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A. An explicit epidemiological model 

Here we show how a specific epidemiological model for the evolution of antibiotic resistance 

under fluctuating rates of treatment can be linearized to give a simplified dynamics that is a 

special case of equation (3) in the main text. We assume the focal host population is part of a 

larger population. Uninfected and infected individuals immigrate into the focal population at 

a rate m, while individuals from the focal population emigrate at the same rate. We do not 

model explicitly the dynamics of resistance in other populations. The dynamics of individuals 

infected with strains 1 and 2 in the focal population reads: 

𝑌! = 𝛽! 𝑋 𝑌! − 𝑢! + 𝛼!,! 𝑌! +𝑚 𝑌!
!"# − 𝑌!  

𝑌! = 𝛽! 𝑋 𝑌! − 𝑢! + 𝛼!,! 𝑌! +𝑚 𝑌!
!"# − 𝑌!  

where the variables are X, the number of uninfected individuals, Y1, the number of infected 

with bacterial strain 1, and Y2, the number of infected with bacterial strain 2. We assume the 

bacteria population only includes these two strains. For example, strain 1 can be the bacteria 

resistant to penicillin, and strain 2 the bacteria sensitive to penicillin. For simplicity we will 

call these strains “resistant” and “sensitive”. The parameters are β1 and β2, the transmission 

rates, u1 and u2 the natural clearance rates. The rates 𝛼!,! and 𝛼!,! represent clearance by the 

various antibiotics prescribed in the population. Specifically, if n antibiotics are prescribed 

𝛼!,! = (1− 𝑓!,!,!)!
!!! 𝑎!,!, where 𝑓!,!,! is the frequency of resistance to antibiotic j within 

strain i, potentially evolving as well, and 𝑎!,! is the rate of prescription of antibiotic j. The 

model includes migration at a rate m, and 𝑌!
!"# and 𝑌!

!"# are the number of individuals of 

each strain migrating into the focal population. As we are interested in the frequency of 

resistance among infected individuals, we do not need to specify the exact dynamics of the 

number of uninfected. The frequency of resistance p evolves as 𝑝 = 𝑌!𝑌! − 𝑌!𝑌! /

𝑌!  +  𝑌! !. This yields: 



𝑝 = 𝑝 1 −  𝑝 𝑟!,! − 𝑟!,!  +𝑀 (𝑝!"#  −  𝑝) 

where 𝑟!,! = 𝑋 𝛽! − 𝑢! − 𝛼!,! for 𝑖 ∈ 1, 2  are the growth rates of the two strains. Generally 

it is assumed that resistance carries a cost in terms of the transmission or clearance rate, such 

that depending on antibiotic usage either the sensitive or the resistant type is more fit. The 

second term represents the impact of migration, proportional to 𝑀 = 𝑚 𝑌!
!"# + 𝑌!

!"# /

𝑌! + 𝑌! , and tends to bring the frequency of resistance towards the frequency 𝑝!"# =

𝑌!
!"#/ 𝑌!

!"# + 𝑌!
!"# . 

Assuming no migration (M = 0), resistance evolves under temporally fluctuating selection 

alone. The differential equation can be solved, assuming ecological equilibrium (the number 

of uninfected is constant), as 

logit 𝑝! = logit 𝑝! + 𝛽!𝑋 − 𝑢! − 𝛽!𝑋 − 𝑢!  𝑡 + 𝛼!,! − 𝛼!,!
!

!
𝑑𝑡 

The term 𝛽!𝑋 − 𝑢! − 𝛽!𝑋 − 𝑢!  is expected to be negative if strain 1 is resistant and 

strain 2 is sensitive, and represents the cost of resistance. The term 𝛼!,! − 𝛼!,!
!
! 𝑑𝑡 

represents the average impact of fluctuating treatment and is positive. Depending on the 

balance between these two terms, the resistant or the sensitive strain invades the population, 

and polymorphism is lost in the long term (1). 

With migration, assuming all antibiotics are prescribed at a constant rate equal to their 

temporal average 𝑎!, such that clearance by antibiotics is also constant equal to 𝛼!, p reaches 

a stable equilibrium value given by: 

𝑝 =
−𝑀 + 𝑟! − 𝑟! + 𝑀 − 𝑟! − 𝑟!

! + 4 𝑀 (𝑟! − 𝑟!) 𝑝!"#

2(𝑟! − 𝑟!)
 

with 𝑟! = 𝑋 𝛽! − 𝑢! − 1− 𝑓!,!!
!!! 𝑎! , and the derivative of the differential equation with 

respect to p, evaluated at 𝑝, is 

−𝑐 = − 𝑀 − 𝑟! − 𝑟!
! + 4 𝑀 𝑟! − 𝑟!  𝑝!"# < 0, showing stability of the equilibrium. 

We now assume that the fluctuations of antibiotic prescription around the average are small, 

the fluctuations of resistance around the equilibrium are small, and the fluctuations in the 



within-strain levels of resistance around their average are small. Specifically, we rewrite the 

temporally varying parameters and variables as: 

𝑝! = 𝑝 1+ 𝛿𝑝!  

𝑎!,! = 𝑎! 1+ 𝛿𝑎!,!  

𝑓!,!,! = 𝑓!,! 1+ 𝛿𝑓!,!,!  

where the variables starting with 𝛿 represent small temporal fluctuations around the average. 

The dynamics of the frequency of resistance can be approximated as a first order Taylor 

series. Actually, only the term of order 1 in the Taylor series needs to be considered, as the 

term of order 0 cancels by definition of the equilibrium. This yields: 

𝑝 ≈ −𝑐 𝑝! − 𝑝 + 𝑝 1−  𝑝 𝑓!,! − 𝑓!,! 𝑎!,! − 𝑎!

!

!!!

+ 𝑝 1−  𝑝  𝑎!  𝑓!,!,! − 𝑓!,!,! − 𝑓!,! − 𝑓!,!

!

!!!

 

with 

𝑐 = 𝑀 − 𝑟! − 𝑟! 1 −  2 𝑝 = 𝑀 − 𝑟! − 𝑟!
! + 4 𝑀 𝑟! − 𝑟!  𝑝!"# > 0 

The first term is stabilizing selection towards the equilibrium, which depends on the balance 

between migration M (which stabilizes the equilibrium), and directional selection due to 

differences in the growth rates of the two genotypes (which destabilizes the equilibrium). 

The second and third terms represent direct selection for resistance due to antibiotic use. 

When antibiotic j is prescribed at rates higher than the average (𝑎!,! > 𝑎!), and strain 1 is 

more resistant to antibiotic j than strain 2 (𝑓!,! > 𝑓!,!), strain 1 increases in frequency at a rate 

proportional to genetic variance 𝑝 1−  𝑝  (a classical result in population genetics). 

Similarly, when resistance to antibiotic j within strain 1 relative to strain 2 is higher than the 

temporal average (𝑓!,!,! − 𝑓!,!,! > 𝑓!,! − 𝑓!,! ), strain 1 increases in frequency at a rate 

proportional to 𝑝 1−  𝑝  𝑎!. The third terms implies that in general, the evolution of a strain 

is coupled with the evolution of associated resistances within that strain. 

For example, if we consider the simple case of two antibiotics, penicillins and macrolides, the 

evolution of resistance to penicillins and macrolides will be governed by a system of four 

equations similar to the equations outlined above, describing the changes in frequency in 



strains (i) penicillin sensitive / macrolide sensitive, (ii) penicillin sensitive / macrolide 

resistant, (iii) penicillin resistant / macrolide sensitive, (iv) penicillin resistant / macrolide 

resistant. 

However, if we assume that associations between resistances are relatively constant 

(𝑓!,!,! = 𝑓!,!), the above equation simplifies to: 

𝑝 ≈ −𝑐 𝑝! − 𝑝 + 𝑏! 𝑎!,! − 𝑎!

!

!!!

 

with 𝑏! = 𝑝 1−  𝑝 𝑓!,! − 𝑓!,! . This is equation (3) of the paper. 

The assumption of constant associations between resistances is motivated by the data 

analyzed in this paper. We have data on the use of three antibiotics, penicillins (amoxicillin), 

cephalosporins, and macrolides (azithromycin). This means we should ideally consider the 

evolution of 23=8 strains with the different combinations of sensitivity/resistance, but we 

only have data on the frequency of resistance to penicillins and macrolides. Associations 

between resistances may be relatively stable, as for example most of the strains resistant to 

macrolides are penicillin resistant or intermediate (2) or even multidrug resistant (3). 

Simulations: 

Supplementary Figure 1 shows simulation of the epidemiological model, together with the 

approximate linearized system, under seasonal fluctuations in treatment. Coexistence is 

maintained by immigration from a constant reservoir. The approximation for the dynamics of 

antibiotic resistance is accurate when antibiotic use fluctuates between 0.5 and 1.5 per month 

(amplitude = 0.5), and performs relatively well even when antibiotic use fluctuates between 0 

and 2 per month (amplitude = 1). 
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Supplementary Figure 1: Simulations of the epidemiological model, showing the evolution of resistance to an 

antibiotic resistance under seasonal fluctuations in the prescription of this antibiotic. For the resistant (strain 1), 

𝛼!,! = 0 and for the sensitive (strain 2), 𝛼!,! = 𝛼(1 + 𝐴 cos !!
!"
𝑡 ) where t is in months and A is the amplitude, 

allowed to vary from 0.1 (top panel) to 1 (bottom panel). The left panels show the density of uninfected 

individuals (blue), of individuals infected by sensitive (orange) and individuals infected by resistant (green). The 

right panel shows the frequency of resistance (blue) together with the Taylor series approximation (red). 

Parameters are 𝛼 = 1 𝑚𝑜𝑛𝑡ℎ!!, 𝑢 = 1 𝑚𝑜𝑛𝑡ℎ!!, 𝛽! = 4, 𝛽! = 2, 𝑚 = 0.1, 𝑌!
!"# = 0.5, 𝑌!

!"# = 0.5. 
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B. Expressions for the coefficients in the Fourier transformation: 

We describe the temporal change in antibiotic prescription as a sum of sinusoids with 

different periods, using the Fourier transformation: 

𝑎!,! − 𝑎! = 𝐴!,! cos 𝜔!𝑡 − 𝑃!,!]
!/!

!!!

 

The angular frequency of the sinusoids is 𝜔! = 2𝜋𝑘/𝑇 where T is the number of data points, 

here T=60 (12 points per year during 5 years). The amplitudes of these sine waves are given 

by 𝐴!,! = 𝛼!,!! + 𝛽!,!!  and the phase differences by 𝑃!,! = atan [𝛽!,!/𝛼!,!], with: 

𝛼!,! =
2
𝑇

 𝑎𝑗,𝑡 cos 𝜔!  (𝑡 − 1)𝑇
𝑡=1  for 1 ≤ 𝑘 < 𝑛, and 𝛼!,! =

!
!

 𝑎!,! cos 𝜔𝑛 (𝑡 − 1)!
!!!  

𝛽!,! =
2
𝑇

 𝑎𝑗,𝑡 sin 𝜔!  (𝑡 − 1)𝑇
𝑡=1  for 1 ≤ 𝑘 ≤ 𝑛 

  



 

resistance population 𝑐 𝑏!"# 𝑏!"#! 𝑏!"! 𝑝 ML R2 
penicillin Jewish 180 0.48 -3 0.92 0.35 -146.9 0.43 
penicillin Bedouin 6300 3.9 -31 -1.6 0.23 -159.4 0.18 

erythromycin Jewish 3000 -0.2 -17 17 0.23 -128.5 0.24 
erythromycin Bedouin 18 -0.021 -0.021 0.11 0.15 -163.2 0.28 

multidrug Jewish 2000 0.98 -18 10 0.19 -130.5 0.22 
multidrug Bedouin 13 -0.0048 -0.045 0.083 0.19 -144.1 0.31 

 

Supplementary Table 1. Maximum likelihood parameter estimates for the full model. For each combination of 

type of resistance and population, we show maximum likelihood estimates of stabilising selection 𝑐, direct 

selection due to amoxicillin, cephalosporin and azithromycin 𝑏!"#, 𝑏!"#! and 𝑏!"#, and the stable frequency of 

resistance if all antibiotics were used at their average value, 𝑝. Maximum likelihood and the coefficient of 

determination R2 of the model are also shown. The intensity of direct selection (the 𝑏! coefficients) has to be 

interpreted with respect to the strength of stabilising selection 𝑐, because 𝑐 ≫ 𝜔! for all j, such that the 𝑏! and 𝑐 

are not identifiable. 

  



 

Period (months) Amplitude 𝑨𝒊,𝒋 Phase difference 𝑷𝒊,𝒋 
Jewish, amoxicillin 

Inf 115.2 - 
12 39.7 0.05 
60 13.6 1.16 

Jewish, amoxicillin-clavulanate 
Inf 25.6 - 
12 9.8 0.25 
60 5.5 1.38 
30 3.5 -0.27 
5 2.6 0.71 

Jewish, cephalosporin 
Inf 13.3 - 
60 3.1 2.99 
12 2.7 -0.01 
30 2.5 -1.72 
10 1.9 -2.92 
9 1.3 -1.34 

Jewish, azithromycin 
Inf 23.1 - 
12 11.5 -0.31 
60 7.3 -2.41 
10 4.9 -2.47 
6 4.2 -0.83 

 

  



 

Period (months) Amplitude 𝐴!,! Phase difference 𝑃!,! 
Bedouin, amoxicillin 

Inf 184.8 - 
12 26.9 0.13 
60 22.3 2.12 
30 12.3 1.36 
9 11.7 0.07 
4 11.4 1.6 

Bedouin, amoxicillin-clavulanate 
Inf 56.5 - 
12 11.4 0.46 
30 3.9 0.01 
9 3.8 -0.07 
60 3.8 2.5 
15 3.6 -2.72 

Bedouin, cephalosporin 
Inf 38.5 - 
60 7.3 2.19 
12 6.5 -2.51 
10 4 -2.47 

Bedouin, azithromycin 
Inf 16.7 - 
60 9.9 -3.04 
20 3.1 -1.01 
12 3 -1.01 

 

Supplementary Table 2. Fourier series decompositions of the fluctuations in antibiotic prescriptions in the 

Jewish and Bedouin communities, showing the period, amplitude and phase difference of the minimum number 

of sinusoids of largest amplitude, such that the coefficient of determination is larger than 0.7. Sinusoids are 

ordered by amplitude, from largest to smallest. The period “Inf” denotes the constant, where amplitude is the 

temporal average of prescription.  



resistance 𝒃𝒂𝒎𝒐/𝒄 𝒃𝒄𝒆𝒑𝒉/𝒄 𝒃𝒂𝒛𝒊/𝒄 𝒑𝑱 𝒑𝑩 ML R2 

penicillin 0.0011 [0.00058; 0.0016] -0.0051 [-0.0076; -0.0027] 0.0019 [-0.00015; 0.004] 0.34 0.24 -323.2 0.35 

erythromycin -0.00069 [-0.0012; -2e-04] -0.0026 [-0.0048; -0.00034] 0.0071 [0.0055; 0.0084] 0.24 0.16 -294.8 0.33 

multidrug -0.00023 [-0.00068; 0.00028] -0.0033 [-0.0055; -0.00073] 0.0057 [0.0038; 0.0071] 0.19 0.19 -285.6 0.19 

 
Supplementary Table 3. Maximum likelihood parameter estimates and 95% confidence intervals for the reduced 
model, when the ratios 𝑏!"#/𝑐, 𝑏!"#!/𝑐 and 𝑏!"#/𝑐 are estimated on the combined dataset (both Jewish and 
Bedouin children). For each combination of type of resistance and population, we show maximum likelihood 
estimates and 95% confidence intervals of the ratios 𝑏!"#/𝑐, 𝑏!"#!/𝑐 and 𝑏!"#/𝑐. We also show the maximum 
likelihood estimate of the stable frequency of resistance 𝑝! and 𝑝!, if all antibiotics were used at their average 
value, for the Jewish and Bedouin children, the maximum likelihood and the coefficient of determination R2 of 
the model.  



 

 

 

Supplementary figure 2. Temporal correlations in the prescription of different antibiotics, for Jewish (black 

points) and Bedouin (open points) children, in prescriptions per 1000 children per year. Each point is monthly 

prescription of a pair of antibiotics. The strongest correlation is between amoxicillin and amoxicillin-clavulanate 

use. Linear regression lines are shown for the Jewish (plain line) and Bedouin (dashed line) children.  
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Supplementary Figure 3: Effect sizes and 95% confidence intervals for the ratio 𝑏!"#/𝑐, 𝑏!"#!/𝑐  and 𝑏!"#/𝑐, 

for the population of Jewish children (plain dots) and Bedouin children (open points), when the dynamics of 

antibiotic prescription are fitted with smooth splines rather than Fourier series. Results are close to those 

obtained with the Fourier transform (Fig. 3). 

  

    PENICILLIN       ERYTHROMYCIN    MULTIDRUG
in

cr
ea

se
 in

 fr
eq

ue
nc

y 
of

 re
si

st
an

ce
 p

er
 a

dd
iti

on
al

 p
re

sc
rip

tio
n 

un
it

−0
.0

25
−0

.0
15

−0
.0

05
0.

00
5

0.
01

0

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

amo ceph azi amo ceph azi amo ceph azi
antibiotic prescribed



 
Supplementary Figure 4: Effect sizes and 95% confidence intervals for the ratio 𝑏!"#/𝑐, 𝑏!"#!/𝑐  and 𝑏!"#/𝑐, 

for the population of Jewish children (plain dots) and Bedouin children (open points), estimated by linear 

modeling. Specifically, for each resistance, we regressed the normalized frequency of resistance onto the 

normalized antibiotic prescriptions. The model was fitted independently on Jewish and Bedouin children. 
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Supplementary Figure 5: Effect sizes and 95% confidence intervals for the ratio 𝑏!"#/𝑐, 𝑏!"#!/𝑐  and 𝑏!"#/𝑐, 

when we infer these coefficients jointly for the Jewish and Bedouin children. 
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