Supplementary Information for

Structures and Thermodynamics of Water Encapsulated by Graphene

Shuping Jiao¹, Chuanhua Duan² and Zhiping Xu^{1,*}

¹Applied Mechanics Laboratory, Department of Engineering Mechanics, and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China

²Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA

*Email: <u>xuzp@tsinghua.edu.cn</u>

This Supplementary Information Material contains

• Supplementary Figures S1-S6, Table S1 and Captions

Supplementary Figures, Table and Captions

FIG. S1. Snapshots (top and side views) of simulated encapsulated water (EW) with N_W = 165 at (a) T = 400 K and (b) T = 450 K, in the 3D cover model.

FIG. S2. (a-c) Structure factors of mono-, bi- and tri-layer EW, with the number of water molecules $N_{\rm W} = 60$, 181, 354 at T = 300 K. (d) The *z*-direction density profile of 2D (half-cylindrical) EWs with mono-, bi- and tri-layer structures, at T = 300 K.

FIG. S3. Structure factors of monolayer EW ($N_W = 115$) at different temperature in the 3D (hemispheric) (a) and 2D (b) structure.

FIG. S4. (a) The atomistic model with intercalated water ($N_W = 115$) between two flat graphene sheets with an interlayer distance *d*, at 300 K. (b) The potential energy of intercalated water as a function of *d*, with a minimum at d = 0.64 nm. (c, d) The atomic structures and structure factor of the intercalated water structures at d = 0.64 nm, and T = 300 K.

FIG. S5. (a) The pressure in mono-, bi- and tri-layer EW structures ($N_W = 115$, T = 300 K) under 3D graphene cover, calculated using the Lennard-Jones potential parameter ε and several modified values (0.25ε , 0.5ε , 0.75ε , 1.2ε , 1.5ε). The reference value ε is parametrized by fitting the water contact angle (WCA) of graphene to 98°. The WCAs for 1.2ε is 75°. (b) Atomic structures of monolayer EWs predicted by these modified values of ε ($N_W = 115$, T = 300 K).

FIG. S6. Snapshots of monolayer EWs confined between graphene and (a) silica and (b) h-BN (c) copper substrate ($N_W = 115$, T = 300 K) in the 3D cover model. The forcefield parameters, including atomic charges and interatomic interaction parameters, are taken from Refs.¹⁻⁴

Atom	σ (Kcal/mol)	ε (Å)	Atomic charge (e)
Si	0	3.302	2.1
BO ¹ (in SiO ₂)	0.15533	3.166	-1.05
SO ² (in SiO ₂)	0.15533	3.166	-0.95
H (in SiO ₂)	0	0	0.425
В	0.09486	3.453	0.93
Ν	0.14477	3.365	-0.93
Cu	3.85	2.314	0

Table S1. Lennard-Jones and atomic-charge parameters used for SiO_2 , BN, Cu substrates for the results summarized in **Fig. S6**.¹⁻⁴

¹BO: bridge oxygen atoms in SiO₂, ²SO: oxygen atoms in the surface hydroxyl of silica. Lorentz-Berthelot mixing rules are used for atomic pairs between different species.

References

- Dutta, R. C., Khan, S. & Singh, J. K. Wetting transition of water on graphite and boron-nitride surfaces: A molecular dynamics study. Fluid Phase Equilib. 302, 310-315 (2011).
- 2 Ho, T. A. et al. Interfacial water on crystalline silica: a comparative molecular dynamics simulation study. Mol.Simul. 37, 172-195 (2011).
- 3 Li, H. & Zeng, X. C. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets. ACS Nano 6, 2401-2409 (2012).
- Wang, Y. & Xu, Z. Water Intercalation for Seamless, Electrically Insulating, and Thermally Transparent Interfaces. ACS Appl. Mater. Interfaces 8, 1970-1976 (2016).