1		Supplementary Information
2		The Conjugative Relaxase TrwC Promotes Integration of Foreign DNA in the
3		Human Genome
4		
5		Coral González-Prieto, Richard Gabriel, Christoph Dehio, Manfred Schmidt, and
6		Matxalen Llosa
7		
8		Contents:
9	•	Supplementary Materials and Methods: LAM-PCR primers
10	•	Supplementary Table S1: Transient and permanent expression of the transferred
11		DNA.
12	•	Supplementary Figure S1: Annealing of LAM-PCR primers
13	•	Supplementary Figure S2: Analysis of HeLa::oriT cell line
14	•	Supplementary Figure S3: PCR amplification of trwA and trwC
15	•	Supplementary Figure S4: GFP expression in G418-resistant cell pools
16		

SUPPLEMENTARY MATERIALS AND METHODS

LAM-PCR primers. Primers were designed as described in (1). Table 2 and Fig. S1
show the details of the primers used and their annealing sites. The primers used to
obtain the linker cassette (LC1 and LC2) contain the proper restriction enzymes
overhang (RO) and a barcode sequence (N). The linker cassette used for each sample
has a different barcode sequence, to label it and allow the parallel sequencing of
different samples. Plasmid-specific primer for linear PCR (oriTI) was designed to align
around 120 nt 5' to the <i>nic</i> site and is 5'biotinylated. Two additional plasmid-specific
primers for first (oriTII; 5' biotinylated) and second (Mis-TrwC; unmodified)
exponential PCRs were designed to align between the oriTl primer and the plasmid
end. The plasmid-specific primer for second exponential PCR should hybridize at least
20 bp away from the plasmid end, leaving enough nucleotides to recognize true
integration events. For first and second exponential PCRs, two linker-specific primers
were also used, LCI and Mis-LC, respectively. Primers for second exponential PCR
contain adaptor sequences (PE-PCR 2/1.0) for the specific sequencing technology used
and plasmid-specific primer (Mis-TrwC) also contains an additional barcode sequence
(N). A different Mis-TrwC primer (with a different barcode sequence) was used for
amplification of each sample.

Table S1. Transient and permanent expression of the transferred DNA

	Infection (relaxase)				Transfection	
Cell line	None	TrwC	TrwC:BID	Mob:BID	scDNA	dsDNA
EA.hy926						
%GFP ⁺	0	1.52	1.95	0.15	nd	nd
$GFP^{^+}$	0	3.0x10 ⁵	3.9x10 ⁵	3.1x10 ⁴	nd	nd
Neo ^R	0	1,972	1,870	76	nd	nd
Neo ^R /cells	<5x10 ⁻⁸	1.9x10 ⁻⁴	2.3x10 ⁻⁴	9.7x10 ⁻⁶	nd	nd
Neo ^R /GFP ⁺	-	6.6x10 ⁻³	4.8x10 ⁻³	2.5x10 ⁻³	nd	nd
HeLa						
%GFP ⁺	0	0.33	0.33	0.11	6.81	1.28
$GFP^{\scriptscriptstyle +}$	0	6.5x10 ⁴	6.6x10 ⁴	2.2x10 ⁴	5.7x10 ⁴	1.3x10 ⁴
Neo ^R	0	3,428	3,682	102	66	54
Neo ^R /cells	<5x10 ⁻⁸	6.9x10 ⁻⁴	7.6x10 ⁻⁴	1.8x10 ⁻⁵	7.9x10 ⁻⁵	5.4x10 ⁻⁵
Neo ^R /GFP ⁺	-	5.3x10 ⁻²	5.6x10 ⁻²	4.6x10 ⁻³	1.2x10 ⁻³	4.2x10 ⁻³
HeLa::oriT						
%GFP ⁺	0	0.53	0.55	0.04	6.27	1.31
$GFP^{^{+}}$	0	1.1x10 ⁵	1.1x10 ⁵	8.0x10 ³	6.1x10 ⁴	1.1x10 ⁴
Neo ^R	0	5,542	6,158	39	73	34
Neo ^R /cells	<5x10 ⁻⁸	8.2x10 ⁻⁴	8.7x10 ⁻⁴	1.1x10 ⁻⁵	7.6x10 ⁻⁵	6.8x10 ⁻⁵
Neo ^R /GFP ⁺	-	5.0x10 ⁻²	5.6x10 ⁻²	4.9x10 ⁻³	1.2x10 ⁻³	3.1x10 ⁻³

DNA was introduced in the human cell lines indicated in each sub-heading, either by Bartonella T4SS-mediated transfer (Infection) or by plasmid transfection with either supercoiled (sc) or linearized (ds) DNA. Transfections were done with plasmid pCOR35 ($\Delta trwC$). The relaxase encoded by the mobilizable plasmid used in each infection is indicated on top of the Table. For each cell line, the percentage of GFP-positive cells is shown (%GFP $^+$) as well as the total number of GFP positive cells (GFP $^+$), calculated

based on the theoretical number of cells on a confluent plate. Neo^R, number of G418-resistant colonies obtained. Neo^R/cells, the same number divided by total number of cells in the plate. Neo^R /GFP⁺, rate of integration in GFP-positive cells. nd, not determined. Data represent the mean of at least 3 independent experiments.

SUPPLEMENTARY FIGURES

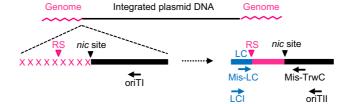


Figure S1. Annealing of LAM-PCR primers. A theoretical integration event is illustrated on the top of the Figure, with the integrated plasmid DNA represented in black and genomic DNA in pink. Below the two amplification steps are represented, a first linear amplification PCR (left) and a second exponential PCR (right). Oligonucleotide names and sequences are defined in the text and in Table S1. The linker cassette (LC) added in LAM-PCR is shown in blue. RS, restriction site. The annealing regions for primers used are indicated by arrows.

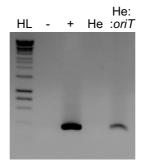
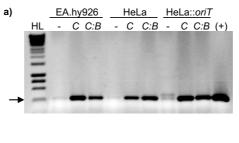



Figure S2. Analysis of HeLa::oriT cell line. PCR amplification of R388 oriT with oligonucleotides oriT1 and oriT330 (Table S1). Genomic DNA was extracted from unmodified HeLa (He) and from Hyg^R HeLa::oriT (He::oriT) transfected cell pool. HL, Hyperladder I. -, negative control (no DNA). +, positive control (pMTX708 plasmid DNA).

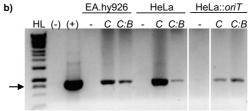


Figure S3. PCR amplification of *trwA* (a) and *trwC* (b). gDNA was extracted from the G418-resistant cell pools; the cell line is indicated in the top row. Primers used for amplification of *trwA* were Hind3_TrwA_F and BamHI_TrwA_R (Table S1), while *trwC* was amplified using primer Hind3_TrwC_F and 670_TrwC (Table S1). The arrows indicate the expected bands of 400 bp in a) and 800 bp in b). C, cell pools obtained after mobilization of *trwC*-encoding plasmid. C:B, pools obtained after mobilization of *trwC:BID* plasmid. -, uninfected cells. HL, Hyperladder I. (+), positive control (pHP161 plasmid DNA). (-), negative control (no DNA).

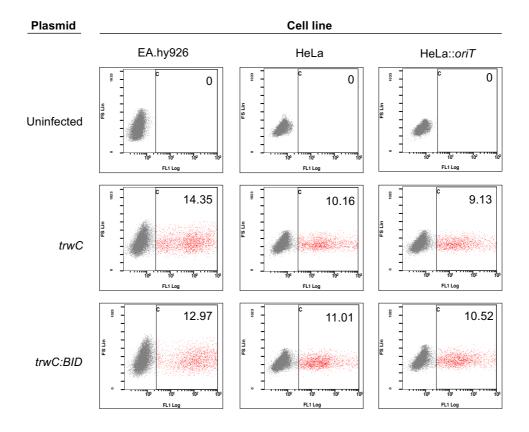


Figure S4. GFP expression in G418-resistant cell pools. Pools obtained after integration of both *trwC*- and *trwC:BID*-coding plasmids were analyzed by flow cytometry using uninfected cells as control. Plots represent cell granularity (FS Lin, in ordinates) versus GFP fluorescence intensity (FL1 Log, in abscissas). The square marks the population considered as positive, whose events are shown in red. The percentage of GFP positive cells is indicated in each plot. Although it is clearly detected, the percentage of GFP positive cells (10-15 %) was lower than expected. This phenomenon has been previously described and associated with the antibiotic treatment used to select the cells (2).

95		REFERENCES
96	1.	Paruzynski A, Arens A, Gabriel R, Bartholomae CC, Scholz S, Wang W, Wolf S,
97		Glimm H, Schmidt M, von Kalle C. 2010. Genome-wide high-throughput
98		integrome analyses by nrLAM-PCR and next-generation sequencing. Nat Protoc
99		5: 1379-1395.
100	2.	Kaufman WL, Kocman I, Agrawal V, Rahn HP, Besser D, Gossen M. 2008.
101		Homogeneity and persistence of transgene expression by omitting antibiotic
102		selection in cell line isolation. Nucleic Acids Res 36: e111.
103		
104		