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Supplementary Figures 

 

Supplementary Figure 1: IAR slope under exponential (a) and power (b) correlation-

distance functions. The overall slope of IAR decreases with local correlation (ρ1) and increases 

with the exponential decay rate (1/L) or the power-law exponent (α). The landscape consists of 

128×128 grids. The IARs are constructed following the procedures described in the main text, 

and the slopes are from least-square fits between invariability and area on a log-log scale. 
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Supplementary Figure 2: IARs under incomplete spatial sampling. Black line corresponds to 

the IAR of the whole landscape. The colored lines correspond to IARs under different sampling 

intensities. Note the area (x-axis) is obtained by multiplying the number of sampled grids and the 

average “represented area” of each sample. For instance, when the sampling intensity is 1/4 of 

the whole landscape, each sampled grid is rescaled to represent an area of 4 grids. For each level 

of sampling intensities, we conduct 100 random samplings (i.e. randomly sample a 

corresponding proportion of grids from the whole landscape). The colored lines shows the 

average IARs across these 100 repeats.  
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Supplementary Figure 3: The effect of observation length on IARs and correlation-distance 

relationships. (a) IARs of bird community biomass during 1990-2010 (red) and 1990-2000 

(blue). Area is measured by the number of sampling routes (total number: 406). The lines show 

median invariability across 406 replicates, and the red shade shows 25% and 75% quantiles. (b) 

Correlation-distance relationships of bird community biomass during 1990-2010 (red) and 1990-

2000 (blue). Points represent the average correlation of total community biomass corresponding 

to different distance categories. The red and blue lines are fitted power functions: ρ(d) = 0.45×d-

0.55 (red) and ρ(d) = 0.30×d-0.40 (blue). (c,d) The intercept (c) and slope (d) of species-level IARs 

during 1990-2000 vs. 1990-2010. Each black point represents one bird species, and the red 

squares represent the values for community-level data. 
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Supplementary Figure 4: Changes in IAR as the model metapopulation approaches a 

regime shift. (a) Equilibrium values of local population biomass as a function of the harvesting 

rate c, in the absence of dispersal and environmental perturbations. Local populations undergo a 

catastrophic shift from high biomass to low biomass as c increases beyond a tipping point. For 

instance, when the local growth rate r = 1, the tipping point occurs at the critical value c* = 2.604. 

(b) IARs under different harvesting rates. For each value of c, we ran the metapopulation model 

to its dynamical equilibrium and calculated the invariability of biomass for different number of 

patches. Note that we plot up to 256 patches (i.e. half of the total N=512) because the largest 

pairwise distance in the ring landscape is 256. See panel (c) for colour codes. (c) Relative IARs 

under different harvesting rates. Relative IARs are obtained by dividing invariability at all scales 

by local invariability (I(1)). These relative IARs are convenient for comparing the shape and 

slope of IARs across scenarios. (d) Local invariability (I(1)) or the intercept of IAR as the 

system approaches the regime shift. The x-axis is the difference between the harvesting rate (c) 

and its critical value at the global tipping point (c* = 2.0615) and decreases from left to right as 

the metapopulation gets closer and closer to the global tipping point. Local invariability 

decreases as c approaches its critical value. This decrease is faster away from the bifurcation (e.g. 

c* - c > 0.1 or left of the dashed grey line). (e) Initial slope of IAR as the system approaches the 

regime shift. Initial slope is calculated by the log-log slope between areas 1 and 2. The initial 

slope decreases as c approaches its critical value. This decrease is faster away from the 

bifurcation (e.g. c* - c > 0.1 or left of the dashed grey line). (f) Final slope of IAR as the system 

approaches the regime shift. The final slope is calculated by the log-log slope between areas 128 

and 256. It decreases as c approaches its critical value. This decrease is faster closer to the 

bifurcation (e.g. c* - c < 0.1 or right of the dashed grey line). 



5 

 

 

Supplementary Figure 5: Distribution of the sampling routes of North American Breeding 

Bird Survey. Grey points show all the routes that had been surveyed at least once since 1966. 

Black and blue points show 555 routes that have no missing records over the period 1990-2010. 

Among them, 406 routes (blue points) were located east of 100 oW, with an average distance of 

one route to its nearest neighbor ~ 50 km. The other 149 routes (black points) were located west 

of 100 oW, with an average distance ~ 100 km. 
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Supplementary Figure 6: IARs in the five continents. The map shows the five continents, and 

the red dots within them represent the randomly selected 500 starting points to generate IARs. 

The five inserted plots shows the resulting 500 IARs for respective continents, and the colored 

lines and shade represent the median and the 25% and 75% quantiles, respectively. 
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Supplementary Note 1: Theoretical analyses of the slope of IAR 

 

Deriving the asymptotic slope of IAR 

Here we derive the asymptotic slope (zasym) of IAR by calculating the log-log slope of IAR as 

the area A goes to infinity: 

𝑧asym =
ln 𝐼(𝐴)

ln 𝐴
=

ln[𝐼1∙
𝐴

(𝐴−1)𝜌̅𝐴+1
]

ln 𝐴
≅ −

ln(𝜌̅𝐴+𝐴−1)

ln 𝐴
    (S1) 

Eq. (S1) shows that, in order to obtain zasym, we need to derive 𝜌̅𝐴, i.e. the average pairwise 

correlation. Consider a square area A = N2 (i.e. a group of grids on {1, 2, …, N} × {1, 2, …, N}), 

we have: 

𝜌̅𝐴 =
1

𝐴(𝐴 − 1)
∑ 𝜌x,y

𝑥,𝑦∈𝐴;𝑥≠𝑦

=
1

𝑁2(𝑁2 − 1)
∑ ∑ ∑ ∑ 𝜌 (√(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2)

𝑁

𝑦2=1

𝑁

𝑥2=1

𝑁

𝑦1=1

𝑁

𝑥1=1

 

=
4

𝑁2(𝑁2−1)
∑ ∑ [(𝑁 + 1 − 𝑘)(𝑁 + 1 − 𝑙) ∙ 𝜌(√(𝑘 − 1)2 + (𝑙 − 1)2)]𝑁

𝑙=2
𝑁
𝑘=1    (S2) 

where ρ(.) represents the correlation-distance relationship. Below we derive 𝜌̅𝐴 and zasym under 

two correlation functions. 

 

(i) Exponential function: ρ(d) = ρ1×e-(d-1)/L 

Under the exponential decay function, we have: 

𝜌̅𝐴 =
4𝜌1

𝑁2(𝑁2−1)
∑ ∑ [(𝑁 + 1 − 𝑘)(𝑁 + 1 − 𝑙) ∙ 𝑒−

√(𝑘−1)2+(𝑙−1)2−1

𝐿 ]𝑁
𝑙=2

𝑁
𝑘=1          (S3) 

Because 
1

√2
(𝑥 + 𝑦) ≤ √𝑥2 + 𝑦2 ≤ 𝑥 + 𝑦 (when x, y > 0), we have: 

       
4𝜌1

𝑁2(𝑁2−1)
∑ ∑ [(𝑁 + 1 − 𝑘)(𝑁 + 1 − 𝑙) ∙ 𝑒−

(𝑘+𝑙−2)/√2−1
𝐿 ]𝑁

𝑙=2
𝑁
𝑘=1 ≤ 𝜌̅𝐴 ≤

4𝜌1

𝑁2(𝑁2−1)
∑ ∑ [(𝑁 + 1 − 𝑘)(𝑁 + 1 − 𝑙) ∙ 𝑒−

𝑘+𝑙−3
𝐿 ]𝑁

𝑙=2
𝑁
𝑘=1   (S4) 

Denote 𝑎 = 𝑒−
1
𝐿, we can derive the right hand of Eq. S4 (recalling A = N2): 

𝑅𝑖𝑔ℎ𝑡 ℎ𝑎𝑛𝑑 𝑜𝑓 (𝑆4)  =  
4𝜌1𝑒

3
𝐿

𝑁2(𝑁2 − 1)
[𝑁∙

𝑎

1−𝑎
+

𝑎2(1−𝑎𝑁)

(1−𝑎)2 ] ∙ [𝑁∙
𝑎2

1−𝑎
+

𝑎2(1−𝑎𝑁)

(1−𝑎)2 ] ≅
4𝜌1𝑒

3
𝐿

𝑁2 − 1
∙

𝑎3

(1−𝑎)2 ≜
𝐶1

𝐴
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where the approximate follows when N is large. Similarly, we can derive the left hand of Eq. S4: 

𝐿𝑒𝑓𝑡 ℎ𝑎𝑛𝑑 𝑜𝑓 (𝑆4)  = ≈
4𝜌1𝑒

√2+1
𝐿

𝑁2 − 1
∙

𝑏3

(1−𝑏)2 ≜
𝐶2

𝐴
 

where 𝑏 = 𝑒
−

1

√2𝐿. Substituting 𝐶2𝐴−1 ≤ 𝜌̅𝐴 ≤ 𝐶1𝐴−1 into Eq. S1, we have: 

−
ln(𝐶1𝐴−1+𝐴−1)

ln 𝐴
≤ 𝑧asym ≤  −

ln(𝐶2𝐴−1+𝐴−1)

ln 𝐴
          (S5) 

As A goes to infinity, the left and right hands of Eq. S5 both converge to 1. Thus, 𝑧asym = 1. 

 

(ii) Power function: ρ(d) = ρ1×d-α 

Under the power-decay function, we have: 

𝜌̅𝐴 =
4𝜌1

𝑁2(𝑁2−1)
∑ ∑ [(𝑁 + 1 − 𝑘)(𝑁 + 1 − 𝑙) ∙ (√(𝑘 − 1)2 + (𝑙 − 1)2)

−𝛼

]𝑁
𝑙=2

𝑁
𝑘=1         (S6)

 

From the above equation, we have: 

𝜌̅𝐴 <
4𝜌1

𝑁2(𝑁2 − 1)
∑ ∑[𝑁2 ∙ (√𝑁2 + 𝑁2)

−𝛼
]

𝑁

𝑙=2

𝑁

𝑘=1

≅ 22−
𝛼
2𝜌1𝑁−𝛼 ≜ 𝑐1𝑁−𝛼

 

and 

𝜌̅𝐴 >
4𝜌1

𝑁2(𝑁2 − 1)
∑ ∑ [(𝑁 + 1 − 𝑘)(𝑁 + 1 − 𝑙) ∙ (√(𝑘 − 1)2 + (𝑙 − 1)2)

−𝛼
]

𝑁/2

𝑙=2

𝑁/2

𝑘=1

>
4𝜌1

𝑁2(𝑁2 − 1)
∑ ∑ [

𝑁

2
∙

𝑁

2
∙ (√(

𝑁

2
)

2

+ (
𝑁

2
)

2

)

−𝛼

]

𝑁/2

𝑙=2

𝑁/2

𝑘=1

≅ 2−2−
𝛼
2𝜌1𝑁−𝛼 ≜ 𝑐2𝑁−𝛼

 

Recall A = N2, we have: c2A−α/2 < 𝜌̅
𝐴

< c1𝐴−α/2.  Substitute into Eq. S1, we have:  

−
ln(𝑐2𝐴

−
𝛼
2 +𝐴−1)

ln 𝐴
< 𝑧asym < −

ln(𝑐1𝐴
−

𝛼
2 +𝐴−1)

ln 𝐴
     (S7) 

As A goes to infinity, both sides of Eq. S7 converge to the below limit: 

lim
𝐴→∞

−ln(𝑐𝐴
−

𝛼
2 +𝐴−1)

ln 𝐴
= lim

𝐴→∞

𝛼𝑐

2
𝐴

−
𝛼
2 +𝐴−1

𝑐𝐴
−

𝛼
2 +𝐴−1

= {
𝛼

2
𝛼 < 2

1 𝛼 ≥ 2
    (S8) 

which is independent of c. Therefore, we have: 
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𝑧asym = {
𝛼

2
𝛼 < 2

1 𝛼 ≥ 2
       (S9) 

 

The triphasic curve of IAR 

In the main text, we show that under the exponential correlation-distance function, IARs 

exhibit triphasic curves. As we have demonstrated above, IARs have asymptotic slopes of 1 

under this scenario. This explains the third-stage steep increase of stability with area. Below we 

make some explanations on the first two stages of such triphasic curves.  

We first consider a special scenario, in which between-patch correlation always equal ρ1 

regardless of distance (where 0 < ρ1 < 1). Following Eq. 1 in the main text, IAR can be expressed 

as: 

𝐼(𝐴) = 𝐼1 ∙
𝐴

(𝐴−1)𝜌1+1
      (S10) 

As shown in the Methods, the initial slope is given by: zini = log2(2/(1+ ρ1)), which lies between 0 

and 1. As the area A goes to infinity, we have: I(∞) = I1/ρ1. In other words, invariability increases 

with area at the beginning and converges to a constant when A is very large, i.e. the asymptotic 

slope of IAR is 0 (Supplementary Note Fig. 1a). This result can be understood more intuitively in 

an ecological context. Consider a landscape with regularly distributed square patches. The 

biomass dynamics of each local patch i (Xi) is governed by both environmental and demographic 

stochasticity: Xi = n0 + E + Di. Here, n0 is the temporal mean biomass; E and Di are random 

variables (mean: 0; variance: ve and vd), which represent, respectively, landscape-level 

environmental stochasticity and patch-level demographic stochasticity. We assume E and Di are 

independent of each other, and Di and Dj are also independent. Intuitively, we can expect that the 

effect of demographic stochasticity decreases with the area considered. So, as the area becomes 

large, the invariability of biomass should converge at some point that simply reflects the effect of 
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environmental stochasticity. In mathematical language, this writes: the invariability of one patch 

is: S1 = n0
2/(ve + vd); invariability of two patches is: S1 = n0

2/(ve + vd/2); … invariability of A 

patches is: n0
2/(ve + vd/A). Thus, IARs exhibit a faster increase with area at the beginning; the 

increase slows down, and the invariability converges to n0
2/ve when A is large. 

Now we come back to the scenario of exponential correlation-distance functions. Within 

the area L2, the between-patch correlation declines with distance very slowly (e.g. at a distance L, 

the between-patch correlation is 0.37×ρ1, still in the same magnitude of ρ1). Thus, if L is large, 

we can expect that IARs exhibit a fast increase at the beginning and followed by a “flat phase” 

near L2. Note that because the between-patch correlation is often lower than ρ1 (though always at 

the same magnitude with ρ1), invariability at this “flat phase” is larger than 1/ρ1 (Supplementary 

Note Fig. 1b).  

 

Supplementary Note Figure 1: IARs in two-dimensional landscapes. (a) IARs under a 

constant between-patch correlation (see Eq. S10 in Supplementary Note 2). Blue lines show 

horizontal lines corresponding to 1/ρ1. (b) IARs under exponential correlation-distance functions, 

same as in Fig. 1A. Blue lines show horizontal lines corresponding to 1/ρ1.  
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Supplementary Note 2: Sampling issues in IAR 

In empirical analyses, the sampling scheme related to both spatial and temporal scales may affect 

the calculation of invariability and hence IAR. The main focus of this study is on spatial scale. 

Spatial scale can be represented by three aspects: extent, resolution, and sampling intensity. 

Since our study explores space continuously, the extent and resolution are represented by the 

largest and smallest area, respectively, on the x-axis of IAR. For the third aspect, i.e. sampling 

intensity, our paper has examined IARs on both continuous landscapes (i.e. flush grids), in our 

model and in the primary productivity data, and non-continuous ones (i.e. spatially separated 

grids due to incomplete sampling), in the bird data. In this Supplementary Note, we will explore 

the influence of sampling intensity on IAR with our theoretical model. As we will show, 

incomplete spatial sampling could potentially increase the slope of IAR. 

Temporal sampling scheme might also influence the calculation of invariability and its 

scaling patterns, as previous studies suggested1-3. Temporal scale can similarly be represented by 

three aspects: observation length, sampling resolution, and sampling intensity. In this 

Supplementary Note, we will investigate the effect of observation length on IARs of bird 

biomass. As we will show, observation length can slightly alter the intercept and slope of IAR. 

However, we have not investigated the influences of sampling resolution and intensity in our 

study. As for the sampling resolution, our study has fixed it to one year due to both data 

limitation (e.g. bird biomass data is collected once per year) and research interest (e.g. we are 

interested in the interannual dynamics of NPP, not seasonal oscillations). As for the sampling 

intensity, we have fixed it to be annually. This is simply because we want to use most of 

available information in the data, given the relatively short time series (i.e. NPP data: 15 year; 

bird data: 21 years). This said, investigations into these aspects of temporal scales may be useful 

for future studies on IAR. 
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The effect of incomplete spatial sampling on IAR 

In our models, we construct IAR based on a “full observation” of the landscape. However, in 

reality, field investigations may cover only a small proportion of the full landscape, for instance 

the North American Breeding Bird Survey in our empirical analyses. Here we explore the impact 

of incomplete sampling on IAR by constructing IAR based on a randomly sampled proportion of 

the landscape.  

As in the main text, we consider a two-dimensional landscape (e.g. 128×128 grids), in which 

local ecosystem dynamics have identical temporal mean and variability and the between-patch 

correlation decays with distance following a power function: ρ(d) = ρ1×d-α. We randomly sample 

a proportion of grids (e.g. 1/4, 1/16, 1/64, etc.) from the whole landscape, which can be regarded 

as the sampled area in empirical studies. We construct IARs based on these sampled grids, 

following similar procedures as in our empirical analyses of the bird data. Specifically, starting 

from one (sampled) grid, we increase the number of grids by including the closest neighbor 

(sampled) grids. We calculated the temporal invariability for each respective “area”, thus 

generating an Invariability-Area Relationship. Note that just as for our analysis of BBS data, the 

“area” here is the sampled area, or the number of grids.  

We found that incomplete sampling tended to increase the slopes of IARs (Supplementary 

Fig. 2). We rescale the sampled area (or number of grids) by multiplying it with the average 

“represented area” of each sample (i.e. 4, 16, 64, respectively), which represents the spatial 

extent of the sampling efforts (Supplementary Fig. 2). Note, however, this rescaling does not 

alter the slope between invariability and area on a log-log scale (but it does alter the intercept). 

 

 



13 

 

The effect of observation length on IAR 

The observation length (i.e. the length of the census) may also affect temporal invariability and 

its spatial scaling. Because of the autocorrelation of population and ecosystem dynamics, 

temporal variability can increase with the observation length1,2. This may potentially affect the 

slope of IAR, especially if the strength of this effect varies across spatial scales.  

With the bird data, we examined how observation length might affect IARs. We 

compared the intercept and slope of IARs during the period 1990-2010 (i.e. results in the main 

text) to that during 1990-2000. Results showed that under the shorter observation period (i.e. 

1990-2000), the intercept of IAR is higher (shorter vs. longer period: 1.15 vs. 1.02), but the slope 

is lower (0.4 vs. 0.45) (Supplementary Fig. 3a). Also, under the shorter observation period, 

correlation decays with distance more slowly (-0.40 vs. -0.55) (Supplementary Fig. 3b). Species-

level IARs generally exhibit higher intercepts under the shorter observation period, but no 

systematic increase or decrease for the slope (Supplementary Fig. 3c,d).  

Therefore, a longer observation period can decrease the intercept of IAR, but its effect on 

the slope of IAR is context dependent. To better understand these patterns, future models should 

incorporate autocorrelation in environmental fluctuations (e.g. red noise) and investigate how it 

interacts with local population dynamics and dispersal to regulate IARs.   

 

The effect of grain size on correlation-distance relationship 

In our model, we have assumed two correlation-distance functions to calculate IARs on a two-

dimensional landscape. These correlation-distance functions describe how the correlation 

between two unit-size patches changes with distance. Here we show that the between-patch 

correlation also depends on the grain size.  
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To illustrate this, we consider four patches. Two of them (X1 and X2) are neighbors and 

located around point X (biomass are denoted as Nx1 and Nx2, respectively), and the other two (Y1 

and Y2) are neighbors and located around point Y (biomass: Ny1, Ny2) (see Supplementary Note 

Figure 2). The distance between X and Y (dxy) are much larger than unit length (which is the 

distance between X1 and X2 or Y1 and Y2). The correlation between patches X1 and X2 or between 

patches Y1 and Y2 is ρ1, and the correlation between patches at location X and Y (e.g. X1 and Y1) 

is ρdxy. In other words, at a grain size of 1, the between-patch correlation at a distance d is ρdxy. 

Now we calculate the between-patch correlation at a distance d when the grain size is 2.  

In doing so, we regard the two patches X1 and X2 as one large patch X12 (biomass: Nx12 = Nx1 

+ Nx2) and Y1 and Y2 as one large patch Y12 (Ny12 = Ny1 + Ny2). We first calculate the variance of 

the patch X12 (or equivalently, Y12): Var(Nx12) = Cov(Nx1 + Nx2, Nx1 + Nx2) = 2σ2(1 + ρ1). We then 

calculate the covariance of biomass dynamics between X12 and Y12: 

   Cov(Nx12, Ny12) = Cov(Nx1 + Nx2, Ny1 + Ny2)  

= Cov(Nx1, Ny1) + Cov(Nx1, Ny2) + Cov(Nx2, Ny1) + Cov(Nx2, Ny2) 

= 4σ2ρdxy 

So, the correlation coefficient between patches X12 and Y12 is: Corr(Nx12, Ny12) = Cov(Nx1 + Nx2, 

Ny1 + Ny2) / [Var(Nx12) × Var(Ny12)]
0.5 = 2ρdxy / (1 + ρ1). Thus, the between-patch correlation at a 

distance d for a grain size of 2 is: 2ρdxy / (1 + ρ1). This is always larger than that for a grain size 

of 1 (i.e. ρdxy), unless ρ1 equals 1. 

 

X1

X2

Y1

Y2

X Y
dxy
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Supplementary Note Figure 2: Four patches on a two-dimensional landscape. The patches 

X1 and X2 are neighbors and located around point X, and the patches Y1 and Y2 are neighbors and 

located around point Y. 
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Supplementary Note 3: Ecological determinants of IAR 

Our theoretical and empirical analyses show that the shape and slope of IAR are mainly 

determined by patterns of spatial synchrony of ecosystem dynamics. As spatial synchrony 

increases (e.g. a higher local correlation or a slower correlation decay with distance), 

invariability increases with area more slowly (Supplementary Fig. 1). In our model, two 

correlation-distance functions (“short-tail” and “long-tail”) are investigated. Although very 

simple, they seem to capture the spatial synchrony patterns of plant and bird communities at 

continental scales, which in turn explain the patterns of IARs in these two systems (Figs. 2 and 

3).  

Previous studies have highlighted several factors that regulated spatial synchrony. In 

general, spatial synchrony in populations or ecosystem dynamics increases with environment 

correlation, dispersal, and community similarity4-7. Trophic interactions may also increase spatial 

synchrony through phase locking8. In our model, these factors are incorporated implicitly into 

scenarios of spatial synchrony (e.g. correlation-distance functions). However, a further 

understanding of IAR will require mechanistic models that incorporate lower-level abiotic and 

biotic processes (e.g. environment, dispersal, etc.) in a dynamical landscape, and clarify how 

they interact and regulate spatial synchrony and consequently IAR. In particular, the relative 

importance of these factors is likely scale dependent, and one important but challenging task is to 

tease apart their effects across scales. Such theoretical insights will advance our understanding 

on empirical patterns of IAR, e.g. the triphasic curve in Fig. 2.  

Finally, IAR can be affected by spatial heterogeneity. This was demonstrated by our 

empirical results. For both primary productivity and bird biomass, we had calculated StARs 

iteratively using different starting points. Results showed that different starting points generated 

considerable variations among the resulting IARs, although they all reached the same end (i.e. 
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the area and invariability of the whole region) (Figs. 2&3). In our model, we have assumed a 

homogeneous landscape, i.e. the mean and variance of local biomass are identical across patches; 

see main text. However, despite ignoring spatial heterogeneity, our model predictions were well 

supported by the data (e.g. exponential correlation-distance relationships generate triphasic IAR 

(comparing Fig. 1 vs. Fig. 2), and IAR slope decreases with local correlation but increase with 

the exponent of power-law decay (comparing Supplementary Fig. 1 vs. Fig. 3)). This said, it 

would be useful for future theoretical work to clarify how spatial heterogeneity may affect the 

scaling of invariability.  

  



18 

 

Supplementary Note 4: IAR as an indicator for regime shifts 

In spatially structured systems, spatial correlation has been used as an early warning signal for 

regime shifts9. Prior to a shift, spatial correlations between neighboring and distant patches are 

bound to increase9. Because IARs are shaped by patterns of spatial synchrony, regime shifts 

might also be detected by monitoring IARs. In this note, we develop a metapopulation model to 

illustrate the potential of IAR as an indicator for regime shifts.  

Our model consists of N patches arranged in a ring and connected by dispersal (N = 512 

in our simulations). The model setting follows Dakos et al.9. Within each patch, the dynamics of 

population biomass are described by an overharvesting model10. As the harvesting rate increases, 

the population shifts from an underexploited state with high biomass to an overexploited state 

with low biomass. Each patch is connected to its closest m neighbors via dispersal. Random 

environmental perturbations were added in each patch, enabling us to simulate a monitoring of 

IARs. Thus, our model reads9: 

𝑑𝑥𝑗

𝑑𝑡
= 𝑟𝑖𝑥𝑗 (1 −

𝑥𝑗

𝑘
) − 𝑐

𝑥𝑗
2

𝑥𝑗
2+1

+ 𝑑 (∑ 𝑥𝑖0<|𝑖−𝑗|≤
𝑚

2
− 𝑚𝑥𝑗) + 𝜎𝑗𝐵𝑑𝑊𝑗   (S11) 

Here xj is the population biomass in patch j. rj is the maximum growth rate for patch j, which is 

considered to have spatial heterogeneity (in our simulation, rj ~ U[0.6, 1]). k is the carrying 

capacity (k = 10). c is the harvesting rate, which acts as a bifurcation parameter between 

underexploited and overexploited states. d is the dispersal rate (d = 0.5). m is the number of 

connected patches (m = 16). σ is the standard derivation of random noise (σ = 0.02). B is a 

symmetric matrix specifying the spatial correlation of random perturbations. Specifically, B2 is 

the correlation matrix of noises that satisfies: 𝐵2(𝑖, 𝑖) = 1 and 𝐵2(𝑖, 𝑗) = 𝜌1𝑒
−

|𝑖−𝑗|

𝐿  (𝜌1 = 0.05 and 

𝐿 = 8).  
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The overharvesting model is a minimal model that can have alternative stable states10, 

and its spatial extension (i.e. equation S11) also exhibits alternative stable states9. In the absence 

of dispersal and environmental perturbations, a local population shifts from an underexploited 

state to an overexploited one as the harvesting rate (c) increases (Supplementary Figure 4a). Due 

to dispersal between patches and despite the fact that not all patches reach their own tipping 

point at the same time, a global tipping point exists at which all populations collapse onto the 

overexploited state. Prior to the shift, a slower speed of recovery following perturbations 

together with a spatial coupling allows perturbation to transmit to distant patches, thus increasing 

the system’s spatial synchrony and altering the shape of IAR. 

With this model, we explore how IAR changes as the harvesting rate (c) increases and 

approaches its critical value at the global tipping point (around c* = 2.0615 for the set of 

parameters used in our simulations). Away from the regime shift, IAR exhibits a triphasic curve, 

with steeper increases in invariability at both small and large scales (Supplementary Fig. 4b). 

Approaching the global tipping point, local population dynamics exhibit larger variability, as 

previous studies showed11. This causes the intercept of IAR (i.e. local invariability) to decrease 

prior to the regime shift (Supplementary Fig. 4b, d). Moreover, a slowing down of the dynamics 

in each patch allows perturbations to propagate across space, increasing the correlation between 

neighboring and distant patches12. As a consequence, the initial and final slopes of IAR both 

decrease (Supplementary Fig. 4c,e,f) so that the triphasic shape gradually diminishes 

(Supplementary Fig. 4c). Remarkably, because spatial correlations do not increase in the same 

way at all scales but gradually propagate through space, the decrease in the initial slope of IAR 

occurs first, followed by, close to the shift, a decrease in the final slope (Supplementary Fig. 

4e,f). Thus, monitoring IAR could add to the arsenal of early warning indicators of regime shifts.   
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