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Generation of simulated data 

We generated the simulated data sets with the MAR(1) model 

                   

 

   

       

For all scenarios, we sampled the intercepts    from the standard normal distribution          , 

independently among the species  . We also sampled the noise terms      from the standard normal 

distribution             , independently among the species   and among the time steps  . The 

parameterization of the interaction matrix   depended on the model used for data generation as 

follows. 

 In Model 1 (no inter-specific interactions), we sampled the diagonal matrix elements as 

            independently among the species, and set        for    . 

 In Model 2 (full interactions), we sampled all matrix elements as             independently 

among the species pairs. 

 In Model 3 (sparse interactions), we proceeded first as in Model 2, and then set each off-

diagonal element to zero with probability 0.9. 

 In Model 4 (community-level drivers), the interaction terms are defined as 

              
 
           We set    , and sampled each of the     ,      and    from 

      , independently among the species   and drivers  . 

The MAR(1) model leads to stable dynamics if all eigenvalues of   have absolute value not greater 

than 1 (1). To ensure stable dynamics, we set the largest absolute eigenvalue of   to the value of 0.8 

by multiplying the matrix by the appropriate constant.   

We generated simulated data for 200 time steps, out of which the latter 100 time steps were stored 

as validation data. Out of the first 100 time steps, either all (long time-series) or the last 10 time 

steps (short time-series) were used as training data. 



Details on model fitting 

We extended the Matlab-HMSC code of Ovaskainen et al. (2) by implementing variable selection to 

fit Model 3, and row-column interaction models (3) to fit Model 4. 

For variable selection, we modelled the interaction coefficients as              , where            

is an indicator variable describing whether the interaction coefficient      is included in the model 

(i.e., non-zero) or not. We sampled the regression coefficients      from their full conditional 

distribution separately for each focal species   using otherwise the same approach as in Ovaskainen 

et al. (2) but multiplying the elements of the design matrix (here, the matrix of species abundances 

in the previous time step) by zero if       . We sampled the      values separately for each   and   

from their full conditional distribution by computing the likelihood of the data both for        and 

      , weighting these by the prior likelihoods      and       , and sampling a new value based 

on these likelihoods. 

For the estimation of the interaction matrices through community-level drivers (excluding the 

intraspecific terms, which were estimated separately), we implemented the row-column interaction 

model 

              

  

   
 

through a latent variable approach. Our implementation was similar to that of the co-occurrence 

model of Ovaskainen et al. (2), which model residual variation in occurrences and co-occurrences 

as 

              

  

   
  

Here   is the species,   is the sampling unit (here time),    is the number of factors, the      are the 

latent factors, and      are the factor loadings. We treated the parameters      as the latent factors 

    , thus giving them a prior            . As the prior is independent among the drivers  , they 

are considered a priori to be independent of each other. However, as the model does not force 

orthogonality among them, they may be correlated in the posterior distribution. We treated the      

as the factor loadings     , thus assuming for them a multiplicative gamma prior (4) which implies 

increasing level of shrinkage as the function of the number of the driver  . 

As prior distributions, we assumed the default priors of Ovaskainen et al. (2) for all other 

parameters than those extended here. For the sparse interaction model (Model 3), we assumed the 

priors             and                     for    . For the community-drivers model (Model 4), 

we assumed the parameters    ,      ,     ,      ,      for the multiplicative gamma 

prior of the parameters     . For the interpretation of these parameters, see Bhattacharya and 

Dunson (2011). 



Additional measures of model fit and sensitivity of the results to prior distributions 

As shown by Figure S1, the log(x+1) transformed OTU data were well in line with the assumption 

of residual normality. 

 

Figure S1. Comparison of model residuals (histogram) with the theoretical expectation given by the 

normal distribution (the line). The residuals have been computed by subtracting from the validation 

data the posterior mean model prediction (based on Model 4), and normalizing the residuals 

(separately for each species) to mean zero and unit variance. 

As an alternative measure for model comparison, we used mean squared error between the 

validation data and the posterior mean model predictions. To enable comparison between the two 

measures of model fit, we repeated also here the values for correlation given in the main text. The 

correlation [mean squared error] between model prediction and validation data was 0.37 [4.8] 

(Model 1), 0.14 [23.7] (Model 2), 0.32 [12.2] (Model 3), and 0.46 [5.5] (Model 4). The correlation 

[mean squared error] between model prediction and training data was 0.60 [2.7] (Model 1), 0.98 

[0.19] (Model 2), 0.73 [7.1] (Model 3), and 0.86 [0.98] (Model 4). Thus, these two measures ranked 

the models roughly similarly, high correlation corresponding to small mean squared error. 

To test the sensitivity of the results on the prior distributions, we repeated the empirical case study 

with alternative priors for Models 3 and 4. For the sparse interaction model (Model 3), in the first 

alternative prior we assumed that                      instead                    , and thus that 

the matrix is more spare than with the default prior. For the community-level drivers model (Model 

4), in the first alternative prior we assumed that          instead of         , and thus 



assumed that the interaction matrix has a smaller effective dimensionality than with the default 

prior. 

As described in the main text, for the default priors the correlation between model prediction and 

training data was 0.73 (Model 3), and 0.86 (Model 4). For the first alternative priors, the 

corresponding numbers were 0.63 (Model 3), and 0.76 (Model 4). Thus, as expected, imposing 

stronger constraints on the sparsity or dimensionality of the interaction matrix reduced the level of 

overfitting. As further described in the main text, for the default priors the correlation between 

model prediction and validation data was 0.32 (Model 3), and 0.46 (Model 4). For the first 

alternative priors, the corresponding numbers were 0.39 (Model 3), and 0.40 (Model 4). Thus, with 

the first alternative priors, the predictive performance of the sparse interaction model increased, and 

it slightly overperformed the predictive performance of the model without interspecific interactions 

(Model 1, correlation 0.37). In contrast, the predictive performance of the community-level drivers 

model decreased, but it still slightly overperformed the sparse interactions model. 

We next shifted the prior distribution further to the direction that had thus far (default prior vs. first 

alternative prior) yielded best performance. As the second alternative prior, we set 

                      for Model 3 and         for Model 4. With these choices, the 

correlation between model prediction and validation data was 0.37 (Model 3), and 0.30 (Model 4). 

Thus, we conclude that Model 3 is not likely to overperform Model 4 with the default prior, 

whichever prior distribution is chosen for Model 3. 



Additional results for simulated data 

 

Figure S2. Comparison of the performance of the alternative statistical modelling frameworks 

based on simulated data. Panel A shows correlation between model prediction and validation data 

(averaged over species), and panel B the correlation between elements of true and estimated 

(posterior mean) interaction matrices  . In both panels, the rows correspond to the data generating 

models, the columns to small (   ) or large (       communities, and the colours to the 

models used for inference. The bars show the mean and the error bars   two standard errors over 

the ten replicates. The figure shows the results for a short time series (    ), corresponding 

results for a long time series (     ) being shown in the main article. 
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