
Supplementary Figure 1: Possible problems spotted by sequence and genotype data 
matching. Following the same graphical representation than in Supplementary Fig. 3, this figure 
shows three potential problems that the mbv mode of QTLtools can detect. Panel A shows two 
mislabeling scenarios: (i) a pair of samples with matching IDs shows very poor concordance 
suggesting that the sequence and genotype data do not originate from the same individual and (ii) a 
pair of samples with mismatching IDS shows very good concordance meaning that the sequence and 
genotype data come from the same individual. Panel B shows the effect of 1% to 50% contamination 
on the concordance measures: as you increase the amount of contamination, the concordance at 
homozygous genotypes decreases. Panel C shows the effect of PCR amplification bias simulated here 
by resampling different fractions (1% to 100%) of unique reads in the original BAM file: this 
decreases significantly concordance at heterozygous genotypes. 
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Supplementary Figure 2: Quality Control of the sequence data. For each of the 258 Geuvadis 
samples (on the x-axis), this plot shows the total numbers of reads in green, the number of reads 
passing all QC filters described in Supplementary Note 1 in blue and the number of exonic reads in 
red (all on the y-axis). 
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Supplementary Figure3: Matching sequence and genotype data. For all possible pairwise 
combinations between sequenced and genotyped samples in Geuvadis (n = 358 x 358 = 128,164 
pairs), the concordance between the sequence and genotype data is measured separately for 
homozygous (y-axis) and heterozygous (x-axis) genotypes (Supplementary Note 2). All pairs with 
matching sample IDs are shown in green while all pairs with different sample IDs are shown in red. 
When the sample IDs match, the concordance measures are high meaning that there is no 
mislabeling between the sequence and genotype data. 
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Supplementary Figure 4: Gene expression quantification. We measured gene expression 
levels as RPKMs (Reads Per Kilobase per Million mapped reads; Supplementary Note 3) for all genes 
reported in GENCODE v19 [1] (shown with white bars). Then, we only kept the subset of genes with 
non-zero quantifications in at least 50% of the Geuvadis samples (shown with dark blue bars), 
resulting in a set of 22,147 genes kept for downstream analysis. 



Supplementary Figure 5: Stratification of the genotype and sequence data. Scatter plots of 
sample coordinates on the first (x-axis) and second (y-axis) principal components (PC) for genotype 
data, gene quantifications and exon quantifications (from left to right). Colors here are just indicative 
of the sample various ancestries. 
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Supplementary Figure 6: Beta approximation of the permutation process. These two scatter 
plots compare the P-values adjusted for multiple genetic variants being tested in cis via (i) the beta 
approximation from 1,000 permutations (x-axis) and (ii) the direct method from 100,000 
permutations (y-axis). The comparison is made on linear (left panel) and log scales (right panel); in 
both cases for the Geuvadis data set (see Methods). The red diagonal shows idealistic 
correspondence between both sets of adjusted P-values.    
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Supplementary Figure 7: Adjusted P-value range. This Quantile-Quantile plot compares the 
expected (x-axis) and observed (y-axis) distributions of adjusted P-values via beta approximation on 
the Geuvadis data set. The smallest observed P-value reaches 4.62 x 10-98. 
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Supplementary Figure 8: Running times for eQTL mapping in cis for the entire GTEx v6p 
data set. This plot shows the running times required to map eQTL in cis for each of the 44 tissues of 
the GTEx v6p study [2] as a function of the sample sizes.



 
Supplementary Figure 9: Effect of the number of PCA-derived covariates on the 
discoveries. This plot shows in red the number of genes with at least an eQTL (i.e. eGenes) 
discovered in Geuvadis (y-axis) as a function of the number of Principal Components (PCs; 0 to 100) 
derived from gene expression data in order to correct for technical variance (y-axis). Beside this, the 
grey line shows the outcome when using 100 PEER factors [3] instead of PCs; a widely adopted 
method in the field. 
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Supplementary Figure 10: Effect of phenotype filtering on the discoveries. This plot shows in 
red the number of eGenes discovered in Geuvadis (y-axis) as a function of the filtering criterion used 
to exclude poorly quantified genes (x-axis). Specifically, we measured the percentage of individuals 
per gene not being quantified; that is with a read count equal to 0 and filtered genes accordingly to 
this percentage from 0% to 90%. 
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Supplementary Figure 11: Three specific eQTL examples. Three different examples of 
significant eQTLs discovered in Geuvadis. The raw genotype and sequence data were extracted using 
the QTLtools extract mode and plotted with the R/plot function. Each plot shows the effect of 
genotype dosages at a given eQTL on gene expression measured via RPKM. Regression lines are 
shown in red. 
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Supplementary Figure 12: Respective performance of two phenotype grouping methods. 
This plot shows the numbers of eGenes discovered in the histone modification data set 
(Supplementary Data 2) as a function of the number of Principal Components (PCs) used to correct 
for technical variance. It is shown the performance of two different ways of aggregating the signal of 
multiple histone marks belonging in the same Variable Chromatin Module (VCM [4]) at the QTL 
mapping level (see Methods) by using either the extended permutation scheme (in blue) or Principal 
Component Analysis (in green). 
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Supplementary Figure 13: Comparison between gene quantification and phenotype 
grouping. These six scatter plots compare on a per gene basis the –log10 of the nominal P-values 
obtained when running the QTL mapping on gene level quantifications (x-axis) or by using phenotype 
grouping (extended permutation scheme; y-axis; see main Methods section). Adjusted P-values have 
been compared in six categories, depending on the number of exons the genes contain: 1 (in red), 2 
to 5 (in blue), 6 to 10 (in green), 11 to 20 (in purple), 21 to 50 (in orange) or more than 50 (in brown). 
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Supplementary Figure 14: Replication of eQTLs. These two histograms show the nominal p-
value distributions in GTEx [2] for both primary (left panel) and secondary (right panel) eQTLs 
discovered in Geuvadis. For each, we estimated the percentages of eQTLs that are significant in GTEx 
via R/qvalue (i.e. PI1 statistic; Supplementary Note 6).  



Supplementary Figure 15: Performance of the approximation for trans QTL mapping. The 
left panel shows the number of genes with at least a significant eQTL in trans for 3 different 
configurations: (i) the full permutation scheme (in red; see main Methods section), (ii) the 
approximation scheme using either the BH (in blue; Benjamini and Hochberg [5]) or ST (in green; 
Storey et Tibshirani [6]) FDR procedures to correct for the number of genes being tested. The two 
other panels compare the FDR estimates on a per gene basis obtained by (i) and (iii) on linear 
(middle panel) and log (right panel) scales. 

Supplementary Figure 16: RTC results. Percentages of hits of the NHGRI catalog being tagged by 
gene level eQTLs discovered in Geuvadis (i.e with a RTC score >= 0.9; Supplementary Note 7). The 
GWAS hits have been categorized into multiple disease ontologies (FTO). 

 12 



Supplementary Table1: Summary table of the QTLtools tasks performed on Geuvadis. 
Each row gives the name of the mode used, a short description of it and the running time needed to 
be run on the whole data. 
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Supplementary Note 1: Controlling the quality of the sequence data 14 

To ensure good quality of the sequence data, QTLtools parses a single BAM file and counts the total 15 
number of alignments passing all these filtering criteria: 16 

1. The alignment is not tagged as unmapped (BAM_FUNMAP). 17 
2. The alignment is not tagged as secondary alignment (BAM_FSECONDARY). 18 
3. The alignment is not tagged as failing QC (BAM_FQCFAIL). 19 
4. The alignment has a mapping quality (MAPQ) above a given threshold. 20 

In the case of pair-end reads, they also need to pass this additional set of QC criteria: 21 

5. Both reads in a pair need to pass the QC filters 1-4. 22 
6. Both reads in a pair need to be on opposite strand. 23 

In addition to this, QTLtools also counts the number of reads falling within some known annotation 24 
such as GENCODE [1] for RNA-seq and ENCODE [7] for ChIP-seq. Note that for ChIP-seq, it is 25 
recommended to use an annotation file that has been generated for the same molecular assay and 26 
cell type. In practice, QTLtools requires the annotations to be specified with either a GTF or a BED 27 
file. Then, percentages of mapped and annotated reads can be computed in order to detect major 28 
problems in the sequence data; an outlier being an evidence of a problem occurring at library 29 
preparation or sequencing. Note here that it is difficult for us to provide precise guidelines in term 30 
thresholds to be used in order to decide on the inclusion or exclusion of a sample since it highly 31 
depends on the sequencing protocols used to generate the data and therefore requires decision to 32 
be made on a case-by-case basis. For instance, in the Geuvadis data, we find two samples for which 33 
the mapped and annotated reads is relatively low compared to the other samples, but not enough 34 
for us to discard them from downstream analysis (Supplementary Fig. 2). 35 



Supplementary Note 2: Checking that sequence data matches genotype data 36 

To make sure that both the sequence and genotype data match, QTLtools takes as input a VCF file 37 
containing the genotype data for one or multiple samples and a BAM file with the mapped 38 
sequences of a molecular assay (e.g. RNA-seq or ChIP-seq). It first piles up sequencing reads at each 39 
single-nucleotide-variants (SNVs) site in the VCF file. It then discards poorly covered SNVs (as defined 40 
by a minimal-coverage parameter) and measures, for each individual in the VCF, the proportions of 41 
heterozygous and homozygous genotypes for which both alleles are captured by the sequencing 42 
reads (BAM file). We obviously expect here a very high correspondence between sequence and 43 
genotype data. To do so, QTLtools first enumerates all polymorphic sites passing various quality 44 
filters (such as minimal coverage, imputation quality, minor allele frequency, etc …). Then, for each 45 
individual in the VCF file, it counts: 46 

A. The number of homozygous genotypes REF/REF covered by reads carrying only the REF 47 
allele. 48 

B. The number of homozygous genotypes REF/REF covered by at least one read carrying only 49 
the ALT allele. 50 

C. The number of homozygous genotypes ALT/ALT covered by reads carrying only the ALT 51 
allele. 52 

D. The number of homozygous genotypes ALT/ALT covered by at least one read carrying only 53 
the REF allele. 54 

E. The number of heterozygous genotypes REF/ALT covered by reads carrying either the REF or 55 
ALT alleles. 56 

F. The number of heterozygous genotypes REF/ALT covered by reads carrying only the REF 57 
allele or the ALT allele. 58 

Here REF and ALT denote the reference and alternative alleles carried by an individual at a given 59 
position: REF means that a allele match the reference genome, while ALT means that it differs. Then, 60 
QTLtools computes the two following concordance measures: 61 

1.  At homozygous genotypes by C0 = (A+B)/(A+B+C+D) 62 
2. At heterozygous genotypes by C1 = E/(E+F) 63 

Finally, these measures are reported for each individual in the output file together with other 64 
secondary statistics that are not worth to mention here. A good practice to rapidly identify the set of 65 
individuals for which there is a match between the sequence and the genotype data is to visualize 66 
the two concordance measures on a scatter plot (similarly to Hoen et al. [6]). We applied this 67 
method on all available Geuvadis RNA-seq BAM files and observed that matches appear as points 68 
close to 100% concordance for both measures whereas mismatches as points far from this optimal 69 
position (Supplementary Fig. 3). Points with unexpected locations can suggest various issues in the 70 
sequence data. To illustrate this, we simulated 3 different possible and realistic sequencing issues on 71 
a subset of 20 Geuvadis BAM files. First, we simulated sample mislabeling by swapping randomly 72 
two sample IDs and observed the effect on the scatter plot (Supplementary Fig. 1A). Second, we 73 
simulated sample contamination by adding to a particular BAM file (i.e. the contaminated sample) 74 
various percentages (1% to 50%) of another BAM file (i.e. the contaminant sample) to illustrate the 75 
ability of our method to detect such cases (Supplementary Fig. 1B). Finally, we simulated 76 



amplification biases by extracting all unique reads (i.e. non-duplicated reads) in a BAM file and then 77 
by sampling from various subsets of them (1% to 100% of the unique reads) enough reads to match 78 
the original BAM file size. This allowed us to characterize the performance of our method to detect 79 
amplification biases (Supplementary Fig. 1C). 80 

Supplementary Note 3: Quantifying gene expression 81 

For convenience, QTLtools can also quantify gene expression given a RNA-seq BAM file and a gene 82 
annotation GTF file such as those provided by GENCODE [1]. For the moment, the quantification 83 
module is only designed to handle RNA-seq data and cannot process optimally ChIP-seq data since 84 
this task requires additional processing related to fragment length estimation. Specifically, QTLtools 85 
quantifies in turn each exon listed in the GTF file by counting the number of overlapping reads that 86 
pass the multiple QC criteria described above (Supplementary Note 1). Then, it offers functionalities 87 
to normalize the resulting read counts by the library size and to sum up the read counts per gene. As 88 
output, both raw read counts or counts per kilobase per million of reads (RPKM) are reported in 89 
separate BED files. QTLtools can either quantify one sample at a time or multiple of them 90 
simultaneously in order to directly build a quantification matrix. In addition, it includes options to 91 
filter reads exhibiting too many mismatches with the reference genome and merge overlapping 92 
exons when necessary to avoid double counting some sequencing reads. 93 

Supplementary Note 4: Performing Principal Component Analysis 94 

An important step in any molecular QTL study relies on studying the internal structure of the data 95 
that best explains its variance. In other words, it is crucial to study population stratification prior to 96 
any other analysis. Principal Component Analysis (PCA) is a well-established method to achieve this 97 
task and capture multiple data features that need to be accounted for in any downstream analysis. 98 
For instance, a PCA on genotype data is often used to detect and quantify population structure (i.e. 99 
population-specific variations in allele frequencies) [7], while a PCA on gene expression is known to 100 
capture technical variance (e.g. date of sequencing, library preparation, etc …). In practice, the first 101 
principal components (PCs) of each can be used to either exclude outliers (i.e. data point too distant 102 
from sample distribution) or capture various confounding factors that can boost discovery power 103 
when accounted for in association testing. QTLtools allows performing PCA on both genotype and 104 
phenotype data. When relevant, the input data can be centered, scaled and trimmed for MAF and 105 
LD in the case of genotype data. When applied on a trimmed version of the Geuvadis genotype data, 106 
the PCA performed with QTLtools gives strictly equivalent results than what can be obtained with 107 
the R/princomp or R/prcomp functions but it is ~20 times faster (data not shown) to get the results. 108 
From this analysis, we could not see any clear evidence of unexpected stratification in both gene 109 
expression and genotype data (Supplementary Fig. 5). 110 

Supplementary Note 5: Covariates in association testing 111 

To correct for covariates (user- or PCA-derived) in association testing, QTLtools residualizes all the 112 
phenotype data (e.g. expression levels) for covariates using linear regressions as implemented in the 113 
R/lm function. Prior to any association testing, it basically produces a new phenotype matrix with 114 
quantifications that are independent of any of the covariates. In practice, we always run a PCA on 115 
the phenotype data before the QTL mapping stage and produce from this multiple sets of covariates 116 
including different numbers of PCs. We then repeat the QTL mapping stage across these multiple 117 



sets of covariates in order to determine the number of PCs that maximizes the number of 118 
discoveries. Concerning the genotype data, we systematically use the 3 first PCs to correct for 119 
population stratification. In addition to this, QTLtools can also enforce the per-phenotype 120 
quantifications to match a normal distribution with mean 0 and standard deviation 1 in order to 121 
remove any outlier effects. This is done similarly to the R/rntransform function in the GENABEL 122 
package [8]. 123 

Supplementary Note 6: Replication of the QTLs in GTEx 124 

To demonstrate that the additional discoveries we made using conditional analysis are genuine, we 125 
used gene expression levels and genotype data derived from 115 GTEx Lymphoblastoid Cell Lines 126 
(LCL) [9]. To do so, we test for association all gene-variant pairs in cis (1Mb window) using the same 127 
set of covariates used in the GTEx project and then extracted all those that we identified as 128 
significant through conditional analysis in Geuvadis. In total, we could extract ~75% and ~72% of the 129 
Geuvadis primary and secondary eQTLs, respectively; the remaining ones involving genetic variants 130 
that have not been genotyped in GTEx. We then looked at the P-values in GTEx for all these 131 
overlapping eQTLs, produced histograms (Supplementary Fig. 14) and estimated the proportion of 132 
them being significant using the PI1 statistic of the R/qvalue package [6]. Note here that the 133 
replication rates are constrained by the fact that the sample size in GTEx (n=115) that is much 134 
smaller than the one used for discovery (Geuvadis; n=358).   135 

Supplementary Note 7: Integrating QTLs with GWAS 136 

We have previously described a methodology called Regulatory Trait Concordance (RTC) score to 137 
assess whether a GWAS variant is tagging the same functional variant as a regulatory variant [10]. In 138 
general, a high level of linkage disequilibrium (LD) between a molQTL and a GWAS hit is not enough 139 
to claim that they tag the same underlying functional variant. However, if they actually do, we 140 
expect that removing the GWAS effect in the molecular phenotype will substantially decrease the 141 
molQTL association. The RTC score quantifies exactly this: the change in statistical significance that 142 
removing the effect of the GWAS hit has on the molQTL association. And to see how important this 143 
change is, we compare it to what we get when we remove the effect of any of the variants within 144 
the same genomic region. Specifically, for a molQTL and GWAS variant located in the same genomic 145 
region in between two recombination hotspots, we proceed as follows: 146 

1. We create a new molecular phenotype by removing the effect of the GWAS hit. In particular, 147 
we residualize the phenotype for the GWAS hit; that is we use as new phenotype the 148 
residuals we get when we regress the GWAS hit from the phenotype. 149 

2. We test for association between the molQTL and the new phenotype obtained in step (1). 150 
3. We delimit the genomic region of interest by picking up the interval in between two 151 

recombination hotspots that includes both the molQTL and the GWAS hit. Let assume this 152 
region contains in total L variant sites. 153 

4. We create L pseudo-phenotypes by residualizing each of the L variants within the same 154 
genomic region. 155 

5. We test for association between the molQTL and the L pseudo-phenotypes which results in a 156 
vector of L P-values that we sort. 157 



6. We determine the rank of the association we get in step (2) within the sorted vector we got 158 
in step (5) and divide it by L: this defines a RTC score that ranges from 0 to 1. 159 

When the RTC score is close to 1, it means that accounting for the GWAS hit has a dramatic effect on 160 
the molQTL association that is actually larger that doing so for any other variant nearby. This 161 
therefore means that it is very likely that the GWAS hit and the molQTL actually tag the same 162 
underlying functional variant. In contrast, when the RTC score is close to 0, this means that 163 
accounting for the GWAS hit does not have any major effect on the molQTL association and that 164 
they probably tag two distinct functional variants. In practice, we consider that two variants tag the 165 
same function when their RTC score is above 0.9.  166 

We run this RTC method on (1) the gene-level eQTL data we got for Geuvadis and (2) the GWAS hits 167 
from the NHGRI GWAS catalog released on the 2016-06-12 and populated with EFO ontologies for 168 
diseases. For each ontology, we measured the number of GWAS hits tagged by at least an eQTL with 169 
a RTC score > 0.9, and managed to tag a substantial number of the GWAS hits with eQTLs we 170 
discovered in Geuvadis (Supplementary Fig. 17). 171 
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