

Supplementary Figure 1. The structure of Taxol and NMR spectra of the catalytic products of the recombinant DBAT (a.The structure of Taxol. b.The ¹H-NMR spectrum of product. c. The ¹³C-NMR spectrum of product.). Taxol from the 50 ml reaction system was purified by HPLC then dissolved in CDCl₃ and confirmed by ¹H-NMR and ¹³C-NMR analysis.

b

Supplementary Figure 2. Sequence and structure alignments of DBAT with other BAHD members. (a) Sequence alignment of DBAT with other BAHD members. The two conserved HXXXD and DFGWG motifs are marked in red boxes; the identical and similar residues are colored in green and pink, respectively. Accession numbers are as follows: DBAT, Q9M6E2.1; HCT, PDB: 4G22; HCT, PDB: 4KE4; PvHCT2, PDB: 5FAL; Vinorine synthase, PDB: 2BGH; Dm3MaT, PDB: 2E1U. (b) The structure of the HCT that was used as a template for DBAT homology modeling. (c) The structure of the predicted DBAT. (d) Structure alignment of DBAT with HCT (PDB: 4G22). HCT was colored in yellow, DBAT was colored in green.

Supplementary Figure 3. Evaluation of the predicted structure of DBAT by Ramachandran plot.

Supplementary Figure 4. Distribution of hydrophobicity and electronegativity residues in HCT and DBAT. (a) The front side of HCT. (b) The back side of HCT. (c) The front side of DBAT. (d) The back side of DBAT. (e) Electronegativity residue analysis of HCT. (f) Electronegativity residue analysis of DBAT. Residues were colored from red for negative potential, through white for near neutral, to blue for positive potential.

Supplementary Figure 5. The front side (left) and back side(right) of the predicted DBAT (DFGWG motif was colored in red, the predicted acyl acceptor substrate pocket was colored in green).

Strains	Substrate Concentration (mg ml ⁻¹)	Reaction volume (ml)	XDT conversion rate (%)	DT yield (mg ml ⁻¹)	References
Moraxella sp.	0.25	2	~100	0.23	[23]
Leifsonia shinshuensis	0.5	2	~100	0.4	[24]
Enterobacter sp.	2.0	25	45	0.76	[25]
Cellulosimicrobium cellulans	0.5	100	91	0.3~0.4	[26]
Recombinant Pichia pastoris	15	1,000	~83	10.58	[32]
Recombinant Pichia pastoris	15*	10,000	~83	9.82**	[32]

Supplementary Table 1. Comparison on the bioconversion of XDT to DT among different strains

*XDT_{ex} (containing 71.08% XDT, 10.67% 7- β -xylosyl-10-deacetylcepholamanine and 12.05% 7- β -xylosyl-10-deacetyltaxol C, w/w). **DT_{ex} (DT, 7.54; 10-deacetylcepholamanine, 1.05; 10-deacetyltaxol C, 1.23; mg ml⁻¹).

Enzyme activity	Taxus cuspidata	Taxus brevifolia	Taxus x media	Taxus canadensis	Taxus baccata	Taxus wallichiana var.
(U mg ⁻¹) (10-DAB)	206.6±6.7	214.9±15.6	198.7±7.5	41.5±8.2	1.1±0.4	215.7±8.5
(U mg ⁻¹) ×10 ⁻¹ (DT)	2.60±0.21	2.64±0.10	1.79±0.06	0.38±0.04	0.03±0.06	1.82±0.06

Supplementary Table 2. Specific activities of the six recombinant DBATs

The data represent the means \pm s.d., n=3.

Position	$\delta_{\rm H}$,mult(<i>J</i> in Hz)	δ_{C}	Position	$\delta_{\rm H}$,mult(J in Hz)	δ_{C}
1		78.9	4-O-C*OCH ₃		170.3
2	5.68,d (7.0)	74.9	4-O-COC*H ₃	2.36,s	22.6
3	3.79,d (7.0)	45.6	10-O-C*OCH ₃		171.3
4		81.1	10-O-COC*H ₃	2.28,s	20.8
5	4.94,dd (9.0, 2.0)	84.3	1'		172.8
6	2.55, m, 1.88,m	35.6	2'	4.80, brs	73.1
7	4.40,dd (9.0, 6.0)	72.2	3'	5.78,d (9.0, 2.0)	55.0
8		58.6	4'		137.9
9		203.6	5'and9'	7.49,d (7.5)	127.0
10	6.27,s	75.5	6'and8'	7.43,t (7.5) ^a	128.7
11		133.1	7'	7.36,d (7.5)	128.4 ^a
12		142.0	1"		167.1
13	6.23,dd	72.4	2"		133.5
14	2.31,m, 2.27,m	35.7	3"and7"	7.73,d (7.5)	127.1
15		43.2	4"and6"	7.42,t (7.5) ^a	129.0 ^a
16	1.24,s	26.8	5"	7.51,d (7.5) ^a	131.9
17	1.14,s	21.8	1'''		167.0
18	1.80,s	14.8	2'''		128.4 ^a
19	1.69,s	9.5	3""and7""	8.13,d (7.5)	130.2
20	4.30,d(10.5), 4.19,d	76.5	4""and6""	7.52,t (7.5) ^a	129.1 ^a
	(10.5)				
NH	6.98,d (9.0)		5'''	7.61,d (7.5)	133.7

Supplementary Table 3. 1 H (500 MHz) and 13 C (125 MHz) NMR data for product (2) (CDCl₃)

^aOverlapping signals.

	DT			10-DAB
-	U mg ⁻¹ (×10 ⁻²)	Relative activity(%)	$\mathrm{U}~\mathrm{mg}^{-1}~(imes 10)$	Relative activity
Con	26.00(±1.12)	100.00	20.66(±0.67)	100.00
S351A	25.45(±1.91)	97.87	19.56(±1.27)	94.69
G38A	37.69(±0.88)**	144.95	18.82(±0.51)	91.09
S396A	23.59(±1.32)	90.72	18.99(±0.48)	91.91
R40A	21.06(±0.79)	81.00	18.82(±0.96)	91.08
N353A	15.28(±0.44)	58.77	17.64(±0.22)	85.38
E41A	14.48(±0.07)	55.71	14.81(±0.46)	71.70
C165A	16.15(±0.26)	62.13	13.16(±0.36)	63.68
F160A	6.34(±0.07)	24.37	12.50(±0.09)	60.49
F301A	41.38(±1.12)**	159.17	9.75(±0.32)	47.18
P37A	2.78(±0.02)	10.71	8.00(±0.10)	38.72
F400A	1.32(±0.02)	5.07	3.58(±0.02)	17.32
F44A	0.22(±0.01)	0.85	1.89(±0.01)	9.15
G359A	2.84(±0.03)	10.92	1.67(±0.01)	8.06
I164A	0.19(±0.01)	0.72	0.25(±0.01)	1.20
G361A	ND	ND	ND	ND
R363A	ND	ND	ND	ND

Supplementary Table 4. Activities of DBAT and its mutants obtained by alanine scaning against 10-DAB and DT

The data represent the means \pm s.d., n=3. *P<0.05 vs Control, **P<0.01 vs Control (Student's *t*-test). ND: Not detected.

	$U \text{ mg}^{-1} (\times 10^{-2})$	Relative activity (%)
DBAT	26.00(±1.12)	100.00
G38R	56.88(±3.11)**	218.77
G38S	54.42(±2.02)**	209.32
G38D	49.79(±1.76)**	191.52
G38H	47.01(±0.97)**	180.81
G38A	41.44(±2.98)**	159.38
G38N	28.40(±1.70)	109.21
G38T	24.70(±0.67)	95.01
G38P	22.37(±0.16)	86.04
G38M	21.62(±0.27)	83.16
G38Q	17.37(±1.10)	66.79
G38E	16.79(±0.08)	64.59
G38W	13.21(±0.09)	50.80
G38Y	11.10(±0.04)	42.68
G38V	11.02(±0.01)	42.37
G38C	10.68(±0.10)	41.07
G38I	9.99(±0.01)	38.42
G38L	7.71(±0.04)	29.66
G38F	5.67(±0.01)	21.81
G38K	ND	ND

Supplementary Table 5. Activities of Gly³⁸ saturation mutants against DT

The data represent the means \pm s.d., n=3. *P<0.05 vs Control, **P<0.01 vs Control (Student's t-test). ND: Not detected.

	U mg ⁻¹ (×10 ⁻²)	Relative activity (%)
 DBAT	26.00(±1.12)	100.00
F301V	74.10(±8.45)**	285.00
F301C	47.22(±3.42)**	181.60
F301A	41.60(±1.98)**	160.00
F301M	35.10(±1.95)*	135.00
F301L	33.18(±1.69)*	127.62
F301T	31.20(±1.52)*	120.00
F301S	30.06(±1.37)	115.62
F301Y	25.47(±1.02)	97.96
F301G	18.80(±0.54)	72.30
F301R	13.95(±0.31)	53.67
F301H	10.02(±0.15)	38.52
F301W	7.23(±0.08)	27.79
F301I	7.02(±0.09)	27.00
F301K	0.56(±0.02)	2.16
F301P	0.11(±0.02)	0.41
F301D	0.16(±0.01)	0.60
F301Q	0.10(±0.01)	0.40
F301E	0.16(±0.02)	0.60
F301N	0.13(±0.02)	0.50

Supplementary Table 6. Activities of Phe³⁰¹ saturation mutants against DT

The data represent the means±s.d., *n*=3. **P*<0.05 vs Control, ***P*<0.01 vs Control (Student's *t*-test).

Supplementary Table 7. Yields of Taxol in the two enzyme coupled catalytic system

Volume	1 ml	10 ml	50 ml
Taxol yield $(\mu g m l^{-1})$	657.32±13.15	637.24±5.10	635.35±6.27

The data represent the means \pm s.d., n=3.

Supplementary Table 8. Cytotoxicities of Taxol and its analogues against human cancer cells (MTT method)

Compounds			$IC_{50}(\mu M)$			
Compounds	HCT116	NCI-H460	MGC803	HepG2	MCF-7	
Taxol	0.0109	0.0211	0.00772	0.0691	0.00930	
DT	0.0780	0.482	0.0508	0.482	0.0972	
XDT	0.476	3.22	0.491	5.42	3.81	

Note: HepG2, human hepatocellular liver carcinoma cell line; MCF-7: human breast carcinoma cell line; NCI-H460: human lung carcinoma cell line; HCT116: human colon carcinoma cell line; MGC803: human stomach carcinoma cell line.

Time (min)	Acetonitrile (%)	Water (%)
0	28	72
15	40	60
30	40	60
33	100	0
43	100	0
46	28	72
51	28	72

Supplementary Table 9. The gradient elution conditions for 10-DAB and baccatin III analysis

Time (min)	Acetonitrile (%)	Water (%)
0	28	72
15	40	60
16	44	56
26	44	56
36	48	52
38	100	0
48	100	0
49	28	72
59	28	72

Supplementary Table 10. The gradient elution conditions for XDT, DT and Taxol analysis

Supplementary Table 11. The linear equations of baccatin III, DT and Taxol

	Linear equations	Correlation coefficient
Baccatin III	Y=43291X+35693	R ² =0.9999
DT	Y=66664X+175819	R ² =0.9995
Taxol	Y=148089X+41221	R ² =0.9996

Primers	Sequences $(5' \rightarrow 3')$, the corresponding mutant bases were labeled underlined	
27 45		
3 / AF		
3/ AK		
38AF		
38AR		
40AF	CCAGGGGTG <u>GCA</u> GAAAACATT	
40AR	AAAIGITTIC <u>IGC</u> CACCCCIG	
41AF	CAGGGGTGAGA <u>GCA</u> AACAITT	
41AR	AAAATGTT <u>TGC</u> TCTCACCCCTG	
44AF	AGAAAACATT <u>GCT</u> AACACCTTG	
44AR	AAGGTGTT <u>AGC</u> AATGTTTTCT	
160AF	GGGTGAGT <u>GCC</u> TGCCATGGTATATG	
160AR	CCATGGCA <u>GGC</u> ACTCACCCCTAC	
162AF	TTTCTGC <u>GCT</u> GGTATATGTGATG	
162AR	CATATACC <u>AGC</u> GCAGAAACTCACC	
164AF	CCATGGT <u>GCA</u> TGTGATGGACTAG	
164AR	CATCACA <u>TGC</u> ACCATGGCAGAAAC	
165AF	CATGGTATA <u>GCT</u> GATGGACTAGG	
165AR	AGTCCATCAGCTATACCATGGCAG	
301A F	GGATACTACGGTAAT <u>GCT</u> GTTGG	
301A R	ATACGGTACCAACAGCATTACC	
351AF	TCAGATGAG <u>GCT</u> ATCAATTATG	
351AR	TAATTGAT <u>AGC</u> CTCATCTGATC	
353AF	TGAGAGTATC <u>GCT</u> TATGAAAAC	
353AR	TGTTTTCATA <u>AGC</u> GATACTCTC	
359AF	AACATAGTT <u>GCA</u> TTTGGTGAT	
359AR	CACCAAA <u>TGC</u> AACTATGTTTTCA	
361AF	GTTGGATTT <u>GCT</u> GATCGAAG	
361AR	CCTTCGATCAACCAACT	
363AF	TTTGGTGAT <u>GCA</u> AGGCGATTG	
363AR	AATCGCCT <u>TGC</u> ATCACCAAATC	
396AF	AGTCGTGCAA <u>GCT</u> TATTTTCTTTTC	
396AR	GAAAATA <u>AGC</u> TTGCACGACTGAAAC	
400AF	TATTTTCTT <u>GCC</u> ATACGACCTCC	
400AR	GAGGTCGTAT <u>GGC</u> AAGAAAATAAC	
38NF	TACCA <u>NNK</u> GTGAGAGAAAACATT	
38NR	TCTCTCAC <u>MNN</u> TGGTAGATTGTC	
301NF	CGGTAAT <u>NNK</u> GTTGGTACCGTATG	
301NR	GTACCAACMNNATTACCGTAGTAT	

Supplementary Table 12. Primer sequences. The primers were used for construction the alanine mutants and saturation mutants