Supporting Derivation

General Cartesian Form for a Logarithmic Spiral Parametrized by Arc-Length. The
logarithmic spiral is standardly expressed in polar coordinates as:

r=ae™

However, this form is not useful for our purposes because it describes a logarithmic spiral
whose pole (point of infinite curvature) is at the origin. We require a form that is general
enough to describe a spiral “starting” at an arbitrary initial position (X, yo), with initial

tangent direction ¢y, initial curvature ko, and initial rate of change of curvature 7y at that

point. We derive such a form in the complex Cartesian plane.

We begin with the following Ceséaro equation, expressing curvature in terms of arc

length:
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The values ¢ and b are chosen to ensure that the initial curvature and rate of curvature

are Ko and yy, respectively. Specifically:
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The orientation function is then given by:
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P(s) = ¢0 + j.
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and the position E(s)=x(s)+iy(s) is given by:
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In order to obtain the general expression, we need to evaluate the two integrals £ and /.

.ou= llog(bt +a) )
Setting b , we obtain:
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where b and b . Using integration by parts,
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and, therefore,
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Similarly,
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b . Using integration by parts as before,
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