to the cycle condition Eq (19), and so it is no surprise
that these three ratios match Eqs (20)-(22).

Invoking the cycle condition is a theoretical convenience which greatly simpli�es our
equations. If the cycle condition does not hold, we can follow our same procedure to turn
Eqs (106)-(108) into a more general result for states and weights by only assuming the
quasi-steady-state approximation. While this more general procedure is straightforward to
implement numerically, it comes at the cost of introducing more parameters into the model
(for example, values for kIon and kItrans must now be explicitly given whereas before we only

needed to determine the ratios kIon
kIoff+kIcat

and
kItrans
kAtrans

) and the parameters will now depend upon

the substrate concentration.
Finally, we note that the cycle condition need not be invoked if a model does not contain

any cycles. In other words, if we instead de�ned an MWC enzyme using the rates diagram

[EA]+[S ] [EAS ]konA

koffA

[EI ]+[S ] [EIS ]
koffI

ktransA ktransI

konI

kcatA

kcatI

[EA]+[P ]

[EI ]+[P ],

(112)

our analysis would proceed identically without needing to invoke the cycle condition. There-

fore, the cycle condition ensures that the system (82) has the right value of
kAStrans
kIStrans

so that it

can operate identically to (112).
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B General Enzyme Models

In this section, we discuss the procedure used to �t the experimental enzyme kinetics data
to the theoretical framework we have developed for allosteric enzymes. We then discuss
the individual �ts for each enzyme considered throughout the paper. These �ts may also
be viewed directly in the supplementary Mathematica notebook which contains the code to
generate all of the plots in the paper as well as the experimental data for each enzyme.

All �tting was done using nonlinear regression (NonlinearModelFit in Mathematica) us-
ing the realistic constraints KM , CD, RD ∈ [10−2µM, 106µM], kcat ∈ [10−2 s−1, 105 s−1], and
e−β(εA−εI) ∈ [−10, 10].4 Initial conditions for the nonlinear regression were chosen randomly
from this parameter space until a su�ciently good �t (R2 > 0.99) was found.

It must be noted that, as with nearly all models, there are serious ambiguities in the best
�t values since multiple sets of best �ts values yield nearly identical curves. In point of fact, if
the nonlinear regression would be performed without any constraints, it nearly always lands
outside of the physically relevant parameter space (although the qualitative form of the best
�t curves may be nearly indistinguishable from those that we show below). This attribute
of models, dubbed as �sloppiness,� is well known.5 One of its implications may be that a
biological system can more easily evolve whichever activity pro�le it requires to maximize
�tness, since the system is more likely the stumble across the best possible activity pro�le if
it exists for numerous sets of parameters.

With this in mind, our results below demonstrate that our framework is su�cient to
describe the complex interactions of allosteric enzymes, but that the individual parameter
values (i.e. KM , CD, RD values) are not tightly determined by these �ts.

B.1 Fitting α-Amylase and Allosteric Regulator Chlorine

Figure 16 shows three activity curves for A. haloplanctis α-amylase titrating substrate at
di�erent concentrations of the allosteric activator NaCl. This enzyme has one substrate
binding site and one allosteric site for binding chlorine ions. As discussed in section 3.1 of
the main text, the [S]/A curves are linear in [S],

[S]

A
=
e−βεA

(
1 + [S]

KA
M

)(
1 + [R]

RAD

)
+ e−βεI

(
1 + [S]

KI
M

)(
1 + [R]

RID

)
kAcate

−βεA 1
KA
M

(
1 + [R]

RAD

)
+ kIcate

−βεI 1
KI
M

(
1 + [R]

RID

) . (113)

Note that we are �tting the 7 parameters from this equation into a linear form with 2 pa-
rameters (i.e. slope and intercept). Therefore, the individual parameters are not themselves
reliable; instead, these �ts are intended to show that the MWC model can account for the
observed enzyme behavior. One possible set of parameters that matches the data is given
by e−β(εA−εI) = 7.8 × 10−4, KA

M = 0.6mM, KI
M = 0.2mM, RA

D = 0.03mM, RI
D = 7.9mM,

kAcat = 14 s−1, and kIcat = 0.01 s−1. To �nd the value of an individual parameter, we would
instead setup an experiment where only that single parameter varies and �t the resulting
data.
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Figure 16: Theoretically and experimentally probing the e�ects of an allosteric regulator on
activity. Data points show experimentally measured activity from Feller et al. for the enzyme
α-amylase using substrate analog [S] (EPS) and allosteric activator [R] (NaCl), overlaid by
theoretical curves of the form given in Eq (113).6 Reproduced from Figure 10 in the main
text.

B.2 Fitting α-Amylase and Competitive Inhibitor Isoacarbose

Figure 17 shows three activity curves of human pancreatic α-amylase titrating competitive
inhibitor at di�erent substrate concentrations. This enzyme has one active site which the
substrate or competitive inhibitor can bind to. As discussed in section 3.1 of the main text,
the activity curves all take the form

(
d[P ]

dt

)−1

=
1

[Etot]

e−βεA
(

1 + [S]

KA
M

+ [C]

CAD

)
+ e−βεI

(
1 + [S]

KI
M

+ [C]

CID

)
kAcate

−βεA [S]

KA
M

+ kIcate
−βεI [S]

KI
M

(114)

which is linear in [C].
As noted above, in �tting 6 parameters to a linear form, the best �t parameter values

are not reliable, but are only intended to show that the MWC model can account for the
observed enzyme behavior. One possible set of parameters that matches the data is given by

e−β(εA−εI) = 36, KA
M = 0.9mM, KI

M = 2.6mM, CA
D = 12 nM, CI

D = 260 nM, and
kAcat
kIcat

= 1.4.

Because units for activity were not included in original data, we instead �t the dimensionless

quantity [Etot]k
A
cat

(
d[P ]
dt

)−1

which rescales the y-axis but does not change the form of the

activity curves.7

B.3 Fitting Acetylcholinesterase Data

The acetylcholinesterase data in Figure 18 was taken from Torpedo marmorata.8 Using our
framework from section 2.6, activity is given by

A = N
e−β(εA−εI)kAcat

[S]

KA
M

(
1 + [S]

KA
M

)N−1

+ kIcat
[S]

KI
M

(
1 + [S]

KI
M

)N−1

e−β(εA−εI)
(

1 + [S]

KA
M

)N
+
(

1 + [S]

KI
M

)N (115)

S11



1.225mM [S]

0.625mM [S]

0.245mM [S]

-20 0 20 40 60
0

1

2

3

4

5

6

[C] (nM)

(ⅆ
[P
]/
ⅆ
t)
-
1
(a
rb
.u
ni
ts
)

Figure 17: Theoretically and experimentally probing the e�ects of a competitive inhibitor
on activity. Data points show experimentally measured activity in arbitrary units from Li
et al. for the enzyme α-amylase using substrate analog [S] (α-maltotriosyl �uoride) and
competitive inhibitor [C] (isoacarbose), overlaid by theoretical curves of the form given by
Eq (114).7 Best �t theoretical curves described by the inverse of Eq (65) are overlaid on the
data. Reproduced from Figure 11(A) in the main text.
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Figure 18: The activity of acetylcholinesterase exhibits a peak. Activity for acetyl-
cholinesterase is shown in units of (nanomoles product) ·min−1 · (mL enzyme)−1.8 The theo-
retical best-�t curve is shown (light blue) together with another theory curve which ignores
the last three data points but better captures the height of the peak in the data (dashed,
red).

where N = 2 is the number of active sites.
Activity is shown in units of (nanomoles product) · min−1 · (mL enzyme)−1. Using the

density 3.6 mg

mL
and molecular weight 2.3 × 105 g

mol
of the enzyme,8 1mL enzyme = 1.6 ×

10−8 mol. Therefore, 1 unit on the y-axis of the �gure corresponds to 10−3 sec−1.
The best �t parameters (light blue curve in Figure 18) were e−β(εA−εI) = 0.5, KA

M =
6.1 × 10−3 M, KI

M = 2.8 × 10−4 M, kAcat = 3.1 s−1, and kIcat = 3.7 × 10−2 s−1. The �tting
is made di�cult by two factors. First, the data points are not evenly spaced, and the
three data points clumped together near [S] = 2 × 10−4 M have more weight on the �t
than other points. Second, we suspect that the �nal three data points in this �gure have
a signi�cant amount of error and should not curve back up - indeed, none of the other
acetylcholinesterase substrate inhibition curves from the same source exhibit this feature.8

To that end, we also show another theoretical curve (dashed, red) in order to exemplify that
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the MWC model can capture the height of the peak in the data. This latter curve has the
parameters e−β(εA−εI) = 0.7, KA

M = 7.4 × 10−3 M, KI
M = 5.9 × 10−4 M, kAcat = 2.9 s−1, and

kIcat = 2.0× 10−2 s−1.

B.4 Further Example Data

In this section, we present data on ATCase (not discussed in the main text) which provides
an excellent opportunity to combine all of the molecular players and enzyme features we
have analyzed - allosteric regulators, competitive inhibitors, multiple substrate binding sites
- in one complete model.
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Figure 19: Inhibitor activation in aspartate carbamoyltransferase (ATCase). Activity curves
from E. coli ATCase are shown in the absence (blue circles) and the presence of allosteric
e�ectors, either the activator ATP (yellow squares) or the inhibitor CTP (green diamonds)
as a function of the competitive inhibitor N -(phosphonacetyl)-L-aspartate (PALA). Data
reproduced from Wales et al. and �t to an MWC model.9

The ATCase data in Figure 19 was taken from Escherichia coli .9 ATCase is an allosteric
enzyme with 6 active sites and 6 allosteric regulator sites. A competitive inhibitor PALA is
titrated, and the experiment is then repeated in the presence of the allosteric activator ATP
and the allosteric repressor CTP. Using our framework from section 2.6, the rate of product
formation equals

d[P ]

dt
= N [Etot]

e−β(εA−εI)kAcat
[S]

KA
M

(
1 + [S]

KA
M

+ [C]

CAD

)N−1

+ kIcat
[S]

KI
M

(
1 + [S]

KI
M

+ [C]

CID

)N−1

e−β(εA−εI)
(

1 + [S]

KA
M

+ [C]

CAD

)N
+
(

1 + [S]

KI
M

+ [C]

CID

)N (116)

where N = 6 is the number of active sites. The plot in Figure 19 shows relative activity,
which is de�ned as

relative activity =
d[P ]
dt(

d[P ]
dt

)
[C]→0

. (117)

All three curves were carried out at a substrate concentration [S] = 5mM of aspartate. In
the absence of allosteric e�ectors (blue curve), the best �t parameters were e−β(εA−εI) = 0.005,
KA
M = 1.1mM, KI

M = 1.8mM, kAcat = 400 s−1, kIcat = 0.02 s−1, CA
D = 0.3µM, and CI

D =
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1.8µM. As per the theoretical framework developed in section 2.3, an allosteric regulator

such as ATP or CTP can be modeled by changing e−β(εA−εI) → e−β(εA−εI)

(
1+

[R]

RA
D

1+
[R]

RI
D

)N

in

Eq (116). From,9 the concentrations of ATP (gold curve) and CTP (green curve) were
[R] = 2mM. Using the same MWC parameters as in the blue curve, the best �t parameters
for the allosteric activator ATP were RA

D = 0.07mM and RI
D = 0.10mM; the best �t

parameters for the allosteric inhibitor CTP were RA
D = 0.14mM and RI

D = 0.10mM.

C Data Collapse

In this section, we analyze the concept of data collapse, which allows us to map the result
of multiple activity curves onto a single curve using natural parameters of the system. In
section C.1, we start by reviewing the simplest case (presented in the main text) of an MWC
enzyme with one active site in the presence of a competitive inhibitor. We show that such
an enzyme admits a data collapse using a single parameter, so that all activity curves can be
collapsed onto a single curve. In section C.2, we next consider the simplest MWC enzyme
in the presence of an allosteric regulator, with one active site and one allosteric site. This
case requires two parameters for a data collapse, and we show the resulting collapse onto a
sheet. We end with a general discussion of data collapse theory in section C.3 which enables
us to extend these results to more complex enzymes (e.g. enzymes with more catalytic sites
in the presence of multiple species of allosteric regulators and competitive inhibitors).

C.1 Special Case: Enzyme with 1 Active Site and a Competitive

Inhibitor

We start with a recap of the data collapse (discussed in section 3.1) of an enzyme with a
single active site in the presence of a competitive inhibitor whose states and weights diagram
is redrawn in Figure 20. The activity A = 1

[Etot]
d[P ]
dt

for such an enzyme is given by

e-βεA 0 0e-βεI

kcat
A[S ]

KM
e-βεA A kcat

I[S ]
KM

e-βεI I

0 0[C ]
CD

e-βεA A
[C ]
CD

e-βεI I

STATE RATEWEIGHT STATE RATEWEIGHT

ACTIVE
STATES

INACTIVE
STATES

Figure 20: States and weights for an MWC enzyme with an allosteric regulator. Redrawn
from Figure 5 in the main text.
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A =
kAcate

−β∆ε [S]

KA
M

+ kIcat
[S]

KI
M

e−β∆ε
(

1 + [S]

KA
M

+ [C]

CAD

)
+
(

1 + [S]

KI
M

+ [C]

CID

) (118)

where e−β∆ε = e−β(εA−εI). Dividing the numerator and denominator by e−β∆ε
(

1 + [C]

CAD

)
+(

1 + [C]

CID

)
,

A =

kAcat

 e−β∆ε [S]

KA
M

e−β∆ε

(
1+

[C]

CA
D

)
+

(
1+

[C]

CI
D

)
+ kIcat

 [S]

KI
M

e−β∆ε

(
1+

[C]

CA
D

)
+

(
1+

[C]

CI
D

)


e−β∆ε [S]

KA
M

e−β∆ε

(
1+

[C]

CA
D

)
+

(
1+

[C]

CI
D

) +

[S]

KI
M

e−β∆ε

(
1+

[C]

CA
D

)
+

(
1+

[C]

CI
D

) + 1

=
kAcate

−β∆F13 + kIcate
−β∆F23

e−β∆F13 + e−β∆F23 + 1
(119)

where we have de�ned the two Bohr parameters,

∆F13 = − 1

β
Log

 e−β∆ε [S]

KA
M

e−β∆ε
(

1 + [C]

CAD

)
+
(

1 + [C]

CID

)
 (120)

∆F23 = − 1

β
Log

 [S]

KI
M

e−β∆ε
(

1 + [C]

CAD

)
+
(

1 + [C]

CID

)
 . (121)

Because both ∆F13 and ∆F23 have the exact same dependence on [S] and [C], we can
characterize the system by a single natural variable. For example, since

e−β∆F13 = e−β∆εK
I
M

KA
M

e−β∆F23 (122)

we can rewrite Eq (121) using only ∆F23,

A =
kAcate

−β∆ε K
I
M

KA
M
e−β∆F23 + kIcate

−β∆F23

e−β∆ε K
I
M

KA
M
e−β∆F23 + e−β∆F23 + 1

. (123)

For cleanliness, we can group the constants using

K ≡ e−β∆εK
I
M

KA
M

, (124)
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so that the activity becomes

A =

(
kAcatK + kIcat

)
e−β∆F23

(K + 1)e−β∆F23 + 1
, (125)

matching Eq (66) from the text. As discussed in the text, this form allows us to map any
number of activity curves onto a single curve of activity A versus the natural variable of the
system ∆F23. We redraw such a plot from the main text in Figure 21.
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Figure 21: Data from Li et al. showing the e�ects of a competitive inhibitor C on the rate of
product formation d[P ]

dt
. (A) Individual activity curves are shown at various concentrations

of the substrate α-maltotriosyl �uoride (αG3F).7 (B) Curves are all data collapsed onto a
single curve using the Bohr parameter ∆F23 from Eq (125).

C.2 Special Case: Enzyme with 1 Active Site and an Allosteric

Regulator

Consider an enzyme with one active site and one allosteric site in the presence of an allosteric
regulator. The states and weights for such an enzyme are redrawn in Figure 22. The activity
of such an enzyme is given by

A =
kAcate

−β∆ε [S]

KA
M

(
1 + [R]

RAD

)
+ kIcat

[S]

KI
M

(
1 + [R]

RID

)
e−β∆ε

(
1 + [S]

KA
M

)(
1 + [R]

RAD

)
+
(

1 + [S]

KI
M

)(
1 + [R]

RID

) . (126)

where e−β∆ε = e−β(εA−εI). We rewrite the numerator as

A =
A1e

−β∆ε [S]

KA
M

(
1 + [R]

RAD

)
+ A2

[S]

KI
M

(
1 + [R]

RID

)
e−β∆ε

(
1 + [S]

KA
M

)(
1 + [R]

RAD

)
+
(

1 + [S]

KI
M

)(
1 + [R]

RID

) (127)
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Figure 22: States and weights for an MWC enzyme with a competitive inhibitor. Redrawn
from Figure 7 in the main text.

where

A1 = kAcat (128)

A2 = kIcat. (129)

Dividing the numerator and denominator by
(

1 + [R]

RAD

)
+
(

1 + [R]

RID

)
, we can rewrite the

activity using four natural variables,

A =
A1e

−β∆F13 + A2e
−β∆F23

e−β∆F13 + e−β∆F23 + 1
(130)

where

∆F13 = − 1

β
Log

 e−β∆ε [S]

KA
M

(
1 + [R]

RAD

)
e−β∆ε

(
1 + [R]

RAD

)
+
(

1 + [R]

RID

)
 (131)

∆F23 = − 1

β
Log

 [S]

KI
M

(
1 + [R]

RID

)
e−β∆ε

(
1 + [R]

RAD

)
+
(

1 + [R]

RID

)
 . (132)

In this case, the two natural variables have a fundamentally di�erent dependence on [R] and
hence cannot be combined as in the case of a competitive inhibitor. With two parameters,
any number of activity curves can be collapsed down upon a surface as shown in Figure 23.
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Figure 23: Data from Feller et al. demonstrating the rate of product formation d[P ]
dt

in
the presence of an allosteric activator NaCl. (A) Individual activity curves of α-amylase
are shown at various concentrations of a substrate analog (EPS).6 Curves reproduced from

Figure 10 in main text but with the y-axis showing d[P ]
dt

rather than [S]
d[P ]/dt

. (B) Curves are

all data collapsed onto a surface using the Bohr parameters ∆F13 and ∆F23 from Eqs (131)
and (132).

C.3 General Theory

We now abstract the procedure used in the previous sections in order to understand how to
obtain a data collapse for any enzyme system. Suppose we enumerate all of the states and
weights of an enzyme, and that all of the states pooled together only have three distinct
catalytic rates A1, A2, and A3. (It is straightforward to generalize this argument to any
number other than three.)

De�ne S1, S2, and S3 to be the states that have catalytic rates A1, A2, and A3. Then
the activity of the enzyme is given by

A =
A1

∑
j∈S1

e−βEj + A2

∑
j∈S2

e−βEj + A3

∑
j∈S3

e−βEj∑
j∈S1

e−βEj +
∑

j∈S2
e−βEj +

∑
j∈S3

e−βEj
. (133)

De�ning the free energies

e−βF1 ≡
∑
j∈S1

e−βEj (134)

e−βF2 ≡
∑
j∈S2

e−βEj (135)

e−βF3 ≡
∑
j∈S3

e−βEj (136)
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allows us to rewrite the activity as

A =
A1e

−βF1 + A2e
−βF2 + A3e

−βF3

e−βF1 + e−βF2 + e−βF3

=
A1e

−β∆F13 + A2e
−β∆F23 + A3

e−β∆F13 + e−β∆F23 + 1
(137)

where ∆F13 ≡ F1 − F3 and ∆F23 ≡ F2 − F3 are the two minimal parameters de�ning the
system. Here, we see explicitly that each Bohr parameter corresponds to a free energy
di�erence between combinations of states with the same activity (hence the notation ∆F ).

For example, in section C.1 above, the activity of an enzyme with one active site in the
presence of a competitive inhibitor is given by

A =
kAcate

−β∆ε [S]

KA
M

+ kIcat
[S]

KI
M

e−β∆ε
(

1 + [S]

KA
M

+ [C]

CAD

)
+
(

1 + [S]

KI
M

+ [C]

CID

) . (138)

To match the form of Eq (137), we rewrite this equation as

A =
kAcat

(
e−β∆ε [S]

KA
M

)
+ kIcat

(
[S]

KI
M

)
+ 0

(
e−β∆ε

{
1 + [C]

CAD

}
+
{

1 + [C]

CID

})
e−β∆ε

(
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KA
M

+ [C]

CAD

)
+
(
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KI
M

+ [C]

CID

) , (139)

with A1 = kAcat, A1 = kIcat, and A3 = 0. Dividing the numerator and denominator by

e−β∆ε
(

1 + [C]

CAD

)
+
(

1 + [C]

CID

)
yields the data collapse equation
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=
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(140)

with the two Bohr parameters

∆F13 = − 1

β
Log

 e−β∆ε [S]
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e−β∆ε
(

1 + [C]
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)
+
(
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 (141)

∆F23 = − 1

β
Log

 [S]
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e−β∆ε
(

1 + [C]
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)
+
(

1 + [C]
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)
 . (142)
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D Inhibitor Acceleration: ATCase

This section will examine the phenomenon of inhibitor acceleration. The analysis will closely
follow section 3.2 in the text. We �rst demonstrate that inhibitor acceleration (having a peak
in activity as a function of competitive inhibitor concentration) cannot occur for any enzyme
with one active site and then show that it can occur for an MWC enzyme with two (or more)
active sites.

D.1 Inhibitor Acceleration Does Not Occur for an Enzyme with

One Active Site

Consider an enzyme with a single active site in the presence of a competitive inhibitor, as in
Figure 7. We start by rewriting the activity for such an enzyme from Eq (50),

A =
1

[Etot]

d[P ]

dt
=

kAcate
−βεA [S]

KA
M

+ kIcate
−βεI [S]

KI
M

e−βεA
(

1 + [S]

KA
M

+ [C]

CAD

)
+ e−βεI

(
1 + [S]

KI
M

+ [C]

CID

) . (143)

The derivative of activity with respect to inhibitor concentration [C] is given by

dA

d[C]
= −

(
e−βεA 1

CAD
+ e−βεI 1

CID

)(
e−βεA

kAcat
KA
M

+ e−βεI
kIcat
KI
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)
[S](

e−βεA
(

1 + [S]

KA
M

+ [C]

CAD

)
+ e−βεI

(
1 + [S]

KI
M

+ [C]

CID

))2 . (144)

Since the numerator cannot equal zero for any value of [C], a peak cannot occur when
the competitive inhibitor is added. Instead, dA

d[C]
is negative, indicating that adding more

competitive inhibitor will decrease the activity, as is typically expected from an inhibitor.

D.2 Inhibitor Acceleration for an Enzyme with Two Active Sites
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Figure 24: The activity of aspartate carbamoyltransferase (ATCase) exhibits a peak. Re-
produced from Figure 19.

Some allosteric enzymes exhibit an increase in activity when a small amount of compet-
itive inhibitor C is introduced, as shown in Figure 24. The simplest enzyme model which
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allows such a peak has two substrate binding sites and includes allostery. For simplicity, we
work in the limit kIcat = 0. Combining the results from sections 2.4 and 2.5, the activity for
such an enzyme is given by

A = kAcate
−βεA

2 [S]

KA
M

(
1 + [C]

CAD
+ [S]

KA
M

)
e−βεA

(
1 + [S]

KA
M

+ [C]

CAD

)2

+ e−βεI
(

1 + [S]

KI
M

+ [C]

CID

)2 . (145)

A peak will occur provided that dA
d[C]

= 0 for a positive value of [C]. For now, we skip the

details of solving such a root (discussed in Appendix E.2) and move straight to the results.
Eq (145) will have a positive root for [C] provided the following relation holds,

e−β(εA−εI) <

1 + [S]

KI
M

1 + [S]

KA
M

2

− 2
CA
D

CI
D

1 + [S]

KI
M

1 + [S]

KA
M

(kIcat = 0). (146)

Acceleration by an inhibitor has historically been explained by a competitive inhibitor
binding to one active site of an enzyme, forcing it into the active state.10 This is indeed part
of the story. Consider an enzyme that natively favors the inactive state when no inhibitor
is present, as shown in the [C] � CA

D region of Figure 25. As [C] increases, many enzymes
will bind inhibitor in one active site, leaving the remaining active site free to bind substrate.
If the inhibitor favors binding to the active-state enzyme, the ratio of active to inactive
enzymes will increase which will generate a peak in activity. When [C]� CA

D, the inhibitor
will �ll nearly all active sites and quash product formation. This story suggests that having

a smaller
CAD
CID

value (i.e. having an inhibitor which strongly prefers binding to an active-state

enzyme) will increase the likelihood of generating a peak. This is con�rmed by the peak

condition Eq (146) where decreasing
CAD
CID

increases the right-hand side of the inequality.

However, the complete story behind activation by inhibitor is more nuanced. To gain

some intuition, we �rst consider the limit
CAD
CID
≈ 0 where the inhibitor binds exclusively to the

active rather than the inactive state. This limit maximizes the right-hand side of Eq (146)
which we can rewrite as

e−βεA
(

1 +
[S]

KA
M

)2

< e−βεI
(

1 +
[S]

KI
M

)2

(kIcat = 0,
CA
D

CI
D

= 0). (147)

This inequality tells us about the nature of the enzyme. Let us return momentarily to the
states and weights of an allosteric enzyme with two substrate binding sites in the absence of
competitive inhibitor which we reproduce here in Figure 26. The total weights of the enzyme
being in any active state is given by the sum of the weights in the left column,

wA = e−βεA + e−βεA
[S]

KA
M

+ e−βεA
[S]

KA
M

+ e−βεA
(

[S]

KA
M

)2

= e−βεA
(

1 +
[S]

KA
M

)2

. (148)
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Figure 25: Mechanism underlying peak in activation by a competitive inhibitor C. At low
inhibitor concentrations, [C] � CA

D, most enzymes are in the inactive form (sharp, green).
As the amount of inhibitor increases, it will begin to compete with the substrate for active
sites. At medium concentrations, [C] � CA

D, some enzymes will have one site �lled with
a competitive inhibitor which prefers to bind in an active-state (rounded, green) enzyme
complex. This increased probability of having active-state enzyme-substrate complexes (al-
beit with one enzyme site �lled with an inhibitor) yields a larger activity compared to the
low inhibitor concentrations. At large inhibitor concentrations, [C] � CA

D, the inhibitor
outcompetes the substrate for active sites and enzyme activity is suppressed.

2kcat
A

kcat
A

e-βεA 0

kcat
I

e-βεI

[S ]
KM

e-βεI I

0

kcat
A e-βεI

[S ]
KM

I

[S ]
KM

e-βεI I

2

( (

kcat
I

2kcat
I

[S ]
KM

e-βεA A

e-βεA
[S ]
KM

A

[S ]
KM

e-βεA A

2

( (

STATE RATEWEIGHTSTATE RATEWEIGHT

ACTIVE
STATES

INACTIVE
STATES

Figure 26: States and weights for an MWC enzyme with two substrate binding sites. Re-
produced from Figure 9.

Similarly, the total weight of the enzyme being in any inactive state is given by

wI = e−βεI + e−βεI
[S]

KI
M

+ e−βεI
[S]

KI
M

+ e−βεI
(

[S]

KI
M

)2

= e−βεI
(

1 +
[S]

KI
M

)2

. (149)

Therefore, the relation Eq (147) states that the total weight of the active states is smaller
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than the total weight of the inactive states, wA < wI , or equivalently that the enzyme (in
the absence of a competitive inhibitor) is more likely to be in an inactive state.

We now return to the more general case when
CAD
CID

> 0. Recall that as
CAD
CID

increases, so

does the relative a�nity of the competitive inhibitor to the inactive states over the active

states. We can rewrite the peak condition when
CAD
CID

> 0 from Eq (146) as

e−βεA
(

1 +
[S]

KA
M

)2

< e−βεI
(

1 +
[S]

KI
M

)2

−
{

2e−βεI
CA
D

CI
D

(
1 +

[S]

KI
M

)(
1 +

[S]

KA
M

)}
(kIcat = 0).

(150)

The term in curly braces {· · ·} on the right is positive and increases with
CAD
CID

. Compared to

the special case
CAD
CID

= 0 in Eq (147), an enzyme satisfying Eq (150) must favor the inactive

states over the active states to a greater extent. More formally, the maximal ratio wA
wI

of the

active state weights to inactive state weights that permits a peak decreases as
CAD
CID

increases.

Second, consider the limit CA
D = CI

D where the competitive inhibitor equally favors the
active and inactive states. According to Eq (146), a peak can still occur provided that

1 + e−β(εA−εI) <

 [S]

KA
M

1 + [S]

KA
M

2(
KA
M

KI
M

− 1

)2

(kIcat = 0, CA
D = CI

D). (151)

It may seem surprising that an inhibitor which binds equally well to the active and inactive
enzyme states can increase the amount of active state enzymes as per Figure 25. However,
Eq (147) shows that any enzyme that exhibits inhibitor acceleration must favor the inactive
states more in the absence of inhibitor. Relative to this pool of enzyme which are mostly in
the inactive states, the presence of an inhibitor with CA

D = CI
D will increase the fraction of

enzymes in the active states.
Finally, we consider the case where introducing a competitor keeps the same fraction

of enzymes in the active and inactive states, and we expect that this case cannot generate
a peak in activity. Drawing on the states and weights in Figure 7 (but recalling that our
enzyme has two active sites), the dissociation constants CA

D and CI
D of such a competitive

inhibitor must satisfy

e−βεA
(

1 + [S]

KA
M

+ [C]

CAD

)2

e−βεI
(

1 + [S]

KI
M

+ [C]

CID

)2 =
e−βεA

(
1 + [S]

KA
M

)2

e−βεI
(

1 + [S]

KI
M

)2 . (152)

The only solution to this equation occurs when

CA
D

CI
D

=
1 + [S]

KI
M

1 + [S]

KA
M

, (153)

which upon substitution into Eq (146) yields the expected result that a peak cannot occur
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when the competitive inhibitor does not change the balance between the active and inactive

states. One might expect that for all values of
CAD
CID

smaller than this (where the inhibitor does

push more enzymes into the active state), a peak could occur. However, Eq (146) indicates
that a can only occur provided that a stronger constraint holds, namely

2
CA
D

CI
D

<
1 + [S]

KI
M

1 + [S]

KA
M

. (154)
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Figure 27: Peak in enzyme activity A = 1
Etot

d[P ]
dt

as a function of competitive inhibitor concen-
tration [C]. As shown in Figure 12B, with Michaelis-Menten kinetics adding a competitive
inhibitor can only slow down activity, but an MWC enzyme can be activated by an inhibitor
which results in a peak. Peak are shown for (A) small and (B) large ratios of the enzyme's
energy in the active versus inactive state, e−β(εA−εI). As in the case of substrate inhibition,
the height of the peak increases with e−β(εA−εI). The activity is computed from Eq (145)

using the parameters [S]

KA
M

= 10,
CAD
CID

= 10−2, the parameters from Figure 13, and the di�erent

values of e−β(εA−εI) shown. As predicted by Eq (146), for the parameters chosen every value
in the range e−β(εA−εI) < 65 will yield a peak in activity.

Having analyzed these speci�c cases, we now turn to some general characteristics of this
peak. Having calculated the concentration [C]0 in Appendix E.2 where the peak occurs, it
is straightforward to compute the maximum height of the activity curve,

Apeak = kAcat
[S]

KA
M

(√(
CAD
CID

)2

+ e−β(εA−εI) − CAD
CID

)
(

1 + [S]

KI
M

)
− CAD

CID

(
1 + [S]

KA
M

) . (155)

Substituting in the peak condition Eq (146) we obtain

Apeak < kAcat

[S]

KA
M

1 + [S]

KA
M

. (156)

S24



The enzyme can approach the maximum possible activity kAcat in the limit 1 � [S]

KA
M

when

the active state enzyme dominates, analogous to the result for substrate inhibition Eq (73).
We can also compare the peak height to the activity when no inhibitor is present,

A[C]→0 = 2kAcat

e−β(εA−εI)
(

[S]

KA
M

+ [S]

KA
M

2
)

e−β(εA−εI)
(

1 + [S]

KA
M

)2

+
(

1 + [S]

KI
M

)2 . (157)

Examples of such peaks are shown in Figure 27. As in the case of substrate inhibition, the
peak height Apeak monotonically increases and the relative peak height

Apeak
A[C]→0

monotonically

decreases with the energy di�erence between the active and inactive state, e−β(εA−εI).
The enzyme ATCase o�ers an example of inhibitor acceleration. ATCase is an allosteric

enzyme with 6 active sites and 6 regulatory sites.11 In the absence of ligand, ATCase exists
in an equilibrium between the unbound active and unbound inactive states, the latter be-
ing more energetically favorable.12 When the inhibitor PALA binds to ATCase, it strongly
induces a transition from inactive to active state,13 in line with our theoretical prediction.
It has been shown that by adding allosteric regulators, the peak in ATCase activity can be
increased or prevented altogether.9 It would be interesting to undertake the converse exper-
iment and induce inhibitor activation in an enzyme that typically does not show a peak in
activity.

E Derivations

E.1 Substrate Inhibition

We now derive the general peak condition for substrate inhibition without the extra assump-
tion kIcat = 0 used in the text. Recall that we de�ne the active state of an enzyme as the
state with the greater catalytic rate so that kAcat > kIcat. We start by rewriting the full form
of the activity equation (70) from section 3.2.2,

A =
2kAcate

−βεA [S]

KA
M

(
1 + [S]

KA
M

)
+ 2kIcate

−βεI [S]

KI
M

(
1 + [S]

KI
M

)
e−βεA

(
1 + [S]

KA
M

)2

+ e−βεI
(

1 + [S]

KI
M

)2 , (158)

we derive the peak condition Eq (71). We de�ne the numerator and denominator of the
activity as

A ≡ ZS
Ztot

(159)

where, from states and weights in Figure 9,

ZS = 2kAcate
−βεA [S]

KA
M

(
1 +

[S]

KA
M

)
+ 2kIcate

−βεI [S]

KI
M

(
1 +

[S]

KI
M

)
(160)
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is the sum of all weights multiplied by their rate of product formation and

Ztot = e−βεA
(

1 +
[S]

KA
M

)2

+ e−βεI
(

1 +
[S]

KI
M

)2

(161)

is the sum of all weights. By varying the substrate concentration [S], we �nd a peak in the
activity A provided that

dA

d[S]
=

dZS
d[S]

Ztot − ZS dZtotd[S]

Z2
tot

= 0. (162)

Thus, a peak occurs if the numerator dZS
d[S]

Ztot−ZS dZtotd[S]
equals zero. Because ZS and Ztot are

quadratic in [S], the terms dZS
d[S]

Ztot and ZS
dZtot
d[S]

in the numerator are cubic in [S]. However,

the cubic terms exactly cancel each other, so that Eq (162) becomes a quadratic equation,

0 =
dZS
d[S]

Ztot − ZS
dZtot
d[S]

≡ 2
(
KA
MK

I
M

)4 (
a[S]2 + b[S] + c

)
, (163)

where we have pulled out the prefactor 2
(
KA
MK

I
M

)4
for convenience and

a =
(
e−βεA + e−βεI

)(e−βεAkAcat
(KA

M)
3 +

e−βεIkIcat

(KI
M)

3

)
(164)

−e−βεAe−βεI
(

1

KA
M

− 1

KI
M

)2(
kAcat
KA
M

+
kIcat
KI
M

)
(165)

b = 2
(
e−βεA + e−βεI

)(e−βεAkAcat
(KA

M)
2 +

e−βεIkIcat

(KI
M)

2

)
(166)

c =
(
e−βεA + e−βεI

)(e−βεAkAcat
KA
M

+
e−βεIkIcat
KI
M

)
. (167)

The roots of this equation are given by

[S]0 =
−b±

√
b2 − 4ac

2a
. (168)

Since b, c > 0, there will only be a positive real root [S]0 > 0 if

a < 0. (169)

Writing this inequality out as

(
e−βεA + e−βεI

)(e−βεAkAcat
(KA

M)
3 +

e−βεIkIcat

(KI
M)

3

)
< e−βεAe−βεI

(
1

KI
M

− 1

KA
M

)2(
kAcat
KA
M

+
kIcat
KI
M

)
,

(170)
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we multiply by
(KA

M)
3

e−βεAe−βεI kIcat
to obtain

(
1 +

e−βεA

e−βεI

)(
kAcat
kIcat

+
e−βεI

e−βεA

(
KA
M

KI
M

)3
)
<

(
KA
M

KI
M

− 1

)2(
kAcat
kIcat

+
KA
M

KI
M

)
(171)

and move the
kAcat
kIcat

terms to one side,

(
KA
M

KI
M

)3
((

1 +
e−βεI

e−βεA

)
−
(
KI
M

KA
M

− 1

)2
)
<
kAcat
kIcat

((
KA
M

KI
M

− 1

)2

−
(

1 +
e−βεA

e−βεI

))
. (172)

There are now two cases to consider. If the term on the right hand side is positive,

1 +
e−βεA

e−βεI
<

(
KA
M

KI
M

− 1

)2

, (173)

then we can divide by this term on both sides to obtain the peak condition

−

(
1 + e−βεI

e−βεA

)
−
(
KI
M

KA
M
− 1
)2

(
1 + e−βεA

e−βεI

)
−
(
KA
M

KI
M
− 1
)2

(
KA
M

KI
M

)3

<
kAcat
kIcat

. (174)

On the other hand, if the term on the right-hand side of Eq (172) is negative, then the term
on the left-hand side must also be negative,

1 +
e−βεA

e−βεI
>

(
KA
M

KI
M

− 1

)2

(175)

1 +
e−βεI

e−βεA
<

(
KI
M

KA
M

− 1

)2

, (176)

and because e−βεA , e−βεI , KA
M , K

I
M > 0 this implies

0 <
KA
M

KI
M

<
1

2
. (177)

Solving Eq (172) for
kAcat
kIcat

(and �ipping the sign of the inequality because of Eq (175)) yields

the relation

−

(
1 + e−βεI

e−βεA

)
−
(
KI
M

KA
M
− 1
)2

(
1 + e−βεA

e−βεI

)
−
(
KA
M

KI
M
− 1
)2

(
KA
M

KI
M

)3

>
kAcat
kIcat

. (178)

Assuming Eq (177), the term on the left-hand side can be at most 1
2
, so that for an enzyme

that satis�es kAcat > kIcat Eq (178) can never be satis�ed. Hence, for a two substrate binding
site enzyme assuming kIcat < kAcat, a peak in activity as a function of substrate concentration
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[S] will occur if and only if (
1 +

e−βεA

e−βεI

)
<

(
KA
M

KI
M

− 1

)2

(179)

−
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1 + e−βεI

e−βεA
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(
KI
M
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M
− 1
)2

(
1 + e−βεA

e−βεI

)
−
(
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M

KI
M
− 1
)2

(
KA
M

KI
M

)3

<
kAcat
kIcat

. (180)

In the text, we assumed kIcat = 0 so that the second condition Eq (180) is automatically
satis�ed and Eq (179) became the only necessary condition for a peak. In the general case
when kIcat is not negligible, the second constraint Eq (180) ensures that the contribution of
product formation from the inactive state does not destroy the peak which would be formed
by the active states alone.

Activity curves that exhibit a peak with a non-zero kIcat value are shown in Figure 28.
Although these curves look very similar to those shown in Figure 13 for the case kIcat = 0,
one important di�erence is that given KA,I

M and kA,Icat values, there is now a lower bound for
e−β(εA−εI) given by the second peak condition Eq (180).
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Figure 28: Peak in enzyme activity A = 1
Etot

d[P ]
dt

as a function of substrate concentration [S].
As shown in Figure 12A, with Michaelis-Menten kinetics adding substrate can only increase
enzyme activity, but an MWC enzyme can exhibit a peak due to the interactions between
the active and inactive state. Peaks are shown for (A) small and (B) large ratios of the
enzyme's energy in the active versus inactive state, e−β(εA−εI). The activity is computed

from Eq (158) using the same parameter values from Figure 13 except that
kAcat
kIcat

= 103. The

curves with small e−β(εA−εI) values shown in (A) vary appreciably from those in Figure 13
(where kIcat = 0) because the inactive state catalyzes substrate. This changes both the shape
and the height of the activity curves.

It is straightforward to substitute the positive root for substrate concentration Eq (168)

S28



into the activity Eq (158) to �nd the height of the peak, resulting in

Apeak =

kIcatK
A
M − kAcatKI

M +

√(
1

e−βεI
+ 1

e−βεA

) (
e−βεI (kIcatK

A
M)

2
+ e−βεA (kAcatK

I
M)

2
)

KA
M −KI

M

. (181)

In the limit kIcat = 0 discussed in the text, this simpli�es to

Apeak = kAcat
KI
M

KA
M −KI

M

(√
1 +

e−βεA

e−βεI
− 1

)
. (182)

Lastly, we note that adding a �xed amount of competitive inhibitor [C] to a system may
induce a peak in activity as a function of substrate concentration [S], as shown in Figure 29.
In the language of the MWC model (Eqs (52)-(55) in the text), adding the inhibitor tunes
the MWC parameters so that the peak conditions Eqs (179) and (180) apply.
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Figure 29: Peaks in activity can be induced by a competitive inhibitor. Adding a competitive
inhibitor can induce a peak in activity d[P ]

dt
versus substrate concentration [S]. Curves are

shown for an enzyme with two active sites using the parameters
kAcat
kIcat

= 104,
KA
M

KI
M

= 104,

CAD
CID

= 10−1, and e−β(εA−εI) = 1
2
.

E.2 Inhibitor Acceleration

We now derive the peak condition for Inhibitor Acceleration discussed in Appendix D.2. For
an enzyme with two substrate binding sites and a competitive inhibitor C, enzyme activity
is given by

A = kAcat (2pEAS) + kAcat (2pEASC) + 2kAcat (pEAS2)

+ kIcat (2pEIS) + kIcat (2pEISC) + 2kIcat (pEIS2) . (183)
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Assuming kIcat = 0 for simplicity, this equation takes the form

A = 2kAcate
−βεA

[S]

KA
M

+ [S]

KA
M

[C]

CAD
+
(

[S]

KA
M

)2

e−βεA
(

1 + [S]

KA
M

+ [C]

CAD

)2

+ e−βεI
(

1 + [S]

KI
M

+ [C]

CID

)2

≡ 2kAcate
−βεA ZC

Ztot
(184)

where

ZC =
[S]

KA
M

+
[S]

KA
M

[C]

CA
D

+

(
[S]

KA
M

)2

(185)

Ztot = e−βεA
(

1 +
[S]

KA
M

+
[C]

CA
D

)2

+ e−βεI
(

1 +
[S]

KI
M

+
[C]

CI
D

)2

. (186)

A peak in activity will occur provided that

dA

d[C]
= 2kAcate

−βεA
dZC
d[C]

Ztot − ZC dZtotd[C]

Z2
tot

= 0, (187)

or equivalently that the numerator dZC
d[C]

Ztot − ZC dZtotd[C]
equals zero. We can rewrite the nu-

merator as

0 =
dZC
d[C]

Ztot − ZC
dZtot
d[C]

≡ [S]

KA
M

(
a[C]2 + b[C] + c

)
(188)

where

a = − 1

CA
D

(
e−βεA

(CA
D)

2 +
e−βεI

(CI
D)

2

)
(189)

b = −2

(
e−βεA

(CA
D)

2 +
e−βεI

(CI
D)

2

)(
1 +

[S]

KA
M

)
[C] (190)

c =
e−βεI

CA
D

(
1 +

[S]

KI
M

)2

− e−βεA

CA
D

(
1 +

[S]

KA
M

)2

− 2
e−βεI

CI
D

(
1 +

[S]

KA
M

)(
1 +

[S]

KI
M

)
. (191)

The roots of this equation are given by

[C]0 =
−b±

√
b2 − 4ac

2a
. (192)

Since a, b < 0, there will only be a positive real root [C]0 > 0 if

c > 0. (193)
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Therefore, the peak condition can be written as

2
CA
D

CI
D

(
1 +

[S]
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)(
1 +

[S]

KI
M

)
<

(
1 +

[S]

KI
M
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− e−βεA

e−βεI

(
1 +

[S]
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M

)2

(194)

or equivalently,

e−βεA

e−βεI
<

1 + [S]

KI
M

1 + [S]

KA
M

2

− 2
CA
D

CI
D

1 + [S]

KI
M

1 + [S]

KA
M

(195)

which matches Eq (146), as desired.

E.3 Michaelis-Menten Enzymes Do Not Exhibit Peaks

In this section, we show that a Michaelis-Menten enzyme with an arbitrary number of sub-
strate binding sites cannot exhibit substrate inhibition nor inhibitor acceleration. This im-
plies that the interplay between the active and inactive MWC states were necessary to
produce the peaks in activity discussed in section 3.2.2 and Appendix D.2.

Consider a Michaelis-Menten enzyme with N binding sites where either a substrate S
or a competitive inhibitor C can bind. Using the general formulation from section 2.6, we
will assume that the enzyme only has an active state and drop the A superscripts. Each
binding site can be either be empty, occupied by substrate, or occupied by competitor, which
would contribute a factor of 1, [S]

KM
, or [C]

CD
, respectively, to its weight. A state with j bound

substrates forms product at a rate of jkcat. Therefore, the activity A = 1
Etot

d[P ]
dt

equals

A =

∑N
j=0

∑N−j
k=0 (jkcat)

N !
j!k!(N−j−k)!

(
[S]
KM

)j (
[C]
CD

)k
(

1 + [S]
KM

+ [C]
CD

)N
=Nkcat

[S]
KM

(
1 + [C]

CD
+ [S]

KM

)N−1

(
1 + [S]

KM
+ [C]

CD

)N
=Nkcat

[S]
KM

1 + [S]
KM

+ [C]
CD

. (196)

Taking the derivative of the activity with respect to the substrate concentration [S] and the
inhibitor concentration [C],

dA

d[S]
=
Nkcat
KM

1 + [C]
CD(

1 + [S]
KM

+ [C]
CD

)2 (197)
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and
dA

d[C]
= −Nkcat

CD

[S]
KM(

1 + [S]
KM

+ [C]
CD

)2 , (198)

we �nd that neither derivative can be zero. Therefore, inhibitor acceleration cannot occur
for a non-MWC enzyme.
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