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section S1. Additional methods 

In figs. S1 to S3, we show basic characterizations of our LaAlGe samples. Energy dispersive X-

ray spectroscopy measurements shown in fig. S1 provides a quantitative measure of the chemical 

composition of our LaAlGe. Through this data, we conclude (1) that our samples indeed consists 

of the three elements, La, Al, and Ge and (2) that the chemical composition is La:Al:Ge = 1:1:1. 

The X-ray diffraction data shown in fig. S2 confirm the crystal structure reported by previous 

diffraction experiments (41–43) and determine the following lattice constants, 𝑎 = 𝑏 = 4.336 𝐴 

and 𝑐 = 14.828 𝐴, also consistent with data from the previous reports (41–43). Finally, the low-

energy electron diffraction data (LEED) shown in fig. S3 shows a clear 4-fold symmetry, which 

shows that there is no surface reconstruction. In fact, quantitatively, a surface reconstruction (e.g. 

2 × 1) would change the surface Brillouin zone size for the surface state. Here, we have 

measured the bulk band structure via soft-X-ray ARPES and the surface band structure via low-

photon-energy ARPES. The bulk band structure data match the bulk BZ size while the surface 

data also match the surface BZ size. Therefore, our ARPES measurements quantitatively exclude 

the possibility of a surface reconstruction. 

table S1. Energy dispersive spectroscopy (EDS) data. 

Element Edge Apparent 

concentration 

k ration Weight 

(wt%) 

Atomic 

ratio 

Ref. 

compound 

Al K 3.76 0.03403 11.83 33.28 Al2O3 

Ge K 39.07 0.39071 31.34 33.74 Ge 

La L 74.96 0.67255 56.83 32.97 LaB6 

Total    100 100  

 

In fig. S4, we further explain the distribution of Weyl nodes in LaAlGe. We see that (S4A) all the 

W1 and W3'(W3'') nodes are located at the 𝑘𝑧 = 0 plane whereas the W2 nodes are at finite 𝑘𝑧 

values. Figure. S4B shows the 𝑘𝑧 =W2 plane only. There are 8 W2 Weyl nodes per 𝑘𝑧 =W2 plane 

and there are two such planes in the bulk BZ (fig. S4A). Hence there are 16 W2 Weyl nodes in 

total. Figure S4C shows the 𝑘𝑧 = 0 plane only. The W1 Weyl nodes are located near the BZ 

boundaries. There are 8 W1 Weyl nodes. The W3' and W3'' Weyl nodes are located near the 45° 

lines of the 𝑘𝑧 = 0 plane. There are 8 W3' nodes and 8 W3'' nodes. Therefore, the total number of 

Weyl nodes is 8 (W1) + 16 (W2) + 8 (W3') + 8 (W3'') = 40. 



 

fig. S1. Energy-dispersive x-ray spectroscopy of LaAlGe samples. Cps stands for counts per 

second. 

  



 

fig. S2. XRD data of LaAlGe. (A) Our XRD measurements confirm the crystal structure 

reported by previous diffraction experiments (41–43) and determine the following lattice 

constants, 𝑎 = 𝑏 = 4.336 𝐴 and 𝑐 = 14.828 𝐴, also consistent with data from the previous 

reports (41–43). 



 

fig. S3. Low-energy electron diffraction data of LaAlGe taken at 100-eV electron energy. 

The observed 4-fold symmetry excludes the existence of surface reconstructions. 



 

fig. S4. The 40 Weyl nodes in LaAlGe. 

  



section S2. Full characterization of the type II Weyl fermions in LaAlGe 

Based on our data and calculations, we can fully characterize the Weyl fermions observed in 

LaAlGe. This can help us quantify the amount of Lorentz symmetry breaking, and deduce all the 

information about the Weyl Hamiltonian including the magnitude of the Berry curvature. In order 

to do so, we need to obtain the Fermi velocities of the two bands that form the Weyl cone along 

the following momentum space directions, (100), (010), (001), (110), (101), and (011).  

 

table S2. ARPES-measured Fermi velocities near W2. Currently, we do not have data that can 

be used along the (101) direction. 

Direction (100) (010) (001) (110) (101) (011) 

ARPES v+ (eVÅ) 1.85 -0.52 0.67 0.44 N.A. 0.21 

ARPES v-  (eVÅ) -1.22 -2.89 -1.27 -2.59 N.A. -2.65 

 

table S3. Calculated Fermi velocities near W2. 

Direction (100) (010) (001) (110) (101) (011) 

ARPES v+ (eVÅ) 1.54 -0.39 0.43 0.35 0.96 0.01 

ARPES v-  (eVÅ) -1.26 -2.65 -1.36 -2.69 -1.82 -2.82 

 

We want to compute the numerical values entering the 3-vector 𝒗 and the symmetric and positive 

definite 3 ×  3 matrix 𝑼̂ 

𝒗 = (𝑣1, 𝑣2, 𝑣3)𝑇,      𝑼 ̂ = (

𝑢1 𝑤3 𝑤2

𝑤3 𝑢2 𝑤1

𝑤2 𝑤1 𝑢3

) 

that determine the dispersion 𝜖(𝒌) = 𝒌𝑇𝒗 ± √𝒌𝑇𝑼 ̂𝒌  near the Weyl node.  

From the velocities along the coordinate axes, we find 

𝑣1 =
𝑣+,(100)+𝑣−,(100)

2
，𝑢1 = (

𝑣+,(100)−𝑣−,(100)

2
)

2
 



and similarly for 𝑣2, 𝑢2 and 𝑣3, 𝑢3, as well as  

𝑤3 =
1

8
[(𝑣+,(110) − 𝑣−,(110))

2
− (𝑣+,(010) − 𝑣−,(010))

2
− (𝑣+,(100) − 𝑣−,(100))

2
] 

and similarly for 𝑤1 and 𝑤2. 

We can obtain 𝒗 and 𝑼̂ based on the DFT calculated values in tab.S2 

𝒗DFT = (0.14, −1.52, −0.47),    𝑼 ̂DFT = (
1.96 −0.46 −0.41

−0.46 1.28 −0.04
−0.41 −0.04 0.80

) 

We can also obtain 𝒗 and 𝑼̂ based on the ARPES measured values in Tab. S3, except for 𝑤2, as 

𝑣±,(101) are not available from ARPES data and we used the DFT values instead 

𝒗ARPES = (0.32, −1.71, 0.32),    𝑼 ̂ARPES = (
2.36 −0.73 −0.68

−0.73 1.40 −0.15
−0.68 −0.15 0.94

) 

𝑼̂ should be positive definite. Indeed the eigenvalues are 2.27, 1.15, 0.61 from the DFT 

calculated results and 2.9036, 1.34784, 0.448551 from the ARPES measured data. However, the 

matrix 𝑼̂ − 𝒗𝒗𝑇 is expected to be indefinite. Indeed, it has eigenvalues 2.02, 0.83, -1.36 from the 

DFT calculated results and 2.46, -1.74, 0.85 from the ARPES measured data. This confirms the 

type-II nature of the W2 Weyl cone. Moreover, using 𝒗 and 𝑼̂, one can reconstruct the full low-

energy dispersion 𝜖(𝒌) = 𝒌𝑇𝒗 ± √𝒌𝑇𝑼 ̂𝒌 as well as the Berry curvature Ω(𝒌) = ±𝒌det𝑼 ̂/

(𝒌𝑇𝑼 ̂𝒌)
3/2

. (Only the sign ± of the Berry curvature cannot be determined, as the spectroscopic 

information does not allow to detect whether a Weyl node is a source or a sink of Berry flux.) 

 

  



section S3. Decisive evidence for type II Weyl fermions 

A Weyl semimetal is defined as a material whose low-energy electronic quasi-particle excitations 

are Weyl fermions. Therefore, to demonstrate the Weyl semimetal state in a material, it is entirely 

sufficient to observe the bulk Weyl fermion cones. The above statement is correct according to 

topological band theory. Equally importantly, this has been practiced by a number of important 

works in the Weyl semimetal field. Specifically, Ref. (8) proved the Weyl semimetal state in 

photonic crystals solely by showing the bulk Weyl fermion data. Similarly, Ref. (9) showed the 

Weyl semimetal state in TaAs solely based on the bulk Weyl fermion data 

More importantly, the focus is to show the type-II character in LaAlGe. We emphasize that the 

distinction between type-I and type-II Weyl fermions solely lies in the bulk Weyl fermion cones. 

The type-I/type-II character can only be determined by measuring the bulk Weyl cones. This is 

precisely what we did in this paper. We measured the bulk band structure and directly observed 

the heavily-tilted bulk Weyl fermion cones. The electronic dispersion of the bulk Weyl cone 

directly revealed the type-II character of the Weyl fermion cones in LaAlGe. Therefore, our paper 

presents the most decisive and relevant evidence, which unambiguously proves the type-II Weyl 

fermion state in LaAlGe. 

A Weyl semimetal may also have other hallmarks, including the surface Fermi arcs, a negative 

longitudinal magneto-resistance due to the chiral anomaly (11), a nonlocal transport due to the 

chiral anomaly (10), and a new Fermi arc quantum oscillation (53). These other hallmarks 

including the Fermi arcs are out of the scope and irrelevant to our goal. For example, fig. S5 

shows that the surface Fermi arc cannot distinguish between type-I and type-II. As we have 

emphasized above, the decisive evidence of the type-II character is the bulk Weyl fermion cone 

band structure. Therefore, it is not required (and often practically very hard) to show all of the 

other hallmarks of a Weyl node. In fact, none of the Weyl experimental papers have shown all 

hallmarks to prove the Weyl state. We take an analogy. The topological insulator state like Bi2Se3 

has many hallmarks including the presence of an odd number of Dirac surface states, the gap 

opening at the Dirac point by breaking time-reversal symmetry, the topological magneto-electric 

effect. However, to prove the TI state, nobody has shown all these hall marks. In Bi2Se3, which is 

a topological insulator, the decisive evidence is single Dirac cone at 𝛤.  

 



 

fig. S5. A comparison between the Fermi arcs in type I and type II Weyl semimetals, 

demonstrating that the Fermi arcs (the green line) cannot be used to discern between type I 

and type II Weyl fermions. The green line shows the surface Fermi arcs. (A) The case for a 

type-I Weyl semimetal. The grey dots represents the projected pair of type-I Weyl nodes of 

opposite chirality. (B) The case for a type-II Weyl semimetal. Each type-II Weyl node arises from 

the touching point between an electron and a hole pocket in the bulk, which are represented by 

the red and blue areas, respectively. It can be seen that the distinction between the type-I and 

type-II cases solely lies in the bulk Weyl fermions. Therefore, type-I or type-II character can only 

be determined by measuring the bulk Weyl cone. Showing the Fermi arcs can prove the Weyl 

semimetal state, but it cannot discern type-I from type-II. 

 

  



section S4. The importance of measuring the band structure along all three k (kx, ky , kz) 

directions and the issues in W1−xMoxTe2 

 

fig. S6. A comparison between a true crossing in the bulk band structure and a “projected” 

crossing in the projected band structure. (A) The Fermi surface of a type-II Weyl semimetal 

where electron and hole pockets touch to form the type-II Weyl node. On the surface, the 

projected Fermi surface shows a crossing between the projected electron and hole pockets. On the 

other hand, in panel (B) we have a completely different scenario in the bulk. The electron and 

hole pockets are totally separated at different 𝑘𝑧 values. However, on the surface, their 

projections can still show a crossing point. This example clearly shows that the observation of a 

crossing in the projected band structure on surface does not mean a crossing in the bulk. The red 

and blue ellipsoids represent the electron and hole Fermi surfaces in the bulk Brillouin zone. The 

red and blue ellipses are the surface projection of the bulk Fermi surfaces. 

Since the type-II Weyl fermion node is a touching point in the 3D (bulk) Brillouin zone, it can 

only be shown by measuring the band structure along all three momentum space directions 𝑘𝑥 ,

𝑘𝑦  and 𝑘𝑧 ). As emphasized in the main text (fig. S6), probing the projected band structure 

without 𝑘𝑧 resolution cannot demonstrate the existence of a true bulk crossing point in the bulk 

band structure (a Weyl node). 



In this section, we emphasize that this issue is particularly important in the case of the W1-

xMoxTe2 system because the projected Fermi surface can indeed show ``artifact'' crossings even if 

the bulk has no Weyl nodes. In fig. S7, we show the band structure of WTe2 with a lattice 

constant c = 1.41 nm. As seen in fig. S7A, under this lattice constant, WTe2 is fully gapped 

without any Weyl node. However, we clearly see projected crossings in the projected Fermi 

surface (fig. S7B), even though the bulk has no Weyl node. To double check the nature of these 

projected crossings, in fig. S7C we show the 𝑘𝑧 contribution of the electron and hole pockets in 

the vicinity of the projected crossings. The different 𝑘𝑧 values of the electron and hole pockets 

again demonstrate that the projected band crossings in this case is not a true crossing in the bulk 

band structure. 

 

 

fig. S7. The presence of projected crossing in the projected band structure of WTe2 even 

when the bulk has no Weyl nodes. (A) The bulk band structure calculation with a lattice 

constant c = 1.41 nm. Under this lattice constant, WTe2 is fully gapped without any Weyl node. 

(B) The projected Fermi surface under this condition. Projected crossings are seen between the 

electron pocket (the big pocket) and the hole pockets (the two little pockets). (C) The outer 

boundary of the hole pockets (red dotted line) arises from the bulk bands at 𝑘𝑧 = 0 whereas the 

boundary of the electron pocket marked by the black dotted line arises from bulk bands at 

𝑘𝑧 ~ 0.2 − 0.4 𝜋. The different 𝑘𝑧 values of the electron and hole pockets again demonstrate that 

the projected band crossings in this case is not a true crossing in the bulk band structure. 

 

  



section S5. Topological definition of Fermi arc surface states and its implications for surface 

states in LaAlGe and W1−xMoxTe2 

 

Below, we will present the following aspects of the Fermi arcs. 

 (1) The topological definition of Fermi arcs.  

 (2) How to demonstrate the existence of Fermi arcs in a topological sense.  

 (3) Why in certain real materials the existence/observability of Fermi arcs becomes ill-defined  

and why this is the case in LaAlGe. 

 (4) Why it is less reliable to conclude the existence of Fermi arcs based on a qualitative  

agreement between calculated and measured surface band structure. 

 (5) A detailed analysis of the W1-xMoxTe2 ARPES papers: Why these papers  

do not experimentally demonstrate the type-II Weyl fermions. 

 

(1) The topological definition of Fermi arcs. 

Definition I: The literal definition of a topological Fermi arc is a surface state that is terminated 

onto the projection of a Weyl node (fig. S8A).  

Definition II: An equivalent definition that reveals the topological nature more explicitly can be 

described as the following: If one draws a closed loop in the surface Brillouin zone (fig. S8A), the 

existence of a chiral edge mode along this loop (fig. S8B) defines the existence of a Fermi arc.  

 

We take an intuitive example to explain definition II. As shown in fig. S8A, we have a pair of 

projected Weyl nodes and a Fermi arc connecting them. We draw a 1D closed 𝑘 loop as shown by 

the dotted circle. We will show the following: 

 

The number of chiral edge modes along the loop  =  The number of surface Fermi arcs. 

Here comes the proof:  

We first prove: 

the number of chiral edge modes → the number of surface Fermi arcs.  

 

Assuming no knowledge on the existence of Fermi arcs, we only know that there is one chiral 

edge state along the closed 𝑘 loop as shown in fig. S8B. This band structure in fig. S8B is the 

same as the edge band structure of a quantum Hall system with a Chern number of +1. We know 



that this closed 𝑘 loop corresponds to the projection of a cylindrical pipe that crosses the bulk 

Brillouin zone along the 𝑘𝑧 direction (fig. S8B). Hence, we know that the Chern number of the 

bulk band structure on the cylindrical pipe is +1. Therefore, we know that the cylindrical pipe 

must encloses a Berry curvature monopole, i.e., a Weyl node, with a chiral charge of +1. Hence, 

on the surface, the closed 𝑘 loop encloses a projected Weyl node with a Chiral charge of +1. As a 

result, we know that the surface state (the green line) is a Fermi arc. 

 

 

fig. S8. Definition of the topological Fermi arc surface states. (A) A surface Brillouin zone 

with two projected Weyl nodes and a surface Fermi arc connecting the two nodes. The black and 

white dots represent the two projected Weyl nodes with a projected chiral charge of ±1. The 

green line represents the surface Fermi arc. The dotted circle is a closed 𝑘 loop in the surface BZ 

that encloses a projected Weyl node with +1 chiral charge. (B) The surface band structure along 

the closed 𝑘 loop as shown by the dotted circle in panel (A). (C) The closed 𝑘 loop on the surface 

corresponds to a cylindrical pipe that goes across the bulk BZ along the 𝑘𝑧 direction. Because the 

cylindrical pipe encloses the Weyl node, the bulk band structure on this pipe has a Chen number 

of +1. Therefore, the closed 𝑘 loop on the surface, which is the projection of the pipe, has one 

chiral edge state. This justifies the band structure along the loop shown in panel (B). 



We also prove the reverse logic:  

the number of surface Fermi arcs → the number of chiral edge modes.  

 

Now we assume that we know that the green line surface state is a Fermi arc, and we want to 

prove that the surface band structure along the closed 𝑘 loop will show as a chiral edge mode. 

Because the green line is a Fermi arc, its termination points (the black and white dots in fig. S8A) 

are two projected Weyl nodes. The closed 𝑘 loop (the dotted circle in fig. S8A) on the surface, 

which corresponds to the projection of a cylindrical pipe in the bulk Brillouin zone (fig. S8C), 

encloses a projected Weyl node. Therefore, the cylindrical pipe encloses a Weyl node of a chiral 

charge of +1. Hence, the Chern number of the bulk band structure on this pipe is +1. As a result, 

the band structure along the closed 𝑘 loop, which is the edge of the pipe, should have one chiral 

edge state. 

 

The above proof show that ``the number of chiral edge modes along the loop'' and ``the number 

of surface Fermi arcs'' are equivalent because we can derive one by assuming the other. Hence, 

we have proved the following: 

 

The number of chiral edge modes along the loop = The number of surface Fermi arcs. 

The number of chiral edge modes along the loop =  The number of surface Fermi arcs. 

 

(2) How to demonstrate the existence of Fermi arcs in a topological sense. 

The topological definitions presented above directly show us the way to demonstrate the 

existence of Fermi arcs in a topological sense. 

 

Demonstration I: A Fermi arc can be shown by observing a surface state that is directly 

terminated onto a projected Weyl node (according to definition I). 

 

Demonstration II: The existence of a Fermi arc can be shown by observing a nonzero number of 

chiral edge modes along a closed 𝑘 loop in the surface BZ (according to definition II). 

 

 

(3) Why in certain real materials the existence of Fermi arcs become ill-defined. Why this is 

the case in LaAlGe. 

 



 

fig. S9. Bulk band structure and its projection onto the surface in LaAlGe. (A) ACalculated 

bulk Fermi surface. The black arrows point to the electron and hole pockets that touch at two 

discrete points forming a pair of type-II Weyl nodes (W2). The vertical dotted line shows that 

these pockets forming the W2 Weyl cones are vertically aligned with an irrelevant pocket at 𝑘𝑧 =

0, the red, pancake-shaped pocket. (B) The projected bulk Fermi surface shows that the W2 Weyl 

nodes are masked by the irrelevant pocket. (C) The projected bulk energy dispersion along Cut 1, 

which is defined by the blue line in panel (B). 

 

We show why the existence of Fermi arcs can be ill-defined. We directly take LaAlGe as the 

example. The two black arrows in fig. S9A, point to the electron and hole pockets that touch at a 

pair of type-II Weyl nodes (the W2 Weyl nodes). However, there exists an irrelevant trivial 

pocket at the 𝑘𝑧 = 0 plane (the red pancake-shaped pocket). As shown by the vertical dotted line 

in fig. S9, the pair of W2 Weyl nodes and the irrelevant trivial pockets are projected onto the 

same 𝑘 region in the surface BZ. Indeed, fig. S9B shows the constant energy plot for the 

projected bulk band structure. We see that the projected W2 Weyl nodes are masked by the 

irrelevant pocket.  

 

We explain why this condition makes the existence/observability of Fermi arcs in LaAlGe (on the 

natural cleavage plane) ill-defined. 

 

The literal definition of a topological Fermi arc (a surface state terminated onto the projected 

Weyl node) becomes inapplicable. A surface state is only well-defined at a (𝐸, 𝑘𝑥, 𝑘𝑦) point 

where there is no projected bulk state. However, all 𝑘 points surrounding the Weyl nodes are 



masked by the irrelevant pocket. Therefore, the surface state is ill-defined in the vicinity of the 

node. Therefore, we cannot determine if it is a Fermi arc surface state in this case. 

 

Definition II also becomes inapplicable for the following reasons: We need to first choose a 

closed 𝑘 loop that encloses one of the projected Weyl nodes and then show the existence of chiral 

edge state along the loop. Importantly, this whole argument (Chern number, chiral edge state, and 

essentially the quantum Hall physics) is based on the assumption that the projected bulk band 

structure along the chosen 𝑘 loop has a full energy gap. A chiral edge state is an edge state 

traversing the band gap. In the absence of a band gap, a chiral edge state is ill-defined. In the case 

of LaAlGe, fig. S9C shows the projected bulk band structure along Cut 1 as defined by the blue 

line in fig. S9B. We see that the energy gap at the 𝑘 points between the two Weyl nodes is 

completely masked by the irrelevant pocket. As a result, any closed 𝑘 loop that encloses only one 

of the projected W2 Weyl node (e.g., the black dotted circle in fig. S9B) will NOT have a full 

projected gap. Therefore, the existence of Fermi arcs associated with the W2 nodes is ill-defined. 

 

(4) Why it is less reliable to conclude the existence of Fermi arcs based on a qualitative 

agreement between calculated and measured surface band structure. 

We note that the two topological ways of demonstrating Fermi arcs presented above do not 

depend on the details of the materials and their surface conditions. In other words, these are 

completely topological arguments. 

 

By contrast, many other ARPES groups have been claiming the observation of Fermi arcs based 

on a qualitative agreement between theoretically calculated and experimentally measured surface 

state electronic structures (For example, ARPES papers on W1-xMoxTe2 (32–38)). 

 

We explain why this is not as reliable as the topological arguments presented above: 

 

(a) The details of surface electronic structure depend heavily on the surface conditions. For 

example, fig. S10 shows the surface Fermi surfaces of the Weyl semimetal TaAs under different 

surface potentials. It can be seen that the surface Fermi surface varies significantly as a function 

of surface potential. Therefore, by simply comparing to calculations on features that are not 

sensitive to the topological nature of the Fermi arcs, one cannot obtain an experimental proof of 

the Fermi arcs in a topological sense. 



 

fig. S10. TaAs surface Fermi surface calculations under three different surface onsite 

potential values. We see that the surface band structure changes dramatically as the surface 

potential is varied.  

 



 

fig. S11. Band structure of WTe2 under two slightly different lattice constant values. (A) 

Calculated bulk band structure of WTe2 with the lattice constant reported in Ref. (54), c = 1.415 

nm. Under this condition, WTe2 is trivial without no Weyl nodes. (B) Same as panel (A) but with 

the lattice constants c = 1.401 nm in Ref. (53). Under this condition, WTe2 is a Weyl semimetal. 

The conduction and valence band cross and form Weyl nodes. (C) A schematic showing the 



momentum space distribution of the Weyl nodes in WTe2. The dotted line shows the 𝑘-space cut 

for the dispersions shown in panels (A and B). (D and E) Surface Fermi surface calculations 

under the two lattice constant values. We see that the surface Fermi surfaces are extremely similar 

on a qualitative level. (F) ARPES measured Fermi surface on WTe2, is consistent with the 

calculation in both panels (D and E). This shows that a qualitative agreement over the surface 

Fermi surface between calculation and ARPES does not prove Fermi arcs. (G and H) Surface 

state spin polarization calculations under the two lattice constant values. The color map shows the 

magnitude of the spin polarization. The arrows show the configuration of the spin texture. 

Although WTe2 is trivial in panel (G) but Weyl semimetal in panel (H), the surface spin 

polarization and spin texture are extremely similar on a qualitative level. 

 

(b) We show the calculated WTe2 band structures with two slightly different lattice constant 

values according to two crystallographic studies (c=1.415 nm and c=1.401 nm (53, 54)). For c = 

1.415 nm (fig. S11A), we see that WTe2 is trivial with no Weyl nodes. On the other hand, for 

c=1.401 nm (fig. S11B), WTe2 becomes a Weyl semimetal. Now, figs. S11, C and D  show the 

calculated surface state Fermi surfaces. Remarkably, although WTe2 is trivial (without Weyl 

nodes) in one case but nontrivial (with Weyl nodes) in the other case, the surface Fermi surfaces 

are extremely similar on a qualitative level. This fact clearly demonstrates that an agreement 

between ARPES and calculations over the surface state Fermi surface does not unambiguously 

prove the Fermi arcs. 

 

In fig. S11, G and H, we show the calculated surface state spin polarization of the two cases. We 

see that, the surface states show clear spin polarization regardless of the ground states, and their 

spin textures in figs. S11,G and H look very similar. Therefore, the surface state spin polarization 

also cannot be regarded as a decisive proof of the existence of topological Fermi arcs. 

 

We note that although the example in fig. S11 is about WTe2, the conclusion is applicable to 

other composition x of the W1-xMoxTe2 system. For any given composition, the W1-xMoxTe2 

system can be tuned between the fully gapped trivial phase and the Weyl semimetal phase by 

changing its lattice constant c. Similarly, one will find that the surface Fermi surfaces of that 

composition are very similar at a qualitative level. Hence the data-calculation agreement on the 

surface Fermi surface cannot prove the existence of Fermi arcs for any composition of the W1-

xMoxTe2  system. 

 



(5) A detailed analysis of the W1-xMoxTe2 ARPES papers: Why these papers do not 

experimentally demonstrate the type-II Weyl fermions. 

Here we provide a detailed analysis for why the W1-xMoxTe2 ARPES papers (32–38) do not show 

the type-II Weyl fermions and the type-II Weyl semimetal state.  

 

1. W1-xMoxTe2 ARPES papers listed above tried to conclude Fermi arcs by showing a qualitative 

agreement between calculated and measured surface band structure. As we have shown above in 

figs. S10 and S11, such a method is not reliable. Moreover, the existence of Fermi arcs cannot 

distinguish between the type-I and type-II Weyl fermions. 

 

2. Ref. (36) presented spin polarization measurements, which showed that the surface states are 

spin polarized. However, as we have shown above, the spin polarization and the spin texture are 

not a unique and unambiguous signature of the Fermi arcs (see fig. S11). Therefore, showing the 

surface spin polarization does not prove the existence of Fermi arcs. Moreover, the existence of 

Fermi arcs and their spin textures cannot distinguish between the type-I and type-II Weyl 

fermions. 

 

3. Refs. (32, 37) showed laser ARPES data (ℎ𝜈 ≈ 6 eV). The authors claimed that these data are 

in agreement with the type-II Weyl crossings. However, we emphasize that these data are 

significantly insufficient for an experimental demonstration of the type-II Weyl fermions, for the 

following important reasons: 

 

3.1. In both works, the authors used a low and fixed photon energy (ℏ𝜈 ≈ 6.7 eV in Ref. (32) and 

ℏ𝜈 ≈ 6 eV in Refs. (37)). The low photon energy is mostly surface sensitive. In terms of the bulk 

band, low photon energy can probe the projected bulk bands, meaning bulk bands that are 

integrated at all 𝑘𝑧 values. We emphasize that this is a very serious issue for demonstrating Weyl 

fermions.  

 

3.2. We further note that, in both works, even the evidence for the projected crossing is fairly 

weak. Since the projected crossings are above the Fermi level, in both works, the authors divided 

their data by the Fermi-Dirac distribution to try to access above the Fermi level. However, this 

method makes the data significantly noisier. The data were marked by guides to the eye. Judging 

from the data quality, a clear projected crossing cannot be concluded by the data alone without 

the guides to the eye.  



In fig. S12, we show a side-by-side comparison of some main data-figures between our work and 

the two W1-xMoxTe2 works (32, 37). Most crucially, the ARPES data on is W1-xMoxTe2 about a 

projected crossing in the projected band structure on surface. As explained above in fig. S6, a 

projected band crossing does not prove the existence of a true band crossing in bulk band 

structure. In addition, the difference in data quality can be seen clearly. This is because the 

projected crossings in W1-xMoxTe2 are above the Fermi level and can only be accessed by 

normalizing the ARPES data by the Fermi-Dirac distribution. As seen from panels (B and C), the 

signals above the Fermi level are noisy. It is difficult and unreliable to draw conclusions based on 

the data alone without guides to the eye. 

  



 

 

fig. S12. A side-by-side comparison of the main data figures between our work and the two 

W1−xMoxTe2 works (32, 37). Most crucially, the ARPES data on is W1-xMoxTe2 about a projected 

crossing in the projected band structure on surface. As explained above in fig. S6, a projected 

band crossing does not prove the existence of a true band crossing in bulk band structure. In 

addition, the difference in data quality can be seen clearly. This is because the projected crossings 

in W1-xMoxTe2 are above the Fermi level and can only be accessed by normalizing the ARPES 

data by the Fermi-Dirac distribution. As it can be seen in panels (B and C), the signals above the 

Fermi level are noisy. It is difficult and unreliable to draw conclusions based on the data alone 

without guides to the eye. By contrast, only in our work, we directly measure the bulk band 

structure (with resolution) rather than their projections on the surface (without 𝑘𝑧 resolution) and 

show that the two bands disperse linearly away from the crossing along all three directions, 𝑘𝑥, 

𝑘𝑦 and 𝑘𝑧, which unambiguously and conclusively shows that the observed crossing is a true 

crossing point in the bulk band structure, a Weyl node.  

  



section S6. Surface-state band structure of LaAlGe 

We present the surface state band structure data measured by low-photon-energy ARPES in fig. 

S13.  

Figure S13B shows the measured Fermi surface and constant energy contour data at different 

binding energies of the (001) surface. We identify the following features in the Fermi surface: (1) 

We observe a big contour centered at the Γ̅ point; (2) We observe a tadpole-shaped feature along 

each Γ̅ − X̅(Y̅) line. The head of the tadpole along the Γ̅ − X̅ direction is truncated by the big 

circle at the center; (3) We observe two small circular contours in the vicinity of each X̅ point; (4) 

We observe an extended butterfly-shaped contour centered at the Y̅ point. We find a reasonably 

good agreement between the ARPES measured (fig. S13B) and the calculated Fermi surfaces (fig. 

S13A) Specifically, all the features found in the ARPES data are also seen in the calculation. We 

note that all features in calculations contain weakly-split double contours, but in ARPES the 

linewidth of the measured bands is not sharp enough to resolve the splitting.  

 

fig. S13. Fermi arc–like and Fermi arc–derived surface states in LaAlGe. (A) First-principles 

calculated 𝑘𝑥 − 𝑘𝑦 Fermi surface map of the (001) surface. (B) ARPES-measured 𝑘𝑥 − 𝑘𝑦 Fermi 

surface map and three different constant binding energy contours at 100 𝑚𝑒𝑉, 200 𝑚𝑒𝑉, and 

300 𝑚𝑒𝑉 below the Fermi level measured with a photon energy of 50 𝑒𝑉.   



section S7. Fermi arc surface states associated with the W2 Weyl nodes in LaAlGe 

 

fig. S14. Fermi arc–like and Fermi arc–derived surface states in LaAlGe. (A and C) ARPES 

measured and theoretically calculated projected bulk Fermi surface near a pair of W2 Weyl nodes. 

Both show that the W2 Weyl nodes are masked by the irrelevant pockets when projected onto the 

surface. (B) ARPES surface Fermi surface map (the green color plot) with the bulk Fermi surface 

map (the orange color plot) overlaid on top of it to scale. (D) Theoretically calculated surface 

Fermi surface map near the W2 Weyl nodes. 

As we have explained above, the existence/observability of the Fermi arcs associated with the W2 

Weyl nodes is ill-defined. Here we present the following data and calculations related to this 

point. From the ARPES data, we can learn the following: 

(1) In the projected bulk band structure, the W2 Weyl nodes are masked by the irrelevant pocket 

(fig. S14A). In fig. S14A, we superimpose the irrelevant bulk Fermi surface at 𝑘𝑧 = 0 (the orange 



color plot) onto the bulk Fermi surface at 𝑘𝑧 =W2 (the green color plot). We see that the W2 

Weyl nodes are indeed masked by the irrelevant bulk Fermi surface at 𝑘𝑧 = 0. This data proves 

that the existence/observability of the Fermi arcs associated with the W2 Weyl nodes is ill-

defined, as we have emphasized above. 

(2) The tadpole-shaped surface states do not go through the projected W2 nodes. In fig. S14B, we 

superimpose the bulk Fermi surface at 𝑘𝑧 =W2 (the orange color plot) onto the surface Fermi 

surface (the green color plot).   

  

From the calculation, we can learn the following: 

(1) In the projected bulk band structure, the W2 Weyl nodes are masked by the irrelevant pocket.  

(2) The tadpole-shaped surface states do not go through the projected W2 nodes. 

(3) Inside the head of the tadpole feature, we see very faint features in close vicinity of the W2 

nodes. These features are weak because they overlap with projected bulk bands. Precisely 

speaking, at the 𝑘 points where the faint feature exists, the projected bulk band does not have a 

band gap (due to the irrelevant bulk band). At the top surface, their spectral weight is very small. 

Their spectral weight is mainly localized at the second unit cell or deeper away from the surface 

(15 𝐴 away from the top surface).  

(4) We cannot define these faint features as surface states because of the lack of a projected band 

gap. For the same reason, we cannot demonstrate the existence of Fermi arcs. 

  



section S8. Fermi arc surface states associated with the W3′ and W3″ Weyl nodes 

 

fig. S15. Fermi arc surface states associated with the W3′ and W3″ Weyl nodes. (A) First-

principles calculated surface Fermi surface (𝐸𝐵 = 𝐸𝐹 = 0 𝑚𝑒𝑉). The arrow points to the 

butterfly-shaped surface states, which corresponds to the Fermi arc surface states associated with 

the W3' and W3'' Weyl nodes. (B) ARPES measured surface Fermi surface (𝐸𝐵 = 𝐸𝐹 = 0 𝑚𝑒𝑉). 

The arrow points to the butterfly-shaped surface states, which corresponds to the Fermi arc 

surface states associated with the W3' and W3'' Weyl nodes. (C and D) First-principles calculated 



surface constant energy contour at the energy of the W3'' Weyl node, 𝐸𝐵 = −130 𝑚𝑒𝑉 (above 

the 𝐸𝐹). 

 

fig. S16. Connectivity pattern of the Fermi arcs associated with the W3′ and W3″ Weyl 

nodes. (A) First-principles calculated surface constant energy contour at the energy of the W3'' 



Weyl node, 𝐸𝐵 = −130 𝑚𝑒𝑉 (above the 𝐸𝐹). (B) Schematic illustration of the Fermi arc 

connectivity for the W3'' Weyl nodes. The blue and green lines represent the outer and inner 

contour of the butterfly feature according to the calculation in panel (A). (C and D) Same as 

panels (A, B) but at the energy of the W3' Weyl node. 

We show the existence of Fermi arc surface states associated with the W3' and the W3'' Weyl 

nodes based on the agreement between our ARPES data and calculations. Figure S15B shows the 

ARPES measured surface Fermi surface (𝐸𝐵 = 𝐸𝐵 = 0 𝑚𝑒𝑉). The arrow points to the butterfly-

shaped surface states, which corresponds to the Fermi arc surface states associated with the W3' 

and W3'' Weyl nodes. The same feature was also found in the calculated surface Fermi surface 

(fig. S15A). In calculation, we know that the butterfly-shaped surface states are Fermi arcs. This 

is achieved by calculating the surface band structure directly at the energies of the W3' and W3'' 

Weyl nodes, which are 110 meV and 130 meV above the Fermi level, respectively, as shown in 

figs. S15, C and D and fig. S16. Because our ARPES data and calculations agree with each other 

on the butterfly-shaped surface states at energies below the Fermi level and because from our 

calculation we know that the butterfly-shaped surface states are indeed the Fermi arcs (the actual 

arc behavior happens above the Fermi level because the W3'(W3'') Weyl nodes are above the 

Fermi level), we show the existence of Fermi arc surface states associated with the W3' and the 

W3'' Weyl nodes. 

We note that the degree of robustness of this demonstration is the same as the ARPES works 

claiming observations of Fermi arcs in the W1-xMoxTe2 systems (32–38) because the conclusion is 

drawn based on the agreement between data and calculations. Note that in both cases, the actual 

arc behavior happens above the Fermi level because the Weyl nodes are above the Fermi level. In 

our case, the W3'(W3'') Weyl nodes are ~110 𝑚𝑒𝑉 and 130 𝑚𝑒𝑉 above the Fermi level, 

respectively. In W1-xMoxTe2, the Weyl nodes are 50 𝑚𝑒𝑉 above the Fermi level. 

 

 

  



section S9. Topological definition of Fermi arc surface states and its implications for surface 

states in LaAlGe and W1−xMoxTe2 

We elaborate on why the type-II Weyl fermions in LaAlGe dominate the Berry curvature physics 

at the Fermi level. The Weyl (Berry curvature) physics include the negative longitudinal 

magneto-resistance due to the chiral anomaly, the nonlocal transport due to the chiral anomaly.  

The Fermi surface of LaAlGe consists of (1) the type-II Weyl nodes are at the Fermi level with 

their associated electron and hole pockets, (2) the pockets arising from the other Weyl fermion 

cones whose Weyl node energies are far away from the Fermi level, and (3) irrelevant pockets. 

The Berry curvature at the Fermi level is truly dominated by the type-II Weyl nodes are at the 

Fermi level because Weyl nodes are Berry curvature monopoles.  

To demonstrate this point more quantitatively, in Fig. 4 of the main text, we have shown the 

calculated Berry curvature of the LaAlGe band structure. The color plots in figs. 4B and C show 

the Berry curvature magnitude in 𝑘𝑥, 𝑘𝑦 space at the two different 𝑘𝑧 values. We note that figs. 

4B and C consider the Berry curvature magnitude summed over contributions from a wide energy 

range. It can be seen that the Berry curvature is indeed dominated by the contribution from the 

Weyl nodes. By contrast, the trivial pocket at 𝑘𝑧 = 0 has no observable Berry curvature 

contribution. In order to understand the low-energy Berry curvature physics, which can be 

measured by certain transport experiments such as the negative longitudinal magneto-resistance, 

we need to know the Berry curvature in close vicinity of the Fermi energy. In figs. 4E and F, we 

show the Berry curvature magnitude again but only considering the contribution near the Fermi 

level within a ±10 𝑚𝑒𝑉 window. We see that the Fermi pockets that arise from W1 and W3'(W3'') 

Weyl cones (Fig. 4E) do not carry observable Berry curvature. On the other hand, Fermi pockets 

that arise from the type-II Weyl cones (Fig. 4E) show strong Berry curvature in the vicinity of the 

W2 Weyl nodes. This is quite intuitive. Since the Weyl nodes are monopoles, the Berry curvature 

decays rapidly as 1/𝐸2 away from the energy of the node. Therefore, the Fermi pockets from W1 

and W3'(W3'') Weyl cones show negligiblely small Berry curvature contribution. We prove that 

the type-II Weyl nodes dominate the low-energy Berry curvature physics, which dictates 

topological phenomena such as the negative longitudinal magneto-resistance and the nonlocal 

transport due to the chiral anomaly (10, 11). 

 


