Supplementary Information for

Glutamate 52- β at the α/β Subunit Interface of *E. coli* Class Ia Ribonucleotide Reductase is essential for Conformational Gating of Radical Transfer

Qinghui Lin1,*, Mackenzie J. Parker2,*, Alexander T. Taguchi2,*, Kanchana Ravichandran² , Albert Kim² , Gyunghoog Kang 2 , Jimin Shao¹ , Catherine L. Drennan2,3,4,# , JoAnne Stubbe2,3,#

From ¹Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China, the Departments of ²Chemistry, ³Biology, and ⁴Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Running title: Importance of Glutamate 52 in β of Class Ia RNR

To whom correspondence should be addressed:

Catherine L. Drennan, Depts. of Biology and Chemistry, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. Tel.: 617-253-5622; Fax: 617-258-7847; E-mail: cdrennan@mit.edu

JoAnne Stubbe, Depts. of Chemistry and Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. Tel.: 617-253-1814; Fax: 617-324-0505; E-mail: [stubbe@mit.edu.](mailto:stubbe@mit.edu)

Contents

Table S1 Primers and plasmids utilized in this study.

Figure S1 Quality analysis of the proteins by 10% SDS-PAGE.

Figure S2 A putative H-bonding network in the *E. coli* class Ia RNRs linking the S-site in α 2 with the diferric-Y• cofactor in β 2 that may form a part of the triggering mechanism for radical initiation of nucleotide reduction.

Figure S3 A putative role for R639 in *E. coli* RNR.

Plasmid	Gene product	Template	Primer	Sequence
$pTB2-nrdB-GCA52$	$E_{52}A - \beta 2$	$pTB2-nrdB(1)$	Fw	CTGGCGTCCGAAGCAGTTGACGTCT
			Rv	GCGGGAGACGTCAACTGCTTCCGGA
$pTB2-nrdB-GAT_{52}$	$E_{52}D - \beta 2$	$pTB2-nrdB(1)$	Fw	CTGGCGTCCGAAGATGTTGACGTCT
			Rv	GCGGGAGACGTCAACATCTTCCGGA
$pTB2-nrdB-CAA52$	$E_{52}Q - \beta 2$	$pTB2-nrdB(1)$	Fw	CTGGCGTCCGAACAAGTTGACGTCT
			Rv	GCGGGAGACGTCAACTTGTTCCGGA
$pBAD$ -nrdB-CAA ₅₂ TAG ₁₂₂	$E_{52}Q/F_{3}Y_{122}$ - β 2	$pBAD\text{-}nrdB\text{-}TAG_{122}(2)$	Fw	CTGGCGTCCGAACAAGTTGACGTCT
			Rv	GCGGGAGACGTCAACTTGTTCCGGA
$pET28a-nrdA-GCT_{329}$	$R_{329}A - \beta 2$	$pET28a-nrdA(3)$	Fw	GTGTGGAAGGCAACGCTGTGCGTCATATGGAC
			Rv	GTCCATATGACGCACAGCGTTGCCTTCCACAC
pET28a-nrdA-AAG ₃₂₉	$R_{329}K-\alpha$ 2	$pET28a-nrdA(3)$	Fw	GTGTGGAAGGCAACAAGGTGCGTCATATGGAC
			Rv	GTCCATATGACGCACCTTGTTGCCTTCCACAC
pET28a-nrdA-CAG ₃₂₉	$R_{329}Q-\alpha$ 2	$pET28a-nrdA(3)$	Fw	GTGTGGAAGGCAACCAGGTGCGTCATATGGAC
			Rv	GTCCATATGACGCACCTGGTTGCCTTCCACAC
pET28a-nrdA-AAG ₃₂₃	$R_{323}K-\alpha$ 2	$pET28a-nrdA(3)$	Fw	CTGGTGTTGAAAAACAACAAGGGTGTGGAAGGCAACCG
			Rv	CGGTTGCCTTCCACACCCTTGTTGTTTTTCAACACCAG
$pET28a-nrdA-CAG639$	$R_{639}Q$ - α 2	$pET28a-nrdA(3)$	Fw	CGGTATTGAACCGCCGCAGGGTTACGTCAGCATC
			Rv	GATGCTGACGTAACCCTGCGGCGGTTCAATACCG
pET28a-nrdA-CAG ₇₃₅	$R_{735}Q-\alpha$ 2	$pET28a-nrdA(3)$	Fw	GTATTATCAGAACACCCAGGACGGCGCTGAAGAC
			Rv	GTCTTCAGCGCCGTCCTGGGTGTTCTGATAATAC
			Rv	GAAAAGATCTCTGGCCTGCTGCTCTTCCTTTCCTGTG

Table S1 Primers and plasmids utilized in this study.

Figure S1 Analysis of mutant protein purity by 10% SDS-PAGE. **(A)** The WT and mutants of β 2 of *E. coli* purified by DEAE fast flow anion exchange and Q-sepharose columns. **(B)** The WT and mutants of α 2 of *E. coli* purified by a Ni-NTA resin column.

Figure S2 A putative H-bonding network in the *E. coli* class Ia RNRs linking the S-site in α 2 with the diferric-Y• cofactor in β 2 that may form a part of the triggering mechanism for radical initiation of nucleotide reduction. **(A)** A docking model of the *E. coli* RNR (α 2 = PDB 4R1R in green and cyan ribbons; β 2 = PDB 1MXR in pink and purple ribbons) with the region containing the putative H-bonding network involved in RT at the subunit interface indicated by the dashed rectangle. GDP and TTP (shown as space-filling models) occupy the catalytic-sites (C-site) and specificity-sites (S-site), respectively, and are colored according to element (gray = C , blue = N, red = O, orange = P). **(B)** Stereo image showing putative locations of β residues E₅₂ (colored as described below) and W₄₈ (grey) and α residues R₃₂₃ (grey) and R₃₂₉ (grey) in the docking model. β is shown as pink, purple ribbons and α in cyan ribbons. A comparison of β 2 X-ray structures

reveals E₅₂ can adopt a range of conformations designated "in" (blue C atoms[\(4\)](#page-6-3)), "intermediate" (green C atoms[\(5\)](#page-6-4) [\(6\)](#page-6-5)), and "out" (yellow C atoms[\(7\)](#page-6-6)). In this docking model, the "out" conformation of E_{52} is close to loop 3 of α (cyan), which contains R₃₂₃ and R₃₂₉ suggesting a possible route for signal transmission between the RNR subunits. R₃₂₉ is highly conserved. **(C)** Stereo image of hydrogen bonding interactions within β . β is shown in grey ribbons with iron atoms shown in orange spheres. E_{52} in the "in" conformation hydrogen bonds to R_{236} via a water bridge (PDB ID code 1MXR). R₂₃₆ also makes through water contacts with residues that are linked by hydrogen-bonding to the di-iron site.

Figure S3 A putative role for R_{639} in *E. coli* RNR. (A) Overlay of *E. coli* α 2 structures in the substrate-free (PDB 4R1R, β-hairpin in blue) and substrate-bound (PDB 5CNV, β-hairpin in orange) state. Shown is the surface of α 2 that interacts with β 2 in the active complex. Upon binding of substrate and effector, the β -hairpin rotates in towards the middle of the 10-stranded barrel, presumably to help seal off the catalytic site from solvent during turnover. Loops 1 (magenta), 2 (yellow), and 3 (blue), are involved in S/e binding. Nucleotides are shown as space-filling models and colored according to element (gray = C, blue = N, red = O, orange = P). **(B)** Stereo image showing the conformational changes of R_{639} and the β-hairpin that occur during conversion of the substrate-free to substrate-bound states of α . In this view, the sidechain of R₆₃₉ rotates \sim 5° counterclockwise about the Cβ – Cα and \sim 47° counterclockwise about the Cδ – Cγ bonds to form hydrogen bonds with the backbone carbonyl of I⁶⁴⁴ and, thus, likely help hold the β-hairpin in the closed conformation. Atoms and bonds are shown as stick models and colored according to heteroatom.

References

- 1. Salowe, S. P., and Stubbe, J. (1986) Cloning, overproduction, and purification of the B2 subunit of ribonucleoside-diphosphate reductase. *J. Bacteriol.* **165**, 363-366
- 2. Yokoyama, K., Uhlin, U., and Stubbe, J. (2010) A hot oxidant, $3-NO_2Y_{122}$ radical, unmasks conformational gating in ribonucleotide reductase. *J. Am. Chem. Soc.* **132**, 15368-15379
- 3. Minnihan, E. C., Seyedsayamdost, M. R., Uhlin, U., and Stubbe, J. (2011) Kinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductases. *J. Am. Chem. Soc.* **133**, 9430-9440
- 4. Oyala, P. H., Ravichandran, K. R., Funk, M. A., Stucky, P., Stich, T. A., Drennan, C. L., Britt, R. D., and Stubbe, J. (2016) Biophysical characterization of fluorotyrosine probes site-specifically incorporated into enzymes: E. coli ribonucleotide reductase as an example. *J. Am. Chem. Soc.* **138**, 7951-7964
- 5. Assarsson, M., Andersson, M. E., Hogbom, M., Persson, B. O., Sahlin, M., Barra, A. L., Sjoberg, B. M., Nordlund, P., and Graslund, A. (2001) Restoring proper radical generation by azide binding to the iron site of the E238A mutant R2 protein of ribonucleotide reductase from Escherichia coli. *J Biol Chem* **276**, 26852-26859
- 6. Hogbom, M., Galander, M., Andersson, M., Kolberg, M., Hofbauer, W., Lassmann, G., Nordlund, P., and Lendzian, F. (2003) Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-A x-ray data. *Proc. Natl. Acad. Sci. U S A* **100**, 3209-3214
- 7. Tong, W., Burdi, D., Riggs-Gelasco, P., Chen, S., Edmondson, D., Huynh, B. H., Stubbe, J., Han, S., Arvai, A., and Tainer, J. (1998) Characterization of Y122F R2 of Escherichia coli ribonucleotide reductase by time-resolved physical biochemical methods and X-ray crystallography. *Biochemistry* **37**, 5840-5848