Supplementary Note 1: Spatial transfer function for surface plasmon polariton (SPP) excitations at a metallic surface

To analyze the the spatial transfer function, we developed the spatial coupled-mode theory to describe the SPP excitation at a metallic surface. As Supplementary Fig. 1 shows, in the Kretschmann configuration, a *p*-polarized incident beam illuminates the metal layer coating on a glass prism. When the parallel component of the incident wavevector, \tilde{k}_z , is close to the SPP wavevector β_{spp} , the incident light excites an SPP through an evanescent wave. Meanwhile the excited SPP leaks out and generates the radiation wave in the glass as it propagates along the \tilde{z} direction. Therefore, the reflection process consists of two pathways: the direct reflectance of the incident wave at the glass-metal interface, and the outgoing radiation from the leakage of the excited SPP at the metal-air interface. Based on the spatial coupled-mode theory [1, 2], the spatial mode coupling and the interference process is described by the following equations:

$$\frac{da}{d\tilde{z}} = (i\beta_{\rm spp} - \alpha_{\rm l} - \alpha_{\rm spp})a + ie^{i\phi/2}\sqrt{2\alpha_{\rm l}}\tilde{S}_{\rm in}(\tilde{z})$$
(1)

$$\tilde{S}_{\rm out} = e^{i\phi}\tilde{S}_{\rm in} + ie^{i\phi/2}\sqrt{2\alpha_{\rm l}}a,\tag{2}$$

Here, we take the convention that the field varies in time as $\exp(-i\omega t)$. a is the amplitude of the SPP which is normalized such that $|a|^2$ corresponds to the time-averaged power along the \tilde{z} direction. We note that \tilde{S}_{in} (\tilde{S}_{out}) corresponds to the field distribution of the incident (reflected) light along the \tilde{z} direction. Therefore, by expanding the incident (reflected) field into a series of plane waves as $\tilde{S}_{in(out)} = \int_{-\infty}^{\infty} \tilde{s}_{in(out)}(\tilde{k}_z) \exp(i\tilde{k}_z\tilde{z})d\tilde{k}_z$, the reflection coefficient for the incident plane wave case with a wavevector component \tilde{k}_z is obtained as [1]

$$R(\tilde{k}_z) \equiv \frac{\tilde{s}_-}{\tilde{s}_+} = e^{i\phi} \frac{i(k_z - \beta_{\rm spp}) - \alpha_{\rm l} + \alpha_{\rm spp}}{i(\tilde{k}_z - \beta_{\rm spp}) + \alpha_{\rm l} + \alpha_{\rm spp}}.$$
(3)

We note that the \tilde{z} coordinate defined on the metal surface is rather different from the x direction of the incident (reflected) beam profile coordinate, which is defined as perpendicular to the beam propagation direction. For the incident angle θ_0 , the plane wave with the wavevector component k_x at the x direction has a \tilde{z} component [3, 4]

$$\tilde{k}_z = k_x \cos \theta_0 + \beta_{\rm spp}, \left| \tilde{k}_z \right| < w,$$
(4)

where w is the angle spectrum width and assumed as $w \cos \theta_0 < \alpha_1 + |\alpha_{spp}|$. Supplementary Eq. (4) can be understood as the central frequency of the angle spectrum shifting from 0

to β_{spp} . Such a spatial frequency shifting also happens to the reflected beam. Therefore, by substituting Supplementary Eq. (4) into (3), we obtain the transfer function during the reflection:

$$H(k_x) = R(k_x \cos \theta_0 + \beta_{\rm spp})$$

= $e^{i\varphi} \frac{ik_x + A}{ik_x + B},$ (5)

where $A = (\alpha_{spp} - \alpha_l)/\cos \theta_0$ and $B = (\alpha_{spp} + \alpha_l)/\cos \theta_0$.

Supplementary Note 2: Phase/Amplitude modulated field image generated by spatial light modulator

We generate the incident field images by a spatial light modulator (SLM: Holoeye PLUTO-NIR-011), which is a reflective-phase-only modulator. For the phase modulation, the system setup is schematically shown in Supplementary Fig. 2a, where a collimated laser beam was expanded and illuminated on the SLM and the phase-modulated image field was projected onto the metal film with a conjugate imaging system. In order to generate the amplitude-modulated incident field by the SLM, we used a Michelson configuration to make the phase-modulated field interfere with a reference plane wave (Supplementary Fig. 2b).

Supplementary Fig. 1. Schematic of a SPP reflector with the Kretschmann configuration Here, θ_0 corresponds to the incident angle where the phase-matching condition for SPP excitation is satisfied.

Supplementary Fig. 2. Schematic of optical system for the phase- and amplitudemodulation (a) and (b) correspond to phase- and amplitude-modulation, respectively. The field image is generated by spatial light modulator (SLM). Components include C: collimator, P: polarizer, BS: beam splitter, L: lens, SLM: spatial light modulator, R: reflector, BP: beam profiler.

Supplementary References

- Ruan, Z., Wu, H., Qiu, M. & Fan, S. Spatial control of surface plasmon polariton excitation at planar metal surface. *Opt. Lett.* **39**, 3587–3590 (2014).
- [2] Lou, Y., Pan, H., Zhu, T. & Ruan, Z. Spatial coupled-mode theory for surface plasmon polariton excitation at metallic gratings. J. Opt. Soc. Am. B 33, 819–824 (2016).
- [3] Goodman, J. Introduction to Fourier optics 2nd edn (McGraw-hill, 1996).
- [4] Doskolovich, L. L., Bykov, D. A., Bezus, E. A. & Soifer, V. A. Spatial differentiation of optical beams using phase-shifted Bragg grating. *Opt. Lett.* **39**, 1278–1281 (2014).