Supplementary Information for

Glutamate 52- β at the α/β Subunit Interface of *E. coli* Class Ia Ribonucleotide Reductase is essential for Conformational Gating of Radical Transfer

Qinghui Lin^{1,*}, Mackenzie J. Parker^{2,*}, Alexander T. Taguchi^{2,*}, Kanchana Ravichandran², Albert Kim², Gyunghoog Kang², Jimin Shao¹, Catherine L. Drennan^{2,3,4,#}, JoAnne Stubbe^{2,3,#}

From ¹Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou 310058, China, the Departments of ²Chemistry, ³Biology, and ⁴Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Running title: Importance of Glutamate 52 in β of Class Ia RNR

[#]To whom correspondence should be addressed:

Catherine L. Drennan, Depts. of Biology and Chemistry, Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. Tel.: 617-253-5622; Fax: 617-258-7847; E-mail: cdrennan@mit.edu

JoAnne Stubbe, Depts. of Chemistry and Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139. Tel.: 617-253-1814; Fax: 617-324-0505; E-mail: stubbe@mit.edu.

Contents

Table S1 Primers and plasmids utilized in this study.

Figure S1 Quality analysis of the proteins by 10% SDS-PAGE.

Figure S2 A putative H-bonding network in the *E. coli* class Ia RNRs linking the S-site in α 2 with the diferric-Y• cofactor in β 2 that may form a part of the triggering mechanism for radical initiation of nucleotide reduction.

Figure S3 A putative role for R639 in *E. coli* RNR.

Plasmid	Gene product	Template	Primer	Sequence
pTB2-nrdB-GCA52	E ₅₂ A-β2	pTB2- <i>nrdB</i> (1)	Fw	CTGGCGTCCGAA <u>GCA</u> GTTGACGTCT
			Rv	GCGGGAGACGTCAAC <u>TGC</u> TTCCGGA
pTB2-nrdB-GAT52	E ₅₂ D-β2	pTB2- <i>nrdB</i> (1)	Fw	CTGGCGTCCGAA <u>GAT</u> GTTGACGTCT
			Rv	GCGGGAGACGTCAAC <u>ATC</u> TTCCGGA
pTB2-nrdB-CAA ₅₂	E ₅₂ Q-β2	pTB2- <i>nrdB</i> (1)	Fw	CTGGCGTCCGAA <u>CAA</u> GTTGACGTCT
			Rv	GCGGGAGACGTCAAC <u>TTG</u> TTCCGGA
pBAD-nrdB-CAA ₅₂ TAG ₁₂₂	$E_{52}Q/F_3Y_{122}\bullet -\beta 2$	pBAD- <i>nrdB</i> -TAG ₁₂₂ (2)	Fw	CTGGCGTCCGAA <u>CAA</u> GTTGACGTCT
			Rv	GCGGGAGACGTCAAC <u>TTG</u> TTCCGGA
pET28a-nrdA-GCT ₃₂₉	R ₃₂₉ A-β2	pET28a- <i>nrdA</i> (3)	Fw	GTGTGGAAGGCAAC <u>GCT</u> GTGCGTCATATGGAC
			Rv	GTCCATATGACGCACAGCGTTGCCTTCCACAC
pET28a-nrdA-AAG329	R ₃₂₉ K-a2	pET28a-nrdA(3)	Fw	GTGTGGAAGGCAAC <u>AAG</u> GTGCGTCATATGGAC
			Rv	GTCCATATGACGCAC <u>CTT</u> GTTGCCTTCCACAC
pET28a-nrdA-CAG329	R ₃₂₉ Q-a2	pET28a- <i>nrdA</i> (3)	Fw	GTGTGGAAGGCAAC <u>CAG</u> GTGCGTCATATGGAC
			Rv	GTCCATATGACGCACCTGGTTGCCTTCCACAC
pET28a-nrdA-AAG ₃₂₃	R ₃₂₃ K-a2	pET28a-nrdA(3)	Fw	CTGGTGTTGAAAAACAACAACAAGGGTGTGGAAGGCAACCG
			Rv	CGGTTGCCTTCCACACC <u>CTT</u> GTTGTTTTTCAACACCAG
pET28a-nrdA-CAG ₆₃₉	R ₆₃₉ Q-a2	pET28a-nrdA(3)	Fw	CGGTATTGAACCGCCG <u>CAG</u> GGTTACGTCAGCATC
			Rv	GATGCTGACGTAACC <u>CTG</u> CGGCGGTTCAATACCG
pET28a-nrdA-CAG735	R ₇₃₅ Q-α2	pET28a- <i>nrdA</i> (3)	Fw	GTATTATCAGAACACC <u>CAG</u> GACGGCGCTGAAGAC
			Rv	GTCTTCAGCGCCGTC <u>CTG</u> GGTGTTCTGATAATAC
			Rv	GAAAAGATCTCTGGC <u>CTG</u> CTGCTCTTCCTTTCCTGTG

 Table S1 Primers and plasmids utilized in this study.

Figure S1 Analysis of mutant protein purity by 10% SDS-PAGE. (A) The WT and mutants of $\beta 2$ of *E. coli* purified by DEAE fast flow anion exchange and Q-sepharose columns. (B) The WT and mutants of $\alpha 2$ of *E. coli* purified by a Ni-NTA resin column.

Figure S2 A putative H-bonding network in the *E. coli* class Ia RNRs linking the S-site in $\alpha 2$ with the diferric-Y• cofactor in $\beta 2$ that may form a part of the triggering mechanism for radical initiation of nucleotide reduction. (A) A docking model of the *E. coli* RNR ($\alpha 2 =$ PDB 4R1R in green and cyan ribbons; $\beta 2 =$ PDB 1MXR in pink and purple ribbons) with the region containing the putative H-bonding network involved in RT at the subunit interface indicated by the dashed rectangle. GDP and TTP (shown as space-filling models) occupy the catalytic-sites (C-site) and specificity-sites (S-site), respectively, and are colored according to element (gray = C, blue = N, red = O, orange = P). (B) Stereo image showing putative locations of β residues E₅₂ (colored as described below) and W₄₈ (grey) and α residues R₃₂₃ (grey) and R₃₂₉ (grey) in the docking model. β is shown as pink, purple ribbons and α in cyan ribbons. A comparison of $\beta 2$ X-ray structures

reveals E_{52} can adopt a range of conformations designated "in" (blue C atoms(4)), "intermediate" (green C atoms(5) (6)), and "out" (yellow C atoms(7)). In this docking model, the "out" conformation of E_{52} is close to loop 3 of α (cyan), which contains R_{323} and R_{329} suggesting a possible route for signal transmission between the RNR subunits. R_{329} is highly conserved. (C) Stereo image of hydrogen bonding interactions within β . β is shown in grey ribbons with iron atoms shown in orange spheres. E_{52} in the "in" conformation hydrogen bonds to R_{236} via a water bridge (PDB ID code 1MXR). R_{236} also makes through water contacts with residues that are linked by hydrogen-bonding to the di-iron site.

Figure S3 A putative role for R₆₃₉ in *E. coli* RNR. (**A**) Overlay of *E. coli* α2 structures in the substrate-free (PDB 4R1R, β-hairpin in blue) and substrate-bound (PDB 5CNV, β-hairpin in orange) state. Shown is the surface of α2 that interacts with β2 in the active complex. Upon binding of substrate and effector, the β-hairpin rotates in towards the middle of the 10-stranded barrel, presumably to help seal off the catalytic site from solvent during turnover. Loops 1 (magenta), 2 (yellow), and 3 (blue), are involved in S/e binding. Nucleotides are shown as space-filling models and colored according to element (gray = C, blue = N, red = O, orange = P). (**B**) Stereo image showing the conformational changes of α . In this view, the sidechain of R₆₃₉ rotates ~5° counterclockwise about the Cβ – Cα and ~47° counterclockwise about the Cδ – Cγ bonds to form hydrogen bonds with the backbone carbonyl of I₆₄₄ and, thus, likely help hold the β-hairpin in the closed conformation.

References

- 1. Salowe, S. P., and Stubbe, J. (1986) Cloning, overproduction, and purification of the B2 subunit of ribonucleoside-diphosphate reductase. *J. Bacteriol.* **165**, 363-366
- 2. Yokoyama, K., Uhlin, U., and Stubbe, J. (2010) A hot oxidant, 3-NO₂Y₁₂₂ radical, unmasks conformational gating in ribonucleotide reductase. *J. Am. Chem. Soc.* **132**, 15368-15379
- Minnihan, E. C., Seyedsayamdost, M. R., Uhlin, U., and Stubbe, J. (2011) Kinetics of radical intermediate formation and deoxynucleotide production in 3-aminotyrosine-substituted Escherichia coli ribonucleotide reductases. *J. Am. Chem. Soc.* 133, 9430-9440
- Oyala, P. H., Ravichandran, K. R., Funk, M. A., Stucky, P., Stich, T. A., Drennan, C. L., Britt, R. D., and Stubbe, J. (2016) Biophysical characterization of fluorotyrosine probes site-specifically incorporated into enzymes: E. coli ribonucleotide reductase as an example. J. Am. Chem. Soc. 138, 7951-7964
- Assarsson, M., Andersson, M. E., Hogbom, M., Persson, B. O., Sahlin, M., Barra, A. L., Sjoberg, B. M., Nordlund, P., and Graslund, A. (2001) Restoring proper radical generation by azide binding to the iron site of the E238A mutant R2 protein of ribonucleotide reductase from Escherichia coli. *J Biol Chem* 276, 26852-26859
- Hogbom, M., Galander, M., Andersson, M., Kolberg, M., Hofbauer, W., Lassmann, G., Nordlund, P., and Lendzian, F. (2003) Displacement of the tyrosyl radical cofactor in ribonucleotide reductase obtained by single-crystal high-field EPR and 1.4-A x-ray data. *Proc. Natl. Acad. Sci. U S A* 100, 3209-3214
- Tong, W., Burdi, D., Riggs-Gelasco, P., Chen, S., Edmondson, D., Huynh, B. H., Stubbe, J., Han, S., Arvai, A., and Tainer, J. (1998) Characterization of Y122F R2 of Escherichia coli ribonucleotide reductase by time-resolved physical biochemical methods and X-ray crystallography. *Biochemistry* 37, 5840-5848