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Supplementary Materials: 
 
Materials and Methods: 

 
Perceptual Data: DREAM Challenge 

The psychophysical data for this project were collected between February 2013 and July 
2014 as part of the Rockefeller University Smell Study. Data from 49 individuals (28 women, 
median age 36) were used for the DREAM challenge. The dataset represents a subset of that 
presented in the original study (14), which was unpublished until the DREAM challenge was 
completed in early 2016. Six individuals declined permission to have their data used in the 
DREAM challenge. We excluded data on familiarity and edibility ratings for all stimuli, as well 
as data about whether the individual recognized the smell and how they described it in their own 
words, as well as data from 4 molecules [compound identification number (CID) 6202: thiamine 
hydrochloride; CID 24203: sodium phosphate dibasic; CID 2537: camphor; CID 106441: 2-
methoxy-3(5 or 6)-isopropylpyrazine]. Of those subjects who agreed to provide information on 
race and ethnicity, 24 self-identified as Black, 14 as White, 5 as Asian, and 2 as Native 
American. Nine individuals self-identified as Hispanic. Individuals provided perceptual ratings 
of 992 stimuli, 476 different monomolecular chemicals at two different concentrations with 20 
molecules tested twice. 

Each molecule was presented to individuals at two different concentrations, diluted in 
paraffin oil so that the "high" and “low” concentrations for each molecule were empirically set to 
about equal intensity. While molecules were obtained at high purity (> 97%), we cannot exclude 
the possibility that trace contaminants or degradation products account for or add to the odor of 
the molecule. In the DREAM challenge, teams were asked for predictions of pleasantness and 
the 19 descriptors only for the “high” concentrations, and intensity predictions were made only 
for the subset of odors that were tested at a dilution of 1/1,000. Individuals were asked to rate 
each stimulus using 21 perceptual attributes (intensity, pleasantness, and 19 semantic 
descriptors), by moving an unlabeled slider. The default location of the slider was 50 for 
intensity and pleasantness, and 0 for the 19 descriptors. For each task, the final position of the 
slider was translated into a scale from 0 to 100, where 100 signified highest intensity or 
pleasantness, and the best match of a descriptor for a given stimulus. Further details on the 
psychophysical procedures and all raw data are available in the original study (14). 

 
Perceptual Data: Out of Sample Analysis on New Subjects 

Analysis in Fig. S7B used an unpublished study (Rockefeller University IRB Protocol 
LVO-0869) that tested intensity and pleasantness ratings of 403 subjects who sampled 47 
molecules, comprising 32 that overlap with the DREAM Challenge study and 15 new molecules 
(Data File S1). Data were collected between June 2015 and October 2016 using the same 
methods as the DREAM Challenge dataset, with the exception that the stimuli were not 
intensity-matched for pleasantness prediction, and intensity predictions were performed on the 
available dilutions in the study, and not solely the 1/1000 dilution used in the DREAM Challenge. 
All subjects gave their written informed consent to participate in this study. 403 healthy subjects 
participated (246 women, median age 31). A subset of subjects provided self-identified 
information on their race and ethnicity: 152 Black, 131 White, 48 Asian. 81 self-identified as 
Hispanic.. Information on molecules and dilutions, and all raw psychophysical data are in Data 
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File S1.  
 
Molecular features 

We provided challenge participants with the CID for each molecule, useful for PubChem 
(https://pubchem.ncbi.nlm.nih.gov/) or other database searches. We used the Dragon software 
package (version 6; http://www.talete.mi.it) to generate a large number of chemical features for 
each molecule and made these available to participants. 
 
Baseline model for splitting data for the challenge 

We developed a linear model with a second layer cubic correction based on a PCA-
reduced version of Dragon features to predict the perception of the population. The underlying 
methodology was used to solve the population prediction and is a multi-linear regression for each 
of the attributes based on the responses of all individuals and the molecular features of each 
molecule. The only pre-processing of the data we did was dimensionality reduction of the 
number of Dragon features, and a log transformation of the values. Based on the above, we chose 
a random partition that yields good predictive accuracy. We chose the partitions for the 
leaderboard set and hidden test set based on the distribution of median correlation over test 
molecules obtained with the model, for different random partitions. The median correlation 
across molecules selected for the selected partition is above 0. 
 
Models 

A graphical illustration of one of many decision trees generated by the random-forest 
algorithm as it evaluates how different structural and physical components determine “garlic” 
smell is shown in Fig. 2a. In each tree, the training data are sequentially partitioned such that 
each branch point helps increase the accuracy of a prediction. These trees are then aggregated, 
with their predictions averaged, through a process called bagging. Because the dimensionality of 
the structural data is high with 4884 Dragon features per molecule and the perception data matrix 
is sparse, random-forest models are well suited as they help reduce the dimension of the 
structural data by ignoring unimportant features, and help determine the decision boundary 
between perceptual ratings of zero and the more informative values. Because most perceptual 
attributes appeared to depend non-linearly on molecular features, and interactions between 
features may explain some of the perceptual experience, random-forest models—which can 
account for these complexities–performed best in this study. However, regularized linear models 
fared a close second for individual predictions (Data File S1). Linear models (Fig. 2b), which 
have previously been used to predict perceptual attributes (8, 19), served as a baseline model for 
the challenge. Their simplicity and good interpretability makes them appealing. Because the 
number of Dragon features far exceeds the number of molecules, simple linear models such as 
ordinary least squares regression will produce over-fitting and fail to generalize to untested 
molecules. Such models will also be sensitive to the highly non-normal distribution of the data 
and obviously fail to capture non-linear relationships between structural features and perceptual 
attributes. To overcome these problems, the best linear models used not only the original features, 
but also their squares (scaled between 0 and 1), and thus were quadratic in the original feature 
values. To reduce over-fitting, these models used randomized Lasso feature selection, so the 
summed magnitude of all the regression coefficients is minimized along with the mean-squared 
error; this automatically selects for models in which many coefficients are zero. Such models 
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were fit on resampled datasets to find the best-fitting and most informative features (Data File 
S1). 
 
Scoring 

The training set contained perceptual attribute data from 338 of the 476 molecules. The 
leaderboard set used for model validation and a hidden test set used for final predictions 
contained perceptual attribute data from 69 molecules each (Data File S1). Participants had 
access to the Dragon features for all 476 molecules. However, none of the challenge participants 
had access to the perceptual attribute data for the 69 molecules in the final hidden test set at any 
point during the challenge or the community phase. Scoring was handled by the organizers, 
including authors P.M. and R.N. Models were scored as follows: for individual prediction, the 
Pearson correlation between model and data, across test-set molecules, was computed for each 
individual and attribute. The mean correlations over individuals resulted in 21 attribute-level 
correlations. These were reduced to (1) the correlation for intensity, (2) the correlation for 
pleasantness, and (3) the mean of the correlations for the 19 semantic descriptors. These three 
items were normalized into Z-scores by using the mean and standard deviation for the same 
dataset with molecule identities shuffled. The final score is the mean of the three Z-scores. 
Population prediction was scored similarly except that the data were aggregated into means and 
standard deviations across individuals for each molecule and attribute. Models were asked to 
predict these means and standard deviations. Here six Z-scores were used, with three 
corresponding to the means and three to the standard deviations. In both cases we re-scored the 
models in 1000 bootstraps of the hidden test set.  

For individual prediction, the best-performing model remained first in 80 per cent of the 
bootstrap runs, whereas the second model ranked first in 8 per cent of the runs. For population 
prediction, the best-performing model remained first in 38 per cent of the bootstrap runs, 
whereas the second model ranked first in 26 per cent of the runs.  
 
Significance of the correlation between subjects’ usage of the scale and correlation of predictions 

We computed significance by shuffling subjects’ identity 1000 times, such that variance 
and prediction accuracy were uncorrelated across subjects in expectation, and then computed the 
97.5% percentile to obtain the threshold for a two-tailed p < 0.05, which is shown in Fig. 2f. 
Technically each descriptor should have a different p < 0.05 cutoff, but these were sufficiently 
similar across descriptors that we simply reported the one obtained by pooling the shuffles across 
descriptors. 
 
Significance for the correlation between connectivity structure and model performance for 
“garlic”/ “fish”, “sweet” / “fruit” and “musky” / “sweaty”. 

The p-value was calculated by randomizing 10,000 times the attributes’ identities across 
both the connectivity and correlation axis and counting the proportion of cases were the 
connectivity strength had a value above or equal the value for “garlic/fish” and the correlation 
distance was below. The same procedure was used for the 2 other pairs of attributes.  

Aggregation of models 
Participant models were aggregated by first ranking by descending Z-score, then 

averaging one-by-one following these ranks (the 2 highest ranked models, the 3 highest ranked 
models, etc.) until all models were aggregated to obtain the same number of aggregations as 
models. 
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Post-challenge community phase 

Five teams (Teams IKW Allstars, GuanLab, KU Leuven, Russ Wolfinger, and Joel 
Mainland) participated in this phase of the challenge where we discussed ways to enhance the 
predictions. Each team submitted one new model for both individual and population predictions 
based on these discussions, which was scored against the same test-set as during the open phase 
of the challenge. An aggregate model built from these five models was also scored (Fig. 1h). 
 
Assessing the reverse-engineering of perceptual profiles using the aggregate model 

One way to assess the sensitivity of the model’s sensory profile predictions is to calculate 
the probability of having exactly k correct sensory profile predictions from a list of n molecules, 
that is: 𝑝"# =

#
" 𝑞

#&"(1 − 𝑞)" where 𝑞 = (#&+)
#

 is the probability of matching incorrectly one 
profile to the list of n molecules. 
Here n=69 and the aggregated model was able to reverse-engineer k=14 sensory profiles 
perfectly (20%), so 𝑝+,-. = 1.2492	 ∗ 10&+6. 

Another way to measure the performance is to measure the area under the model 
prediction rank curve (AUC) of Fig. 4f. For a perfect model, the prediction rank for every 
molecule is 1 and so the AUC is the entire plot area: 69*69 (normalized to 1); for a random 
model all ranks are equally likely and 5f would show a diagonal line (in expectation), with area 

𝑖-.
+ .=69*68/2 normalized to an AUC of 0.5. For our model presented here has an AUC equal to 

the perfect model area minus the sum of the ranks of the aggregate model i.e 69*69-830 
(normalized to 0.826). 
 
Out of sample analysis 

We employed two methods to build and test our predictions on different subjects. First, 
we trained a random forest model on 25 subjects split arbitrarily from the DREAM Challenge 
dataset and tested it on the remaining 24 subjects. This process was repeated 50 times to yield the 
predictions in Fig. S7A. Second, we used a new unpublished dataset from 403 subjects to test 
intensity and pleasantness predictions for 47 molecules (15 not previously tested in the DREAM 
Challenge) using a random forest model trained on all the molecules of the 49 DREAM 
Challenge subjects (Fig. S7B). 
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Fig. S1. Correlation and covariance of perceptual attributes. (A-B) Line width and color 
represent the strength of the pairwise correlation (A) and normalized covariance (B) between 21 
attributes for all molecules and individuals.  
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Fig. S2. Best performer outcomes for mean and standard deviation for population 
prediction. (A-B) Intensity and pleasantness (A) and 19 descriptor (B) predictions of the mean 
of the best-performing team plotted against the observed values for the 69 hidden test set 
molecules used for model validation.  
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Fig. S3. Prediction performance. Pearson correlation between predicted and measured mean 
perception of the 64 molecules that were the easiest (black dots) and the five molecules that were 
the most difficult (white dots) to predict. Teams are ordered by their final score for population 
prediction, with the best performer ranked 1.  
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Fig. S4. Top molecular features used by the random-forest model from the post-challenge 
phase as predictors for “burnt” and "bakery.” (A-B) Each grey dot represents predictions of 
each of the 407 molecules in the training+leaderboard set for “burnt” (A) and “bakery” (B), with 
example molecules indicated by red dots. In (A) only four of the five top features are shown. The 
fifth feature (R3p+; R maximal autocorrelation of lag 3 / weighted by polarizability) is very 
similar to the feature depicted in the top panel. In (B) only the top feature is shown. The four 
other features in the top 5 (NSPDK_1022278, NSPDK_722140, NSPDK_250366, 
NSPDK_555472) are very similar to the one shown.  
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Fig. S5. Top 5 molecular features used by the random-forest model from the post-challenge 
phase as predictors for “fruit”. Each grey dot represents predictions of each of the 407 
molecules in the training+leaderboard set for “fruit”, with example molecules indicated by red 
dots.  
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Fig. S6. Predicting the smell of specific molecules. (A-B), The five most important molecular 
features selected from Dragon, Morgan, and NSPDK (red text) for predicting (A) intensity and 
(B) pleasantness using the random-forest model from the post-challenge phase. Each grey dot 
represents one of the 407 molecules in the training+leaderboard set, with example molecules 
indicated by red dots. For (A), only three features are shown. The other two are very similar to 
the one shown in the top panel (B03[C-S]) and the one shown in the middle panel 
(Eig07_AEA(dm)), respectively. 
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Fig. S7. Out of sample predictions. (A) Average of correlation of prediction using a random 
forest model trained with 25 subjects and tested on the remaining 24 subjects selected randomly 
50 times with the odors of the training set. For each attribute, the correlation between the model 
predictions for the 69 hidden test set odors was calculated against the 25 subjects used for 
training (black dots) or the 24 subjects left out of sample (red dots). (B) Average of correlation of 
prediction for intensity and pleasantness trained on the DREAM challenge dataset but tested on a 
new population of 403 subjects. Predictions are correlated against perception of 32 molecules 
present both in the original DREAM challenge and the new study (red), 15 new molecules 
(green), or all 47 molecules used in the new study (blue). Error bars were generated from the 
Fisher transformation. 

Data File S1. Raw data including prediction scores and methods, correlation values, 
molecule CIDs, and top molecular features. 

 


