Supplementary Methods

General Procedures. All starting materials were purchased from Aldrich, Alfa Aesar and used without further purification. Compound **S1-S5**, *V* and *X* (see supplementary Figure 1&2)were synthesized according to the reported methods^[1,2,3], complex $(Fe_3V_3)^{6+}$ is consistent with the results published by Ludlow III^[4]. Column chromatography was conducted by using basic Al₂O₃ (sinopharm chemical reagents co., Ltd, 200-300 mesh) or SiO₂ (Qingdao Haiyang Chemical co., Ltd, 200-300 mesh). The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Avance 400-MHz, 500-MHz and 600-MHz NMR spectrometer in CDCl₃, DMSO-D₆ and CD₃CN with TMS as the inner standard. UV–*vis* absorption spectra were recorded on a Hitachi 2500 Luminescence spectrometer. Transmission Electron Microscopy (TEM) was obtained on JEOL 2010. Electro-spray ionization (ESI) mass spectra were recorded with a Waters Synapt G2 tandem mass spectrometer, using solutions of 0.01mg sample in 1 mL of CHCl₃/CH₃OH (1:3, v/v) for ligand or 0.5 mg in 1 mL of MeCN, MeOH or MeCN/MeOH (3:1, v/v) for complex.

TWIM MS. The TWIM MS experiments were performed under the following conditions: ESI capillary voltage, 3 kV; sample cone voltage, 30 V; extraction cone voltage, 3.5 V; source temperature 100 °C; desolvation temperature, 100 °C; cone gas flow, 10 L/h; desolvation gas flow, 700 L/h (N₂); source gas control, 0 mL/min; trap gas control, 2 mL/min; Helium cell gas control, 100 mL/min; ion mobility (IM) cell gas control, 30 mL/min; sample flow rate, 5 μ L/min; IM traveling wave height, 25 V; and IM traveling wave velocity, 1000 m/s. Q was set in rf-only mode to transmit all ions produced by ESI into the tri-wave region for the acquisition of TWIM MS data.

Molecular Modeling: Energy minimization of the macrocycles was conducted with the Materials Studio version 6.0 program, using Anneal and Geometry Optimization tasks in the Materials Studio Forcite module (Accelrys, Inc.).

STM: The sample was dissolved in DMF or CH_3CN at a concentration of 5.0 mg/ml. Solution (5ul) was dropped on HOPG surface. After 30 seconds, surface was washed slightly with water for three times and totally dried in R.T. in air. The STM images were taken with a PicoPlus SPM system with a PicoScan 3000 Controller. The obtained STM images were processed by WSxM software.^{S6}

AFM: The 40N/m rectangle AFM tip was used to make markers on the surface of the sample with nanoshaving technique. The size of the markers is 10μ m×10 μ m and the distances between two closest markers are 30 μ m. The loading forces used are 6 μ N and shaving speed is around 5 μ m/s.

Synthesis of the ligands and complexes

Supplementary Figure 1: Directly self-assembly of organic ligands *V* and *X* with Cd^{2+} or Fe^{2+} , respectively. *V*+*X*+ Cd^{2+} only produced a metallo-triangle and the unidentified insoluble polymer; however, *V*+*X*+ Fe^{2+} generated two separated major complexes, metallo-triangle and metallo-bowtie, and trace amount of tri-metallo-triangle, as well small amount of insoluble polymer.

Supplementary Figure 2: Synthetic route of supramolecular dinuclear metallo-pentagram *via* predesigned terpyridinyl metallo-organic ligand *LA*.

Supplementary Figure 3: Synthetic route of supramolecular six-star shaped hexagram *via* terpyridinyl metallo-organic ligand *LB*.

Preparation of Ligands and Supramolecular architectures.

1. Compound monobromoterpyridine:

To a solution of 1, 2-dibromo-4,5-dimethoxybenzene (1.48 g, 5.0 mmol) and 4'-(4-boronatophenyl) [2,2':6',2"]terpyridine (S3, 1.78 g, 5.00 mmol) in THF (200 mL), aq. Na₂CO₃ (20 mL, 1 M) was added. The mixture was freeze-pump-thawed three times and backfilled with argon; then Pd(PPh₃)₄ (100 mg) was added. After refluxing for 12 hours under argon, the mixture was cooled

to 25 °C and poured into aq. NH₄Cl solution. The aqueous layer was extracted with CHCl₃, and then the combined organic phase was washed with brine and dried over MgSO₄. After concentration in vacuum, the residue was purified by flash column chromatography (Al₂O₃, 200-300 mesh), eluting with CHCl₃:Petrol (2:1) to get monobromo-terpyridine as a white solid: 0.66g (25%); m.p.= 218 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.80 (s, 2H, 3',5'-tpy*H*), 8.75 (m, 2H, 6,6"-tpy*H*), 8.69 (m, 2H, 3,3"-tpy*H*), 7.99 (d, J = 8.3 Hz, 2H, Ar*H*^{*g*}), 7.88 (td, J = 7.8, 1.7 Hz, 2H, 5,5"-tpy*H*), 7.70 (d, J = 8.3 Hz, 2H, Ar*H*^{*g*}), 7.39 (m, 4.8, 2H, 4,4"-tpy*H*), 6.98 (s, 1H, ArH^b), 6.96 (s, 1H, ArH^a), 4.00 (s, 3H, -OMe^m), 3.94 (s, 3H, -OMeⁿ). ¹³C NMR (100 MHz, CDCl₃) δ 156.27, 155.95, 149.73, 149.11, 141.65, 136.83, 127.25, 123.84, 121.39, 119.51, 118.61, 111.54, 110.32, 77.41, 77.10, 76.78, 56.01. ESI/MS (solvent: CHCl₃: MeOH=1:3, m/z): 524.2 [M+H]⁺, Calculated [M+H]⁺: 524.1.

2. Complex S4

Compound monobromo-terpyridine (262 mg, 0.5 mmol) and RuCl₃ • $3H_2O$ (148 mg, 0.55 mmol) was suspended in EtOH (100 mL), The mixture were refluxed for 12 hours, then cooled to 25 °C and filtered to obtain a brown powder. The solid was washed with MeOH repeatedly until the filtrate get clean and colorless, the solid was collected and dried in vacuum for 12 hours to get the 200 mg

desired red powder with the yield of 75%, it was used directly for the next step without further purification. m.p.>320 °C; Elemental Anal. Calcd. for $C_{29}H_{22}BrN_3O_2RuCl_3 \cdot 3H_2O$: C, 44.32; H, 3.59; N, 5.35. Found: C, 43.98; H, 3.62; N, 5.31.

3. Complex L-Br

To a solution of **S4** (36.1 mg, 0.05 mmol) and X (150.6 mg, 0.1 mmol) in CHCl₃/MeOH (100 mL, 1:1 v/v) together with 5 drops of N-ethylmorpholine as a reducing agent, the mixture was refluxed for 12 hours. The mixture was cooled to 25 °C and the solvent was removed under vacuum. The residue was

extracted with CHCl₃, and then the combined organic phase was washed with brine and dried over MgSO₄, After concentration in vacuum, the residue was purified by flash column chromatography [Al₂O₃ 200-300 mesh, eluting with CHCl₃:MeOH (40:1, v/v)] to get *L-Br* as a red powder: 55mg (yield: 50%); m.p. >320 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.49 (s, tpy^AH^{3',5},2H), 9.24 (d, J = 8.3 Hz, tpy^A $H^{3,3"}$, 2H), 9.16 (s, tpy^B $H^{3',5'}$, 2H), 8.91 (d, J = 8.2 Hz, tpy^B $H^{3,3"}$, 2H), 8.78-8.76 (m, 6H, $tpy^{C}H^{3',5'}$, $tpy^{D}H^{3',5'}$, $tpy^{E}H^{3',5}$), 8.70 (m, $tpy^{C}H^{6,6''}$, $tpy^{D}H^{6,6''}$, $tpy^{E}H^{6,6''}$, 6H), 8.66 (m, $tpy^{C}H^{3,3''}$, $tpy^{D}H^{3,3"}$, $tpy^{E}H^{3,3"}$, 6H), 8.56 (d, J = 8.3 Hz, $tpy^{A}H^{g}$, 2H), 8.25 (d, J = 8.3 Hz, $tpy^{B}H^{g}$, 2H), 7.97 (m, tpy^A $H^{4,4"}$, tpy^B $H^{4,4"}$, 4H), 7.87 (m, tpy^C H^{h} , tpy^D H^{h} , tpy^E H^{h} , tpy^C $H^{4,4"}$, tpy^D $H^{4,4"}$, tpy^E $H^{4,4"}$, tp 12H), 7.80 (d, J = 8.3 Hz, tpy^A H^{h} 2H), 7.71 (d, J = 8.2 Hz, tpy^b H^{h} , 2H), 7.54 (d, J = 8.3 Hz, tpy^C H^{g} 2H), 7.50 (m, tpy^D H^{g} , tpy^E H^{g} 4H), 7.45 (d, J = 5.0 Hz, tpy^A $H^{6,6''}$ 2H), 7.40 (d, J = 5.1 Hz, $\text{tpy}^{\text{C}} H^{6,6"}$, 2H), 7.34 (m, $\text{tpy}^{\text{B}} H^{6,6"}$, $\text{tpy}^{\text{C}} H^{6,6"}$, $\text{tpy}^{\text{D}} H^{6,6"}$, $\text{tpy}^{\text{E}} H^{6,6"}$, $\text{tpy}^{\text{F}} H^{6,6"}$, $\text{$ 11.8, 4.7 Hz, tpy^A H^{6,6}"2H), 7.19 (s, tpy^A H^J, 1H), 7.00 (s, tpy^A H^K, 1H), 3.98 (s, H^{OMe}, 3H), 3.96 (s, H^{OMe} , 3H), 3.18 (t, J = 6.1 Hz, H^{OCH_R} , 2H), 3.14 (t, J = 6.2 Hz, H^{OCH_R} , 2H), 1.30 (m, 6H), 1.02 (m, 4H), 0.85 (m, 6H), 0.63 (dt, J = 16.4, 7.3 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 158.21, 157.95, 156.55, 155.85, 155.10, 155.10, 152.08, 151.35, 149.07, 148.97, 138.52, 138.24, 137.75, 137.04, 136.77, 136.49, 136.13, 135.56, 135.06, 132.86, 132.61, 132.18, 131.86, 131.00, 129.66, 128.05, 127.85, 126.95, 126.32, 125.84, 125.30, 123.91, 123.67, 122.42, 121.80, 121.49, 121.31, 118.88, 56.33, 31.40, 31.33, 29.84, 29.69, 29.35, 29.24, 25.40, 25.29, 22.68, 22.58, 22.47, 14.03, 13.96, 13.87. HR-MS (solvent: CHCl₃: MeOH=1:3, m/z): 1066.80 [M-2Cl]²⁺, calculated: $[M-2C1]^{2+}=1066.65, 711.53[M+H-2C1]^{3+}, calculated: [M+H-2C1]^{3+}=711.43.$

4. Complex LA:

To a solution of *L-Br* (21.3 mg, 0.01 mmol) and 4'-(4-boronatophenyl) [2, 2':6', 2''] terpyridine (**S2**, 35.4 mg, 0.1 mmol) in DMSO (20 mL), aq. Na₂CO₃ (0.5 mL, 1 M) was added. The mixture was freeze-pump-thawed three times and backfilled with argon; then

Pd(PPh₃)₄ (5 mg) was added. After refluxing for 24 hours under argon, the mixture was cooled to 25 $^{\circ}$ C and poured into an aq. NH₄Cl solution. The aqueous layer was extracted with CHCl₃, and then the combined organic phase was washed with brine and dried over MgSO₄. After concentration in vacuum, the residue was purified by flash column chromatography $[Al_2O_3,$ 200-300 mesh, eluting with CHCl₃:MeOH (40:1)] to get LA as a red solid: 12 mg (yield: 48%). m. p. >320 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.28 (s, tpy^AH^{3',5'}, 2H), 9.08 (s, tpy^BH^{3',5'}, 2H), 9.04 (d, J = 8.4 Hz, tpy^A $H^{3,3''}$, 2H), 8.83 (d, J = 8.0 Hz, tpy^B $H^{3,3''}$ 2H), 8.75 (m, tpy^C $H^{3',5'}$, $tpy^{D}H^{3',5'}$, $tpy^{E}H^{3',5'}$, $tpy^{F}H^{3',5'}$, 8H), 8.70 (m, $tpy^{C}H^{6,6''}$, $tpy^{D}H^{6,6''}$, 4H), 8.65 (m, $tpy^{E}H^{6,6''}$, $\text{tpy}^{\text{F}} H^{6,6^{"}}, \text{tpy}^{\text{C}} H^{3,3^{"}}, \text{tpy}^{\text{D}} H^{3,3^{"}}, \text{tpy}^{\text{E}} H^{3,3^{"}}, \text{tpy}^{\text{F}} H^{3,3^{"}}, 12\text{H}), 8.33 \text{ (d, J} = 8.3 \text{ Hz, tpy}^{\text{A}} H^{\text{g}} 2\text{H}),$ 8.23 (d, J = 8.2 Hz, tpy^B H^{g} , 2H), 7.88 (m, tpy^A $H^{4,4^{"}}$, tpy^B $H^{4,4^{"}}$, tpy^C $H^{4,4^{"}}$, tpy^E $H^{4,4^{"}}$, $\text{tpy}^{\text{F}}H^{4,4"}$, $\text{tpy}^{\text{C}}H^{\text{g}}$, $\text{tpy}^{\text{D}}H^{\text{g}}$, $\text{tpy}^{\text{E}}H^{\text{g}}$, $\text{tpy}^{\text{F}}H^{\text{g}}$, 18H), 7.70 (d, J = 8.2 Hz, $\text{tpy}^{\text{A}}H^{\text{h}}$ 2H), 7.54 (t, J $= 8.4 \text{ Hz}, \text{tpy}^{\text{B}} H^{\text{h}}, 4\text{H}), 7.50 \text{ (m, tpy}^{\text{C}} H^{\text{h}}, \text{tpy}^{\text{D}} H^{\text{h}}, \text{tpy}^{\text{E}} H^{\text{h}}, 8\text{H}), 7.37 \text{ (m, tpy}^{\text{A}} H^{5,5"}, \text{tpy}^{\text{B}} H^{5,5"},$ $tpy^{C}H^{5,5"}$, $tpy^{D}H^{5,5"}$, $tpy^{E}H^{5,5"}$, $tpy^{F}H^{5,5'}$, 12H), 7.18 (m, $tpy^{A}H^{6,6"}$, $tpy^{B}H^{6,6"}$, 4H), 7.15 (s, tpy^{A} H^{m} , 1H), 7.06 (s, tpy^A H^{n} , 1H), 6.93 (d, J = 8.4 Hz, tpy^F H^{h} , 2H), 4.06 (s, H^{OMe} , 3H), 4.04 (s, H^{OMe} , 3H), 3.18 (t, J = 6.1 Hz, H^{OCH_R} , 2H), 3.13 (t, J = 6.1 Hz, H^{OCH_R} , 2H), 1.30 (m, 11H), 1.00 (m, 6H), 0.85 (m, 10H), 0.61 (dd, J = 13.8, 7.2 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 158.68 , 158.11, 157.94, 156.37, 156.14, 155.95, 155.82, 155.61, 154.95, 151.74, 151.19, 151.06, 150.01, 149.78, 149.06, 148.98, 148.87, 148.82, 148.70, 138.29, 138.10, 137.74, 137.07, 136.93, 136.79, 136.42, 136.06, 135.89, 135.59, 135.11, 133.95, 132.88, 132.53, 132.23, 132.11, 131.98, 131.38, 130.72, 127.84, 127.84, 127.00, 126.42, 125.69, 125.26, 123.90, 123.68, 121.76, 121.48, 121.32, 118.89, 118.68, 117.88, 116.36, 113.72, 56.35, 56.22, 31.43, 31.38, 31.33, 30.20, 29.80, 29.73, 29.68, 25.38, 25.32, 22.67, 22.56, 22.46, 14.09, 14.00, 13.86. HR-MS (solvent: CHCl₃:MeOH=1:3, m/z): 1180.95 [M-2Cl]²⁺, calculated: $[M-2C1]^{2+}=1180.88, 787.63 [M+H-2C1]^{3+}, calculated: [M+H-2C1]^{3+}=787.58.$

5. Complex *LB*

To a suspension of **S5** (29.1 mg, 0.025 mmol) and *X* (125.7 mg, 0.075 mmol) in CHCl₃/MeOH (250 mL, 1:1 v/v), with 5 drops of N-methylmorpholine as a reducing agent, the mixture was refluxed for 12 hours. The mixture was cooled to 25 \C and the solvent was removed under vacuum. The residue was extracted on with CHCl₃ for 3 times, and then

the combined organic phase was washed with brine and dried over MgSO₄. After concentration in vacuum, then purified by flash column chromatography [Al₂O_{3,} 200-300 mesh, eluting with CHCl₃:MeOH (20:1)] to get *LB* as a red powder: 32 mg (yield: 30%); m.p. >320 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.52 (s, tpy^AH^{3',5'}, 4H), 9.35 (d, tpy^AH^{3,3"}, J = 8.2 Hz, 4H), 9.08 (s, tpy^BH^{3',5'}, 4H), 8.83 (d, tpy^B $H^{3,3"}$, J = 8.3 Hz, 4H), 8.76 (m, tpy^C $H^{3',5'}$, tpy^D $H^{3',5'}$, tpy^E $H^{3',5'}$, 12H), 8.70 (m, J = 4.0 Hz, $tpy^{C}H^{6,6"}$, $tpy^{D}H^{6,6"}$, $tpy^{E}H^{6,6"}$, 12H), 8.65 (m, $tpy^{C}H^{3,3"}$, $tpy^{D}H^{3,3"}$, $tpy^{E}H^{3,3"}$ 12H), 8.35 (d, J = 8.2 Hz, $tpy^{A}H^{g}$, 4H), 8.19 (d, J = 8.2 Hz, $tpy^{B}H^{g}$, 4H), 7.95 (m, $tpy^{A}H^{5,5''}$, $tpy^{B}H^{5,5''}$, 8H), 7.86 $(m, tpy^{C}H^{g}, tpy^{D}H^{g}, tpy^{E}H^{g}, tpy^{C}H^{5,5''}, tpy^{D}H^{5,5''}, tpy^{E}H^{5,5''}, 24H), 7.70 (d, J = 8.2 Hz, tpy^{A}H^{h},$ 4H), 7.58 (d, J = 8.2 Hz, tpy^B H^{h} , 4H)7.52 (m, tpy^C H^{h} , tpy^D H^{h} , tpy^E H^{h} , 12H), 7.49 (m, tpy^A $H^{3,3"}$, $tpy^{B}H^{3,3"}$, 8H), 7.42 (m, $tpy^{A}H^{6,6"}$, 4H), 7.33 (m, $tpy^{B}H^{6,6"}$, $tpy^{C}H^{5,5"}$, $tpy^{D}H^{5,5"}$, $tpy^{E}H^{5,5"}$, 16H), 7.25 (m, tpy^AH^{5,5}", 4H), 7.15 (m, tpy^bH^{5,5}", tpy^AH^m, 6H), 4.05 (s, OMe, 6H), 3.18 (s, OCH₂R, 4H), 3.13 (s, OCH₂R, 2H), 1.30 (dt, J = 34.0, 16.9 Hz, 12H), 1.11 (ddd, J = 23.3, 14.3, 7.0 Hz, 3H), 0.93 (m, 21H), 0.76 (dt, J = 18.2, 7.3 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 158.32, 157.68, 156.35, 156.10, 155.81, 155.17, 155.00, 151.20, 149.92, 149.03, 148.93, 139.27, 137.72, 137.14, 136.77, 136.40, 135.93, 135.62, 135.00, 132.93, 131.98, 131.27, 128.80, 128.31, 126.41, 123.96, 123.67, 122.58, 121.51, 121.31, 118.82, 118.78, 118.64, 114.05, 56.36, 33.80, 31.91, 31.77, 31.75, 31.50, 31.43, 31.37, 30.20, 30.14, 29.86, 29.68, 29.56, 29.53, 29.47, 29.34, 29.24, 29.19, 29.14, 28.95, 27.21, 25.70, 25.66, 23.77, 22.97, 22.67, 22.58, 22.55, 14.08, 14.03, 10.94. HR-MS(solvent: CHCl₃:MeOH=1:3, m/z): 1447.60 $[M-3Cl]^{3+}$, calculated: $[M-3Cl]^{3+}$: 1447.57, $[M-3Cl+H]^{4+}$: 1085.97, calculated: [M-3Cl+H]⁴⁺: 1085.93; [M-4Cl+H]⁵⁺: 861.78, calculated: [M-4Cl+H]⁵⁺: 861.66; [M-4Cl+2H]⁶⁺: 718.14, calculated: [M-4Cl+2H]⁶⁺: 717.88.

6. Complex of ligand V and X with Fe^{2+} :

Ligand *V* (15.2 mg, 17.0 μ mol), *X* (25.6 mg, 17.0 μ mol) and FeSO₄ • 7H₂O (14.1 mg, 51.0 μ mol) were dissolved in 40 Ml ethylene glycol. The solution was heated at 140°C for 2 days under N₂ protection. The solution was cooled down and added into a 60 Ml methanol solution with 1.0 g NH₄PF₆. The precipitate was filtered and residue was flash column chromatographed (SiO₂) eluting with MeCN/sat. KNO₃ (aq) (100:0-100:12) to generate three major fractions as the purple precipitates, after then the counterion was exchanged to PF₆⁻ again.

6.1. Metallo-triangle $(Fe_3V_3)^{6+}$:^[4]

m. p. > 320° C, ¹H NMR (400 MHz, CD₃CN) δ 9.19 (s, 4H, tpy- $H^{3',5'}$), 8.61 (d, J = 7.2 Hz, 4H, tpy- $H^{3,3''}$), 8.27 (d, J = 7.5 Hz, 4H, Ph- H^{g}), 7.82 (d, J = 6.9 Hz, 4H, tpy- $H^{4,4''}$), 7.71 (d, J = 6.8 Hz, 4H, Ph- H^{h}), 7.32 (s, 2H, Ph- H^{m}), 7.22 (d, J = 31.9 Hz, 4H, tpy- $H^{6,6''}$), 7.04 (m, 4H, tpy- $H^{5,5''}$), 4.03 (d, J = 23.3 Hz, 6H, -OCH₃). ¹³C NMR (100 MHz, CD₃CN) δ 160.25,

158.04, 153.01, 149.86, 149.35, 143.90, 138.66, 134.81, 132.08, 131.45, 127.57, 127.33, 123.86, 121.46, 114.22, 63.17. ESI MS (CD₃CN as solvent , m/z): 1502.8 [M-2PF₆⁻]²⁺ (calcd m/z: 1502.8), 953.7 [M-3PF₆⁻]³⁺ (calcd m/z: 953.7), 678.9 [M-4PF₆⁻]⁴⁺ (calcd m/z: 678.9), 514.2 [M-5PF₆⁻]⁵⁺ (calcd m/z: 514.2) and 404.4 [M-6PF₆⁻]⁶⁺ (calcd m/z: 404.4).

Supplementary Figure 3.1: (A) ESI-MS and (B) 2D TWIM-MS plot (m/z vs drift time) of

 $[\mathbf{Fe}_3V_3]^{6+}$ (PF₆⁻ as counterion). The charge states of intact assemblies are marked.

Supplementary Figure 4: Measured (bottom) and calculated (top) isotope patterns for different charge states observed from $[\mathbf{Fe}_3V_3]^{6+}$ (PF₆⁻ as counterion, CD₃CN as solvent).

Supplementary Figure 5. ¹H NMR (400 MHz, CD₃CN as solvent) spectrum of complex

Supplementary Figure 6. ¹³C NMR (400 MHz, CD₃CN as solvent) spectrum of complex

 $[\mathbf{Fe}_{3}V_{3}]^{6+}$ (PF₆⁻ as counterion).

Supplementary Figure 7. 2D COSY NMR (400 MHz, CD₃CN) spectrum of complex $[Fe_3V_3]^{6+}$

 $(PF_6^{-} as counterion)$ (aromatic region).

2.6.2. Metallo-bowtie $[Fe_6V_4X]^{12+}$.^[4]

m.p.: > 320°C; ¹H NMR (600 MHz, CD₃CN) δ 9.26 (s, 4H, tpy- $H^{3',5'}$), 9.25 (s, 4H, tpy- $H^{a3',5'}$), 9.24 (s, 4H, tpy- $H^{b3',5'}$), 8.66 (m, 12H, tpy- $H^{3,3''}$, tpy- $H^{a3,3''}$ and tpy- $H^{b3,3''}$), 8.42 (d, J = 7.9 Hz, 4H, Ph- H^7), 8.30 (d, J = 8.2 Hz, 8H, Ph- H^{a7} and Ph- H^{b7}), 7.93 (d, J = 8.2 Hz, 4H, Ph- H^8), 7.85 (m, 12H, tpy- $H^{4,4''}$, tpy- $H^{a4,4''}$ and tpy- $H^{b4,4''}$), 7.73 (dd, J = 8.1,

2.2 Hz, 8H, Ph- H^{a8} and Ph- H^{b8}), 7.35 (d, J = 5.3 Hz, 4H, Ph- H^{a9} and Ph- H^{b9}), 7.23 (d, J = 5.6 Hz, 8H, tpy- $H^{a6,6''}$ and tpy- $H^{b6,6''}$), 7.21 (d, J = 5.6 Hz, 4H, tpy- $H^{6,6''}$), 7.09 (m, 8H, tpy- $H^{a5,5''}$ and tpy- $H^{b5,5''}$), 7.07 – 7.04 (m, 4H, tpy- $H^{5,5''}$), 4.10 (s, 12H, -OCH₃- H^{10}), 3.49 (t, J = 4.8 Hz, 4H, Alkyl- H^{11}), 1.24 (m, 8H, Alkyl- H^{12} and Alkyl- H^{15}), 1.10 – 1.02 (m, 8H, Alkyl- H^{13} and Alkyl- H^{14}), 0.80 (t, J = 7.3 Hz, 6H, Alkyl- H^{16}). ¹³C NMR (150 MHz, CD₃CN) δ 160.33, 160.26, 160.21, 158.03, 153.01, 151.36, 149.92, 149.69, 149.34, 143.91, 143.85, 139.43, 138.67, 135.96, 135.12, 134.87, 134.78, 132.76, 132.03, 132.00, 131.47, 127.60, 127.54, 127.32, 127.05, 123.88, 121.54, 121.52, 121.30, 114.17, 73.45, 55.82, 31.25, 29.68, 25.37, 22.56, 13.56. ESI MS (CD₃CN as solvent, m/z): 1503.5 [M-4PF₆]⁴⁺ (calcd m/z: 1503.5), 1173.9 [M-5PF₆]⁵⁺ (calcd m/z: 1173.9), 954.0 [M-6PF₆]⁶⁺ (calcd m/z: 954.0), 797.1 [M-7PF₆]⁷⁺ (calcd m/z: 797.1), 679.3 [M-8PF₆]⁸⁺ (calcd m/z: 679.3), 587.8 [M-9PF₆]⁹⁺ (calcd m/z: 587.8), 514.4 [M-10PF₆]¹⁰⁺ (calcd m/z: 514.4)

and 454.6 $[M-11PF_6^{-7}]^{11+}$ (calcd *m/z*: 454.6).

Supplementary Figure 8: (A) ESI-MS and (B) 2D TWIM-MS plot (m/z vs drift time) of metallo-bowtie [Fe₆ V_4X]¹²⁺. The charge states of intact assemblies are marked.

Supplementary Figure 9: Measured (bottom) and calculated (top) isotope patterns for different charge states observed from metallo-bowtie $[Fe_6V_4X]^{12+}$ (PF₆⁻ as counterion).

Supplementary Figure 10. ¹H NMR (600 MHz, CD₃CN as solvent) spectrum of metallo-bowtie $[Fe_6V_4X]^{12+}.$

Supplementary Figure 11. ¹³C NMR (600 MHz, CD₃CN as solvent) spectrum of metallo-bowtie

 $[\text{Fe}_6 V_4 X]^{12+}$.

Supplementary Figure 12. 2D COSY NMR (600 MHz, CD₃CN as solvent) spectrum of

metallo-bowtie $[Fe_6V_4X]^{12+}$ in CD₃CN.

Supplementary Figure 13. 2D COSY NMR (600 MHz, CD₃CN as solvent) spectrum of

metallo-bowtie $[Fe_6V_4X]^{12+}$ (aromatic region).

Supplementary Figure 14. 2D COSY NMR (600 MHz, CD_3CN as solvent) spectrum of

metallo-bowtie $[Fe_6V_4X]^{12+}$ (aliphatic region).

2.6.3. Tri-metallotriangle $[Fe_9V_5X_2]^{18+}$:

The quantity of this complex is too small to obtain a clear NMR spectra, so only HR-MS has been measured which could confirm the structure. m.p. >320°C; ESI MS (CD₃CN as solvent, m/z): 1503.6 [M-6PF₆⁻]⁶⁺ (calcd m/z: 1503.6), 1268.2 [M-7PF₆⁻]⁷⁺ (calcd m/z:

1268.2), 1091.6 [M-8PF₆ ⁻]⁸⁺ (calcd *m/z*: 1091.6), 954.2 [M-9PF₆ ⁻]⁹⁺ (calcd *m/z*: 954.2), 844.3 [M-10PF₆ ⁻]¹⁰⁺ (calcd *m/z*: 844.3), 754.4 [M-11PF₆ ⁻]¹¹⁺ (calcd *m/z*: 754.4), 679.4 [M-12PF₆ ⁻]¹²⁺ (calcd *m/z*: 679.4), 615.9[M-13PF₆ ⁻]¹³⁺ (calcd *m/z*: 615.9) and 561.7 [M-11PF₆ ⁻]¹⁴⁺ (calcd *m/z*: 561.7).

Supplementary Figure 15. ESI-MS of Tri-metallotriangle $[Fe_9V_5X_2]^{18+}$. The charge states of

intact assemblies are marked.

Supplementary Figure 16. Measured (bottom) and calculated (top) isotope patterns for different charge states observed from Tri-metallotriangle $[Fe_9V_5X_2]^{18+}$ (PF₆⁻ as counterion).

2.7. supramolecular pentagram $[Cd_{10}LA_5]^{30+}$:

To a solution of ligand *LA* (4.86 mg, 2 μ mol) in CHCl₃/MeOH (10 mL, 1:1 v/v), a solution of Cd(NO₃)₂•6H₂O (1.232 mg, 4 μ mol) in MeOH (5 mL) was added in drop; then the mixture was stirred at ambient for 8 hours. NH₄PF₆ was added to generate an orange precipitate, which was washed with water and MeOH to obtain a pale reddish product (6.57 mg,

95%). ¹H NMR (400 MHz, CD₃CN) δ 9.06 (m, tpy^BH^{3;5'}, tpy^CH^{3',5'}, 20H), 8.99(m, tpy^AH^{3',5'}, tpy^DH^{3',5'}, tpy^EH^{3',5'}, tpy^FH^{3',5'}, tpy^FH^{3',5'}, 40H) 8.80 (m, tpy^AH^{3,3''}, tpy^DH^{3',3''}, tpy^EH^{3',3''}, tpy^FH^{3',3''}, tpy^FH^{3',3''}, tpy^FH^{3',3''}, tpy^FH^{3,3''}, 20H), 8.16 (m, tpy^AH^g, tpy^BH^g, tpy^CH^g, tpy^EH^g, tpy^FH^g, tpy^FH^g, tpy^AH^{4,4''}, tpy^DH^{4,4''}, tpy^EH^{4,4''}, tpy^FH^{4,4''}, 100H), 7.87 (m, tpy^BH^{4,4''}, tpy^CH^{4,4''}20H), 7.79 (m, tpy^CH^h, tpy^DH^h, tpy^EH^h, tpy^FH^h, 40H), 7.64(m, tpy^AH^h, tpy^BH^h, tpy^BH^{5,5''}, tpy^CH^{5,5''}, 40H), 7.48 (m, tpy^AH^{5,5''}, tpy^DH^{5,5''}, tpy^DH^{5,5''}, tpy^EH^{5,5''}, tpy^EH^{5,5''}, tpy^EH^{5,5''}, tpy^EH^{5,5''}, tpy^EH^{5,5''}, tpy^EH^{5,5''}, tpy^CH^{6,6''}, tpy^EH^{6,6''}, 60H), 7.30(S, ph^m, 5H), 7.20 (m, phⁿ 5H), 7.15-7.18(m, tpy^BH^{6,6''}, tpy^EH^{6,6''}, tpy^EH^{6,6''}, 40H) 4.05(m, H^{OMe}, 30H), 3.36-3.20(m, H^{OCH2R}, 20H), 0.89 (m, J = 6.8 Hz, 88H), 0.63 (m, 26H). ESI-MS (CD₃CN as solvent, m/z): 1583.1 [M-10PF₆]¹⁰⁺ (calcd *m*/z:1583.1), 1426.0[M-11PF₆]¹¹⁺ (calcd *m*/z:1426.0), 1295.1[M-12PF₆]¹²⁺(calcd *m*/z:1295.1), 1184.40 [M-13PF₆]¹⁵⁺(calcd *m*/z: 1184.40), 1089.4.[M-14PF₆]¹⁴⁺ (calcd *m*/z: 871.60), 815.1[M-18PF₆]¹⁸⁺ (calcd *m*/z: 815.1), 764.45 [M-19PF₆]¹⁹⁺ (calcd *m*/z: 764.5), 719.0 [M-20PF₆]²⁰⁺ (calcd *m*/z: 719.0), 677.9 [M-21PF₆]²¹⁺ (calcd *m*/z: 677.9).

2.8. supramolecular pentagram $[Fe_{10}(LA)_5]^{30+}$

To a solution of ligand LA(4.86 mg, 2 μ mol) and FeCl₂•4H₂O (0.796 mg, 4 μ mol) in glycol (10 mL), the mixture was heated to 145°C for 12 hours. After cooling to ambient, 50mL MeOH was added to the solution and stirred for 2 hours. then excess NH₄PF₆ was added to cause a purple precipitate, after washed with water and MeOH and dried in

vacuum, a reddish solid was collected (6.38 mg, 95%). ¹H NMR (500 MHz, CD₃CN) δ 9.30-9.09 (m, tpy^AH^{3',5'}, tpy^BH^{3',5'}, tpy^CH^{3',5'}, tpy^CH^{3',5'}, tpy^CH^{3',5'}, tpy^PH^{3',5'}, tpy^FH^{3',5'}, 60H), 8.78 – 8.58 (m, tpy^AH^{3,3''}, tpy^BH^{3,3''}, tpy^BH^{3,3''}, tpy^CH^{3,3''}, tpy^CH^{3,3''}, tpy^CH^{3,3''}, tpy^EH^{3,3''}, tpy^FH^{3,3''}, 60H), 8.25 (m, tpy^AH^g, tpy^BH^g, tpy^CH^g, tpy^CH^g, tpy^DH^g, tpy^EH^g, 72H), 8.05 – 7.75 (m, tpy^AH^h, tpy^BH^h tpy^CH^h, tpy^DH^h, tpy^FH^h, 72H), 7.67 (m, tpy^AH^{4,4''}, tpy^DH^{4,4''}, tpy^EH^{4,4''}, tpy^EH^{4,4''}, tpy^EH^{4,4''}, tpy^EH^{4,4''}, tpy^FH^{4,4''}, tpy^FH^{5,5''}, tpy^FH^{5,5''}, tpy^FH^{5,5''}, tpy^AH^{6,6''}, tpy^CH^{6,6''}, tpy^CH^{6,6''}, tpy^DH^{6,6''}, tpy^DH^{6,6''}, tpy^DH^{5,5''}, tpy^EH^{5,5''}, tpy^FH^{5,5''}, tpy^FH^{5,5''}, 70H), 4.06 (s, H^{OMe} 32H), 3.57 (s, tpy^EH^{6,6''}]¹⁰⁺ (calcd m/z: 1526.6), 1374.4[M-11PF₆]¹¹⁺ (calcd m/z: 1374.4), 1248.0 [M-12PF₆]¹²⁺ (calcd m/z: 1248.0), 1140.8 [M-13PF6]¹³⁺ (calcd m/z: 1374.4), 1248.0 [M-12PF₆]¹²⁺ (calcd m/z: 1049.1), 969.5 [M-15PF₆]¹⁵⁺ (calcd m/z: 969.5), 899.9 [M-16PF₆]¹⁶⁺ (calcd m/z: 899.9), 838.4[M-17PF₆]¹⁷⁺ (calcd m/z: 838.4), 784.0 [M-18PF₆]¹⁸⁺ (calcd m/z: 690.8), 651.0[M-20PF₆]²¹⁺ (calcd m/z: 651.0), 614.8 [M-22PF₆]²²⁺ (calcd m/z: 614.8).

2.9. supramolecular hexagram $[Cd_{12}V_3(LB)_3]^{36+}$

To a solution of ligand *LB* (8.90 mg, 2 μ mol) and *V* (1.51 mg, 2 μ mol) in CHCl₃/MeOH (10 mL, 1:1 v/v), a methanolic solution of Cd(NO₃)₂•6H₂O (2.464 mg, 8 μ mol) was added dropwise; then the mixture was stirred at ambient for 8 hours. Excess amount of NH₄PF₆ was added to generate a pale reddish precipitate, after washing water and MeOH and dried under vacuum to obtain reddish solid 14 mg. NMR and Mass spectra indicated there are two compounds

(see Figure S50 and S51), including a metallo-triangle and a target Star-Of-David, which could not be separated by a conventional column chromatography due to the week coordination of <tpy-Cd²⁺-tpy>. The ESI-MS of Star-Of-David are list as following: ESI-MS(CD₃CN as solvent, m/z): 1832.1 [M-11PF₆⁻]¹¹⁺ (calcd m/z: 1832.1), 1667.9 [M-12PF₆⁻]¹²⁺ (calcd m/z: 1667.9), 1528.3 [M-13PF₆⁻]¹³⁺ (calcd m/z: 1528.3), 1408.6 [M-14PF₆⁻]¹⁴⁺ (calcd m/z: 1408.6), 1305.1[M-15PF₆⁻]¹⁵⁺ (calcd m/z: 1305.1), 1214.4 [M-16PF₆⁻]¹⁶⁺ (calcd m/z: 1214.4), 1134.5[M-17PF₆⁻]¹⁷⁺ (calcd m/z: 1134.5), 1061.4[M-18PF₆⁻]¹⁸⁺ (calcd m/z: 1061.4), 999.7 [M-19PF₆⁻]¹⁹⁺ (calcd m/z: 999.7) and 942.4 [M-19PF₆⁻]²⁰⁺ (calcd m/z: 942.4).

2.10. supramolecular hexagram $[Fe_{12}V_3(LB)_3]^{36+}$

To a solution of ligand *LB* (8.90 mg, 2 µmol) and *V* (1.51 mg, 2 µmol) in glycol (10 mL, 1:1 v/v), a solution of FeCl₂•4H₂O (1.584 mg, 8 µmol) in glycol (5 mL) was added dropwise. The mixture was heated to 145°C for 12 hours. After cooling down to ambient, 50mL MeOH was added and stirred for another 2 hours, adding excess amount of NH₄PF₆ to produce a purple reddish precipitate.

A short column chromatography was used for isolated the trace amount of triangle byproduct $(Fe_3V_3)^{6+}$. The isolated Star of David was washed with water and MeOH to generate a reddish product 13.20 mg (92%). ¹H NMR (500 MHz, CD₃CN) δ 9.2-9.4 (m, 48H, tpy^AH^{3',5'}, tpy^BH^{3',5'}, $tpy^{C}H^{3',5'}$, $tpy^{D}H^{3',5'}$), 9.05-9.15 (m, $tpy^{D}H^{3',5'}$, $tpy^{E}H^{3',5'}$, 24H), 8.68-8.80 (m, 72H, $tpy^{A}H^{3,3''}$, $tpy^{B}H^{3,3"}$, $tpy^{C}H^{3,3"}$, $tpy^{D}H^{3,3"}$, $tpy^{E}H^{3,3"}$, $tpy^{F}H^{3,3"}$), 8.15-8.45 (m, $tpy^{A}H^{g}$, $tpy^{B}H^{g}$, $tpy^{C}H^{g}$, $tpy^{D}H^{g}$, $tpy^{E}H^{g}$, 72H), 7.85-8.05 (m, $tpy^{A}H^{h}$, $tpy^{B}H^{g}$, $tpy^{C}H^{h}$, $tpy^{C}H^{h}$, $tpy^{D}H^{h}$, $tpy^{E}H^{h}$, $tpy^{F}H^{h}$, $tpy^{D}H^{4,4"}$, $tpy^{E}H^{4,4"}$, 96H), 7.60-7.70 (m, $tpy^{A}H^{4,4"}$, $tpy^{B}H^{4,4"}$, $tpy^{C}H^{4,4"}$, $tpy^{F}H^{4,4"}$, 48H), 7.32-7.55(m, $tpy^{A}H^{5,5"}$, $tpy^{B}H^{5,5"}$ $tpy^{C}H^{5,5"}$, $tpy^{D}H^{5,5"}$ $tpy^{E}H^{5,5"}$, $tpy^{F}H^{5,5"}$ 72H), 7.05-7.19 (m, 84H), 7.05 (m, ph^{*m*}), ph^{n} , $tpy^{A}H^{6,6"}$, $tpy^{B}H^{6,6"}$, $tpy^{C}H^{6,6'}$, $tpy^{D}H^{6,6"}$, $tpy^{F}H^{6,6"}$, $tpy^{A}H^{5,5"}$, $tpy^{D}H^{5,5"}$, $tpy^{E}H^{5,5"}$, tpy^FH^{5,5"} 84H), 4.06 (m, 36H, -OMe), 3.44 (m, 24H, -OCH₂-), 0.92 (m,78H –Alkyl-H), 0.53-0.68 (m, Alkyl-H, 154H). ESI-MS (CD₃CN as solvent, m/z): 1771.1[M-11PF₆^{-]¹¹⁺, (calcd m/z: 1771.1),} $1671.4[M-12PF_6]^{12+}$ (calcd m/z: 1671.4), 1476.2 $[M-13PF_6]^{13+}$ (calcd m/z:1476.2), 1360.2 $[M-14PF_6^{-}]^{14+}$ (calcd m/z: 1360.2), 1259.9 $[M-15PF_6^{-}]^{15+}$ (calcd m/z: 1259.9), 1171.8 $[M-16PF_6^{-1}]^{16+}$ (calcd m/z: 1171.8), 1094.70 $[M-17PF_6^{-1}]^{17+}$, (calcd m/z: 1094.70), 1025.71 $[M-18PF_6^{-}]^{18+}$ (calcd m/z:1025.71), 963.41 $[M-19PF_6^{-}]^{19+}$ (calcd m/z: 963.98), 908.67 $[M-20PF_6^{-1}]^{20+}$ (calcd m/z: 908.67), 858.45 $[M-21PF_6^{-1}]^{21+}$ (calcd m/z: 858.45), 812.7 $[M-22PF_6^{-1}]^{22+}$ (calcd m/z: 1812.7), 771.3 $[M-23PF_6^{-1}]^{23+}$ (calcd m/z: 771.3), 733.1 $[M-24PF_6^{-1}]^{24+}$ (calcd m/z: 733.1).

Supplementary Figure 17: The HR-MS spectrum of compound *L-Br* in CH₃CN.

Supplementary Figure 18: The HR-MS spectrum of compound *LA* in CH₃CN.

Supplementary Figure 19: The HR-MS spectrum of compound *LB* in CH₃CN.

Supplementary Figure 20: the ¹H NMR spectrum of *X-C12* (500 MHz, CDCl₃ as solvent)

Supplementary Figure 21: the ¹³C NMR spectrum (125 MHz, CDCl₃ as solvent) of *X-C12*

Supplementary Figure 22: the ¹H NMR spectrum of *X-C6*. (500 MHz, CDCl₃ as solvent)

Supplementary Figure 23: the 13 C NMR spectrum of *X-C6* (125 MHz, CDCl₃ as solvent)

Supplementary Figure 24: the 2D COSY spectrum of Ligand X-C6 (400 MHz, CDCl₃ as

Supplementary Figure 25: the COSY spectrum of Ligand X-C6. (400 MHz, CDCl₃ as solvent,

aromatic region).

Supplementary Figure 26: the 2D COSY spectrum of Ligand *X-C6* (400 MHz. CDCl₃ as solvent,

aliphatic region)

Supplementary Figure 27: the ¹H NMR spectrum of monobromoterpyridine (400 MHz, CDCl₃

as solvent)

Supplementary Figure 28: the ¹³C NMR spectrum of monobromoterpyridine (125 MHz, CDCl₃

as solvent).

Supplementary Figure 29: the ¹H NMR spectrum of *L-Br*. (aromatic region, 500 MHz, CDCl₃ as

Supplementary Figure 30: the ¹³C NMR spectrum of *L-Br* (125 MHz, CDCl₃ as solvent).

Supplementary Figure 31: the COSY spectrum of *L-Br* (aromatic region, 500 MHz, CDCl₃ as

Supplementary Figure 32: the NOESY spectrum of *L-Br* (aromatic region, 500 MHz, CDCl₃ as

solvent).

Supplementary Figure 33: the ¹H NMR spectrum of *LA* (500 MHz, CDCl₃ as solvent).

Supplementary Figure 34: the ¹³C NMR spectrum of LA. (125 MHz, CDCl₃ as solvent)

Supplementary Figure 35: the COSY spectrum of LA. (aromatic region, 500 MHz, CDCl₃ as

Supplementary Figure 36: the NOESY spectrum of LA (aromatic region, 500 MHz, CDCl₃ as

solvent).

Supplementary Figure 37: the ¹H NMR spectrum of *LB* (500 MHz, CDCl₃ as solvent).

Supplementary Figure 38: the ¹³C NMR spectrum of *LB*. (125 MHz, CDCl₃ as solvent)

Supplementary Figure 39: the COSY spectrum of *LB*. (500 MHz, CDCl₃ as solvent)

Supplementary Figure 40: the NOESY spectrum of *LB*. (aromatic region, 500 MHz, CDCl₃ as

Supplementary Figure 41: the ¹H NMR spectrum of $[Cd_{10}LA_5]^{30+} \cdot 30PF_6^-$ (500 MHZ, CD₃CN as

solvent).

Supplementary Figure 42: the NOESY spectrum of $[Cd_{10}LA_5]^{30+} \cdot 30PF_6^-$ (aromatic region, 500 MHz, CD₃CN as solvent).

Supplementary Figure 43: the ¹H NMR spectrum of $[Fe_{10}LA_5]^{30+} \cdot 30PF_6^-$ (500 MHz, CD₃CN

as solvent)

Supplementary Figure 44: the NOESY spectrum of $[Fe_{10}LA_5]^{30+} \cdot 30PF_6^-$ (aromatic region, 500 MHz, CD₃CN as solvent)

Supplementary Figure 45: the ¹H NMR and DOSY spectrum (500 MHz, CD₃CN as solvent) of $[Cd_{12}V_3(LB)_3]^{36+} \cdot 36PF_6^-$ and $[Cd_3V_3]^{6+}X \cdot 6PF_6^-$ assembled directly with Cd²⁺, *V* and *LB* which

containing small triangle and Star-Of-David.

Supplementary Figure 46: the ¹H NMR spectrum of $[Fe_{12}V_3(LB)_3]^{36+} \cdot 36PF_6^-$ (500MHz, CD₃CN as solvent) assembled with Fe²⁺, *V* and *LB*.

Supplementary Figure 47: the NOESY spectrum of $[Fe_{12}V3(LB)_3]^{36+} \cdot 36PF_6^-$ (500 MHz,

CD₃CN as solvent).

Supplementary Figure 48: the MS-Spectrum of $[Fe_{10}LA_5]^{30+}$ with different charge states from +9 to +23 and measured (bottom) and calculated (top) isotope patterns.

22 +

21+

.5

18+

783.2 784 2 783.2 M 783 784 m/z

16+

14 +

12 +

13+

Supplementary Figure 49: Measured (bottom) and calculated (top) isotope patterns for the different charge states observed from $[Fe_{10}LA_5]^{30+}$ (PF₆⁻ as counterion).

Supplementary Figure 50: the MS-spectrum of $[Cd_{10}LA_5]^{30+}$ with different charge states from +8 to +21 and measured (bottom) and calculated (top) isotope patterns.

Supplementary Figure 51: the Measured (bottom) and calculated (top) isotope patterns for the different charge states observed from $[Cd_{10}LA_5]^{30+}$ (PF₆⁻ as counterion).

Supplementary Figure 52: the MS-Spectrum of $[Cd_{12}V_3(LB)_3]^{36+}$ with different charge states from +10 to +19 and impurities triangle of $[Cd_3V_3]^{6+}$. Inset: measured (bottom) and calculated (top) isotope patterns of $[Cd_{12}V_3(LB)_3]^{36+}$.

Supplementary Figure 53: the Measured (bottom) and calculated (top) isotope patterns of

 $[Cd_{12}V_3(LB)_3]^{36+}$ for the different charge states (PF₆⁻ as counterion, only isotopic patterns of $[Cd_{12}V_3(LB)_3]^{36+}$ were presented; the isotopic patterns of the metallo-triangle $[Cd_3V_3]^{6+}$ was consistent with the published results).

Supplementary Figure 54: the MS-spectrum of $[Fe_{12}V_3(LB)_3]^{36+}$ with different charge states

from +11 to +25 and the measured (bottom) and calculated (top) isotope patterns.

Supplementary Figure 55: the Measured (bottom) and calculated (top) isotope patterns for the different charge states observed from $[Fe_{12}V_3(LB)_3]^{36+}$ (PF₆⁻ as counterion).

Supplementary Figure 56: The UV-vis absorption spectrum of $[Cd_{10}LA_5]^{30+}$, $[Fe_{10}LA_5]^{30+}$, $[Fe_{12}V_3(LB)_3]^{36+}$ with the concentration ~10⁻⁶ M in CH₃CN.

Supplementary Figure 57: Single crystal structures of tpy-Ru-tpy, tpy-Cd-tpy and tpy-Fe-tpy, and their measured lengthes.⁵⁵

Supplementary Figure 58: A and B: AFM images of metallo-pentagram; C and D: STM images of metallo-pentagram.

Supplementary Figure 59: High-resolution ESI-MS of pentagram $[Cd_5LA_5]^{30+}$ with different anions of NO₃⁻, PF₆⁻ and/or ClO₄⁻.

Supplementary References:

1. A. Schultz, X. Li, B. Barkakaty, C. N. Moorefield, C. Wesdemiotis and G. R. Newkome. *J. Am. Chem. Soc.* **2012**, *134*, 7672–7675

2. Y. Li, Z. Jiang, J. Yuan, D. Liu, T. Wu, C. N. Moorefield, G. R. Newkome and P. Wang. *Chem. Commun.*, **2015**, *51*, 5766-5769.

3. T. Bauer, D. Schlüter, J. Sakamoto. Synlett, 2010, 06, 877-880.

4. J. M. Ludlow III, Z. Guo, A. Schultz, R. Sarkar, C. N. Moorefield, C. Wesdemiotis, and G. R. Newkome. *Eur. J. Inorg. Chem.* **2015**, 5662–5668.

5. E. C. Constable, C. E. Housecroft, E. A. Medlycott, M. Neuburger, F. Reinders, S. Reymann and S. Schaffner, *Inorg. Chem. Commun.*, **2008**, *11*, 805 (for **tpy-Ru-tpy**); N. W. Alcock, P. R.

Barker, J. M. Haider, M. J. Hannon, C. L. Painting, Z. Pikramenou, E. A. Plummer, K. Rissanen

and P. Saarenketo, J. Chem. Soc., Dalton Trans., 2000, 1447–1461 (for tpy-Cd-tpy); J. C.

McMurtrie and I. Dance, Cryst. Eng. Commun., 2009, 11, 1141 (for tpy-Fe-tpy).

6. I. Horcas, R. Fern ández, J. M. Gómez-Rodr guez, J. Colchero, J. Gómez-Herrero, A. M. Baro, *Rev. Sci. Instrum.* **2007**, *78*, 013705.