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1 Filament-bundle elastohydrodynamics

The vector r(s, t) describes the position of a point which is an arclength s, with 0 ≤ s ≤ L, along the
neutral central line of a 2D representation of a cross-linked filament bundle or flagellar axoneme at a
time t, relative to the fixed frame {ex, ey}. The filament bundle diameter is given by the constant a.
In the absence of external forces, the filament bundle centreline assumes a horizontal position along
ex. Defining α to be the angle between t̂, the unit tangent vector to r, and the axis ex, we have:

t̂ = rs = (cosα, sinα)

n̂ = (− sinα, cosα)

Here rs denotes the derivative with respect to s. The internal shear force f(s, t) acts tangentially and
in opposite directions on the sliding filaments r1 and r2, which are defined as follows:

r1 = r +
a

2
n̂

r2 = r− a

2
n̂

1.1 Filament displacement

Let S1(s) and S2(s) be the respective arclengths of r1 and r2. Thus we have:

∂S1

∂s
=

∣∣∣∣∂r1∂s
∣∣∣∣ =

∣∣∣rs − a

2
α̇rs

∣∣∣ = 1− a

2
α̇

∂S2

∂s
=

∣∣∣∣∂r2∂s
∣∣∣∣ =

∣∣∣rs +
a

2
α̇rs

∣∣∣ = 1 +
a

2
α̇

Here α̇ denotes the derivate of α with respect to s. Let ∆0 be the initial filament sliding displacement
at the base (s = 0), and let ∆(s) be the filament sliding displacement at a point s along the filament
bundle, defined as the total arclength difference between the upper and lower filaments:

∆(s) = ∆0 +

∫ s

0

∂S2

∂s′
− ∂S1

∂s′
ds′

= ∆0 + a

∫ s

0

∂α

∂s′
ds′

= ∆0 + a [α(s)− α(0)]
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1.2 Internal forcing and basal displacement considerations

Suppose the internal shear density f(s) is linearly related to the filament displacement, with a constant
elastic resistance k: f(s) = k∆(s) = k[∆0 + a(α(s) − α(0))]. Hook’s law is assumed to give the
relationship between the internal shear forcing and the sliding displacement at the base, where κe is a
Hookean spring constant, so that:

−
∫ L

0

f(s′) ds′ = κe∆0

⇔ −kL∆0 − ka
∫ L

0

[α(s′)− α(0)] ds′ = κe∆0

By rescaling s so that it is expressed in multiples of L:

−akL
∫ 1

0

[α(s′)− α(0)] ds′ = (kL+ κe)∆0

⇔ − kL

kL+ κe

∫ 1

0

[α(s′)− α(0)] ds′ =
∆0

a

Let γ = kL/(kL+κe), and note that γ = 1 and γ = 0 correspond to zero basal sliding resistance and
a clamped base (∆0 = 0) respectively. This gives:

f(s) = ka

[
−γ
∫ 1

0

[α(s′)− α(0)] ds′ + α(s)− α(0)

]

1.3 The contact force, N

The material in the filament bundle segment (s, L] exerts a resultant contact force N on the filament
bundle segment [0, s]. The resultant contact torque is r ×N + M, where M is the resultant contact
couple:

M = Ers × rss +
a

2
n̂×

(∫ L

s

−f(s′) ds′
)
t̂− a

2
n̂×

(∫ L

s

f(s′) ds′
)
t̂

= Ers × rss + a

(∫ L

s

f(s′) ds′
)
rs × n̂

The constant E is the elastic stiffness of the filament bundle. Define:

F (s) =

∫ L

s

f(s′) ds′

Assuming there is no external couple acting on the filament bundle, the moment balance equation for
an equilibrium rod gives:

∂M

∂s
+ rs ×N = 0
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In this case:

∂M

∂s
= Erss × rss + Ers × rsss − afrs × n̂ + aFrss × n̂ + aFrs × n̂s

= Erss × rss + aFrss × n̂ + rs × (Eα̈n̂− Eα̇α̇rs − af n̂− aα̇Frs)

Therefore to first order in α:

N = (−Eα̈ + af)n̂ + τrs

Here τ represents physical tension. Then we have:

Ns = (−E...
α + aḟ + α̇τ)n̂ + (τ̇ + Eα̇α̈− α̇af)rs

1.4 Force balance

From the equilibrium equations, the contact force per unit length balances with the external force
acting upon the filament bundle:

Ns + fext = 0

In our case, we are considering immersion in a fluid with low Reynolds number. Therefore inertial
forces can be neglected, and we have fext = fvis, the viscous drag force. From resistive force theory,
the viscous drag force per unit length exerted on the filament bundle is given by:

fvis = −ζ⊥(n̂.rt)n̂− ζ‖(t̂.rt)t̂ (1)

Balancing the viscous and contact forces gives per unit length gives:

(−E...
α + aḟ + α̇τ)n̂ + (τ̇ + Eα̇α̈− α̇af)rs = ζ⊥(n̂.rt)n̂ + ζ‖(t̂.rt)t̂

⇒ 1

ζ⊥
(−E...

α + aḟ + α̇τ)n̂ +
1

ζ‖
(τ̇ + Eα̇α̈− α̇af)rs = ∂tr (2)

Note that ∂trs = n̂∂tα. Taking the derivative of (2) with respect to s and equating components in the
n̂ direction obtains an equation of motion in α:

1

ζ⊥
(−E....

α + af̈ + α̈τ + α̇τ̇) +
1

ζ‖
α̇(τ̇ + Eα̇α̈− α̇af) = ∂tα (3)

1.5 Inextensibility condition

The physical tension is determined by the inextensibility condition, ∂
∂t

(rs.rs) = 2(∂trs).rs = 0. From
this the tangential component of ∂trs is equal to zero; thus differentiating (2) with respect to s and
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considering the components in the rs direction, obtains a differential equation for τ :

1

ζ⊥
(Eα̇

...
α − α̇af − α̇α̇τ) +

1

ζ‖
(τ̈ + ∂s(Eα̇α̈)− ∂s(α̇af)) = 0

τ̈ −
ζ‖
ζ⊥

(α̇α̇)τ +

(
∂s(Eα̇α̈)− ∂s(α̇af) +

ζ‖
ζ⊥

(Eα̇
...
α − α̇af)

)
= 0

From this, for our boundary conditions and via perturbation methods it can be seen that τ is of order
α. Thus simplifying (3) to first order in α, noting again that f = k[∆0 +a(α(s)−α(0))], and making
the assumption that α is small, gives the governing equation:

1

ζ⊥
(−Eαssss + a2kαss) = ∂tα (4)

We now non-dimensionalise by changing the length scale by L, the time scale by w−1. Consider
solutions of the form α(s) = Re{α̃(s)e−iwt}, and define the sperm compliance parameter,

Sp = L

(
ζ⊥w

E

)1/4

and the sliding resistance parameter µ = a2L2k/E, which represents the relative importance of the
flagellum elastic rigidity compared with the elastic resistance k of the cross linking.

The non-dimensional equation of motion is:

α̃′′′′ − µα̃′′ = iSp4α̃

Let rj for j = 1, 2, 3, 4 be the four roots of the equation r4 − µr2 − iSp4 = 0. This produces four
values of rj which are of the form −a+ bi, a− ib, c+ id,−c− id, and we have the spatial solution:

α̃(s) =
4∑
j=1

Cj exp rjs (5)

2 Derivation of proximally actuated filament-bundle dynamics

In the case where we consider a proximal sinusoidal actuation of the filament-bundle, the following
boundary conditions, to first order in α, apply at the proximal end s = 0. These correspond to angular
actuation and fixed position in the ey direction respectively:

α(0, t) = G cos (ωt)

∂ty(0, t) = 0⇒ 1

ζ⊥
(E

...
α(0) + aḟ(0)) = 0
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At the distal end in this case, the first order boundary conditions correspond to zero force and
torque respectively:

Fext(L) = 0⇒ −Eα̈(L) + f(L) = 0

Mext(L) = 0⇒ Eα̇(L) = 0

By substituting f(s, t) = k∆(s, t) = k[∆0(t) + a(α(s, t) − α0(t))] and α(s) = Re{α̃(s)e−iwt}
into the above boundary equations, the following are obtained:

α̃(0) = G

α̃′′′(0)− µα̃′(0) = 0

α̃′′(1) + µγ

∫ 1

0

α̃(s′)− α̃(0) ds′ − µ(α̃(1)− α̃(0)) = 0

α̃′(1) = 0

Substituting (4) into the above equations gives four linear equations in the Cj constant coefficients
for our solution α(s, t) = Re{

∑4
j=1Cje

rjs−it}, with the rj being the complex roots of the equation
r4 − µr2 − iSp4 and Rj = erj :

4∑
j=1

Cj = G

4∑
j=1

Cj(r
3
j − µrj) = 0

4∑
j=1

Cj

(
r2jRj + µγ

(
Rj − 1

rj
− 1

)
− µ(Rj − 1)

)
= 0

4∑
i=1

CjrjRj = 0

These equations can be expressed in matrix form:

( C1 C2 C3 C4 )


1 r31 − µr1 r21R1 + µγ

(
R1−1
r1
− 1
)
− µ(R1 − 1) r1R1

1 r32 − µr2 r22R2 + µγ
(
R2−1
r2
− 1
)
− µ(R2 − 1) r2R2

1 r33 − µr3 r23R3 + µγ
(
R3−1
r3
− 1
)
− µ(R3 − 1) r3R3

1 r34 − µr4 r24R4 + µγ
(
R4−1
r4
− 1
)
− µ(R4 − 1) r4R4

 =


G
0
0
0
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2.1 Calculation of propulsive force

The total viscous drag force is calculated by integrating the viscous drag force per unit length, fvis,
along the length of the filament bundle:

Fvis =

∫ L

0

fvis(s, t) ds

Noting that ∂
∂t
r = (∂x

∂t
, ∂y
∂t

), we substitute using (1) to obtain:

Fvis = −
∫ L

0

ζ⊥

(
∂x

∂t
(− sinα) +

∂y

∂t
cosα

)
n̂ + ζ‖

(
∂x

∂t
cosα +

∂y

∂t
sinα

)
r̂ ds

⇒ Fvis.ex = −
∫ L

0

ζ⊥

(
∂x

∂t
(− sinα) +

∂y

∂t
cosα

)
(− sinα) + ζ‖

(
∂x

∂t
cosα +

∂y

∂t
sinα

)
cosα ds

Take ζ‖ = Rζ⊥. Therefore:

Fvis.ex = ζ⊥(1− R)

∫ L

0

∂x

∂t
(−2 sinα2 − cosα2) +

∂y

∂t
cosα sinα ds

We take the assumption that ζ⊥ = 2ζ‖ for long slender rods [1]. Integrating over time and taking
the average gives us the time averaged viscous force that the fluid exerts on the filament: the propulsive
force F̄x exerted on the fluid by the filament is equal and opposite to this. Thus we have:

F̄x = −(Fvis.ex)avg =
ω

2π

∫ 2π/ω

0

{
1

2
ζ⊥

∫ L

0

∂x

∂t
(2 sinα2 + cosα2)− ∂y

∂t
cosα sinα ds

}
dt

Rescaling time by 2π/ω, x, y and s by L, defining lw = (E/wζ⊥)1/4 and relabelling all variables
we obtain:

F̄x = −(Fvis.ex)avg =
ωζ⊥
2π

L2

∫ 1

0

∫ 1

0

∂x

∂t
(2 sinα2 + cosα2)− ∂y

∂t
cosα sinα ds dt

=
ωζ⊥
2π

l2ωSp2

∫ 2π

0

∫ 1

0

∂x

∂t
(2 sinα2 + cosα2)− ∂y

∂t
cosα sinα ds dt

=
ωζ⊥
2π

l2ωΥx(Sp, µ, γ)
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3 Derivation of relaxation filament-bundle dynamics

The equation of motion, derived through force and torque balance:

1

ζ⊥
(−E....

α + af̈) =
1

ζ⊥
(−E....

α + a2kα̈) = ∂tα

Non-dimensionalising via s = Ls′ and t = L4ζ⊥
E
t′, and relabelling s′ as s and t′ as t, obtains a

simplified governing equation:
−....
α + µα̈ = ∂tα

Separation of variables results in the following equation, involving the eigenvalue λ:

r4 − µr2 − λ4 = 0

Using the assumptions that µ ≥ 0 and λ > 0, define for each eigenvalue λn and corresponding
relaxation constant λ4n:

q1n =

√√
µ2 + 4λ4n − µ

2

q2n =

√√
µ2 + 4λ4n + µ

2

The solution in the relaxation case is therefore given by:

α(s, t) =
∑
n

anSn(s)e−λ
4
nt,

with Sn(s) = C1 sin q1ns + C2 cos q1ns + C3 sinh q2ns + C4 cosh q2ns for each mode n. For ease
of notation when considering the boundary conditions, define:

Q1n = sin q1n

Q2n = cos q1n

Q3n = sinh q2n

Q4n = cosh q2n

The boundary conditions given below correspond to the proximal end being fixed in position and
clamped respectively:

∂ty(0, t) = 0⇒ S ′′′n (0)− µS ′n(0) = 0

Sn(0) = 0
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A further two boundary conditions decribe the force and torque free distal end of the filament
bundle:

Fext(L) = 0⇒ S ′′n(1) + µγ

∫ 1

0

Sn(s′)− Sn(0) ds′ − µ(Sn(1)− Sn(0)) = 0

Mext(L) = 0⇒ S ′n(1) = 0

Substituting Sn(s) into the above results in a set of linear equations in the Ci, represented by the
matrix equation CM = 0, where:

Mn =


0 −q31n − µq1n −q21nq1n + (1− q2n) µγ

q1n
− µq1n q1nQ2n

1 0 −q21nQ2 + µγq1n
q1n
− µQ2 + µ− µγ −q1nq1n

0 q32 − µq2 q22Q3n + (Q4n − 1)µγ
q2
− µQ3 q2Q4

1 0 q22Q4 + Q3µγ
q2
− µQ4 + µ− µγ q2Q3


C = ( C1 C2 C3 C4 )

Note that for non-zero Sn solutions, the solvability condition Det(Mn) = 0 must be met.

4 Eigenvalue relationships

The following tables were obtained via the identification of single eigenvalues for different parameters
using Wolfram Mathematica, and subsequent data fitting within MATLAB to obtain approximate
analytical expressions for the values of relaxation constants within different regimes, for the clamped
and fixed proximal filament-bundle end case. The RMSEs from the data fitting process are also listed.

4.1 γ = 1, 0 ≤ µ ≤ 100

Relationship RMSE
λ4 = 2.427

√
µ+ 10.75 1.055

λ4 = 0.1081µ+ 1.414
√
µ+ 11.96 0.3996

λ4 = −0.01596
√
µ3 + 0.3294µ+ 0.6806

√
µ+ 12.27 0.133

λ4 = 0.002349µ2 − 0.06169
√
µ3 + 0.6042µ+ 0.1774

√
µ+ 12.34 0.03812

4.2 γ = 0, 0 ≤ µ ≤ 100

Relationship RMSE
λ4 = 2.991µ+ 18.21 4.561

λ4 = 2.517µ+ 4.813
√
µ+ 11.31 0.9562

λ4 = −0.03311µ3/2 + 2.976µ+ 3.292
√
µ+ 11.94 0.5566

λ4 = 0.009438µ2 − 0.2169µ3/2 + 4.08µ+ 1.27
√
µ+ 12.25 0.22

λ4 = −0.001541µ5/2 + 0.04748µ2 − 0.5458
√
µ3 + 5.242µ− 0.1396

√
µ+ 12.36 0.0445
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4.3 γ = 1, 100 < µ

Relationship RMSE
λ4 = 2.997

√
µ+ 5.926 0.1908

λ4 = 2.068e−5µ+ 2.992
√
µ+ 6.086 0.1268

λ4 = −1.735e−7µ3/2 + 9.546e−5µ+ 2.984
√
µ+ 6.215 0.09375

λ4 = 1.72e−9µ2 − 1.224e−6µ3/2 + 0.0002956µ+ 2.972
√
µ+ 6.377 0.06606

4.4 γ = 0, 100 < µ

Relationship RMSE
λ4 = 2.485µ+ 196.7 129.7

λ4 = 2.467µ+ 4.929
√
µ+ 14.08 0.05878

λ4 = −9.967e−8µ3/2 + 2.467µ+ 4.924
√
µ+ 14.16 0.03182

λ4 = 7.012e−10µ2 − 5.279e−7µ3/2 + 2.468µ+ 4.919
√
µ+ 14.22 0.01632
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