Revised, Research Article, *Science* December 4, 2016

Supplementary Materials for

An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes

Shun-Jia Chen¹, Xia Wu¹, Brandon Wadas², Jang-Hyun Oh¹, Alexander Varshavsky¹*

¹Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA

²Division of Cell Biology, Harvard Medical School, Boston, MA 02115

*Corresponding coauthor: Alexander Varshavsky (avarsh@caltech.edu)

This PDF file includes:

Materials and Methods.

Supplementary figures S1-S17 and their legends.

Tables S1-S3.

Materials and Methods

Antibodies and other reagents

"Complete Protease Inhibitor Cocktail" tablets and tetracycline (Tc) hydrochloride were from Roche and Sigma, respectively. 5'-Fluoroorotic acid monohydrate (5-FOA) was from Zymo Research. Antibodies to the following antigens were used for immunoblotting and/or immunoprecipitation: antiflag M2 monoclonal antibody (Sigma, F1804), anti-c-Myc-9E10 monoclonal antibody (Sigma, M5546), anti-hemagglutinin (ha) tag monoclonal antibody (Sigma, H6908). Secondary antibodies for immunoblotting were Li-Cor IRDye-conjugated goat anti-mouse 800CW (Li-Cor, #C60405-05) or anti-rabbit 680RD (Li-Cor, C51104-08). Fluorescence patterns were detected and quantified using the Odyssey 9120 instrument (Li-Cor, Lincoln, NE).

Yeast strains, media, and genetic techniques

The *S. cerevisiae* strains used in this study are cited in Table S1. Standard techniques (1, 2) were employed for strain construction and transformation. *S. cerevisiae* media included YPD medium (1% yeast extract, 2% peptone, 2% glucose; only most relevant components are cited); SD medium (0.17%)

yeast nitrogen base, 0.5% ammonium sulfate, 2% glucose); SE medium (0.17% yeast nitrogen base, 0.5% ammonium sulfate, 2% ethanol); and synthetic complete (SC) medium (0.17% yeast nitrogen base, 0.5% ammonium sulfate, 2% glucose), plus a mixture of compounds required by a given auxotrophic strain. The alternative carbon sources, in either liquid or plate media, were 2% ethanol or 2% glucose. The *S. cerevisiae* strain AH109 was used for two-hybrid assays; the JD52 strain was used for split-ubiquitin (Ub) assays; and several BY4741-based strains (see Table S1) were used for tetracycline (Tc)-based chase-degradation assays.

Construction of plasmids

The *Escherichia coli* strains DH5 α , SUREII (Stratagene), and STBL2 (Invitrogen) (Table S1) were used for cloning and maintaining plasmids. Physion High-Fidelity DNA polymerase (New England Biolabs) was employed for PCR. The plasmids and PCR primers used in this study are described in Tables S2 and S3, respectively.

pJO629, a parental plasmid used to construct plasmids for the promoter reference technique (PRT), was a pRS313-based, low copy (*CEN*-based) plasmid that expressed a test protein and the _fDHFR_{ha} reference protein from two identical (modified) P_{TDH3} promoters (see the main Fig. 2A, B and the main text) (Table S2). Details of pJO629 construction are available upon request.

We describe here the construction of plasmids other than those used for 2-hybrid assays and splitubiquitin (Ub) assays. Construction of the latter plasmids is described in sections below. To produce the low copy pCSJ95 and pCSJ98 plasmids, which expressed, respectively, (**M**)**P**-Fbp1_{3f} and (**M**)**S**-Fbp1_{3f} in *S. cerevisiae* from the P_{TDH3}-based promoter, the relevant *Fbp1* DNA fragments were amplified by PCR from *S. cerevisiae* genomic DNA using the primer pairs CSJ117/CSJ121 and CSJ120/CSJ121, respectively (Table S3). The resulting PCR products were digested with *AscI/Bgl*II and ligated into *AscI/Bam*HI-cut pJO629 (see above) downstream of its P_{TDH3}-based promoter, yielding pCSJ95 and pCSJ98 (Table S2).

To construct pCSJ125 and pCSJ126, which expressed (**M**)**P**-Mdh2_{3f} and (**M**)**S**-Mdh2_{3f} in *S. cerevisiae* from the P_{*TDH3*}-based promoter, the relevant *Mdh2* DNA fragments were amplified from *S. cerevisiae* genomic DNA using the primer pairs CSJ170/CSJ171 and CSJ172/CSJ171, respectively (Table S3). The resulting PCR products were digested with *AscI/Bam*HI and ligated into *AscI/Bam*HI-cut pJO629, yielding pCSJ125 and pCSJ126 (Table S2).

A two-step procedure was used to construct pCSJ121 and pCSJ122, which expressed (**M**)**SP**-Pck1_{3f} and (**M**)**SS**-Pck1_{3f} in *S. cerevisiae* from the P_{TDH3}-based promoter. First, a DNA fragment spanning a part of the *PCK1* open reading frame (ORF), from +382 to +1,647 bp, was amplified from *S. cerevisiae* genomic DNA using the primer pair CSJ162/CSJ163 (Table S3). The amplified fragment was digested with *Bam*HI/*BgI*II and ligated into *Bam*HI-cut pJO629, yielding pCSJ120. Second, the relevant *PCK1* DNA fragments spanning the upstream region of the *PCK1* ORF (+1 to +381 bp) was amplified from *S. cerevisiae* genomic DNA using the primer pairs CSJ164/CSJ165 and CSJ166/CSJ165, respectively (Table S3). The resulting DNA fragments were digested with *AscI/Bam*HI and ligated into *AscI/Bam*HI-cut pCSJ120, yielding pCSJ121 and pCSJ122 (Table S2).

To construct pCSJ168, which expressed (**M**)**P**-Yhr020 w_{3f} in *S. cerevisiae* from the P_{TDH3}-based promoter, the *Yhr020w*_{3f} DNA fragment was produced by a two-step PCR from *S. cerevisiae* genomic DNA, at first using the primers CSJ237 and CSJ238, and thereafter using the primers CSJ237 and CSJ182 (Table S3). The resulting PCR product was digested with *AscI/Not*I and ligated into *AscI/Not*I-

cut pJO629, yielding pCSJ168 (Table S2). Other plasmids, encoding many analogous constructs (Table S2), were constructed similarly to the plasmids described above. Additional details of plasmid construction are available upon request. Construction of plasmids for 2-hybrid assays and split-Ub assays is described below. All final constructs were verified by DNA sequencing.

Tetracycline (Tc)-chase assays and immunoblotting

Most protein degradation assays of this study employed a version of the promoter reference technique (PRT) described in the main Fig. 2A, B and in the main text. These PRT-based assays were carried out similarly to the previously described cycloheximide (CHX)-chase assays with *S. cerevisiae* (*3*, *4*), but used low copy pJO629-based plasmids expressing a C-terminally flag₃-tagged test protein and the long-lived, also tagged ($_{\rm f}$ DHFR_{ha}) reference protein from a pair of identical (modified) P_{TDH3} promoters, in a setting in which the synthesis of both proteins could be selectively extinguished by the addition of tetracycline (Tc) (see the main Fig. 2A, B and the main text). In sum, Tc was used to inhibit, in *cis*, the translation of two mRNAs, the one encoding a test protein and the one encoding the $_{\rm f}$ DHFR_{ha} reference protein (the main Fig. 2A, B).

S. cerevisiae was grown to A₆₀₀ of 0.8-1.0 at 30°C in SC media whose exact composition was appropriate for a plasmid(s) carried by the yeast strain. Cells were centrifuged at 11,200g for 1 min, washed once in pre-warmed SE medium, then resuspended in SE to A_{600} of 1.0 and grew in SE for 16 h at 30°C. The resulting cells were harvested by centrifugation at 11,200g for 1 min and resuspended in fresh pre-warmed SC to a final concentration of A_{600} of 1.0, followed by the addition of Tc to the final concentration of 0.2 mM. Control cultures (ethanol-to-ethanol, as distinguished from ethanol-to-glucose) were processed identically, except that cells were resuspended in SE medium, instead of SC. At indicated times of a chase, a sample of cell suspension (adjusted to correspond to 1 ml of suspension with A_{600} of 1.0) was centrifuged for 1 min at 11,200g. The pellet was resuspended in 0.8 ml of 0.2 M NaOH and incubated for 20 min on ice, followed by centrifugation at 11,200g for 1 min. The pellet was resuspended in 50 µl of HU buffer (8 M urea, 5% SDS, 1 mM EDTA, 0.1 M dithiothreitol (DTT), 0.005% bromophenol blue, 0.2 M Tris-HCl, pH 6.8) containing 1x-protease inhibitor cocktail (Roche), and heated for 10 min at 70°C. After centrifugation for 5 min at 11,200g, 15 µl of supernatant was subjected to SDS-4-10% PAGE, followed by immunoblotting as described previously (4, 5), using anti-ha (1:2,000) and anti-flag (1:2,000) antibodies as well as a secondary antibody (or antibodies) and quantification of resulting (green and/or red) fluorescence patterns using the Odyssey 9120 instrument (Li-Cor), its software, and manufacturer's manual. In some experiments, Tc-based, PRT-based chases were carried with cells that were grown solely in SC (glucose-containing) media, without an exposure to SE media. All Tc-chases in this study were performed at least twice, and yielded results that differed by less than 10%.

Two-hybrid binding assays

Two initial plasmids for 2-hybrid assays were pGADCg and pGBKCg (Table S2) (6) (Addgene plasmids # 20161 and # 20162). The pCSJ165 plasmid (Table S2), derived from pGBKCg, expressed (**M**)**P**-Fbp1-Gal4^{DBD} fusion, i.e., the full-length, wild-type *S. cerevisiae* (**M**)**P**-Fbp1 that was fused, at its C-terminus, to Gal4^{DBD}, a 2-hybrid-specific DNA-binding protein domain (encoded by pGBKCg). pCSJ165 was constructed using the Gateway cloning technique (Invitrogen). In the first step, the BP recombination reaction was carried out, using Gateway BP clonase II enzyme mix (Invitrogen), the pDonor/Zeo vector (Invitrogen) and an *att*B-containing DNA fragment, produced by PCR from *S. cerevisiae* genomic DNA and the primer pair CSJ227/CSJ228 (Table S3). This step yielded

pCSJ161, which contained the attL-(**M**)**P**-Fbp1 DNA segment. In the second step, the LR reaction was carried out with the Gateway LR clonase II enzyme mix (Invitrogen), the pCSJ161 plasmid and the pGBKCg vector, yielding the pCSJ165 plasmid (Table S2).

Similar cloning steps were used to construct other, analogous plasmids, which encoded 2-hybrid-based fusions of test proteins such as (M)X-Fbp1, (M)X-Icl1, (M)X-Mdh2 or (M)X-Pck1, and other test proteins as well, whose intended (wild-type or modified) N-termini were unobstructed by either DBD or AD domains (Table S2). These polypeptides included those containing C-terminally truncated test proteins, which were fused, C-terminally, to the mouse DHFR moiety and the C-terminal (2-hybrid-specific) DBD domain (Table S2).

The pCSJ182 plasmid, derived from pGADCg (*6*) (Table S2), expressed NLS-Gid4-flag₃-Gal4^{AD} fusion, which contained the full-length wild-type *S. cerevisiae* Gid4 protein bearing the C-terminal flag₃ tag and the 2-hybrid-specific AD domain. The N-terminus of Gid4 was fused to the SV40 nuclear localization signal (NLS), which was encoded by pGADCg (*6*). The pCSJ182 plasmid was also constructed by the two-step Gateway cloning technique. First, a BP reaction was carried out, using the pDonor/Zeo vector and an *att*B-containing DNA fragment encoding, in particular, the flag₃ tag. This fragment was produced by a two-step PCR from *S. cerevisiae* genomic DNA, at first with the primers CSJ248/CSJ249, and thereafter with the primers CSJ248 and CSJ245 (Table S3). This step yielded pCSJ177, containing the attL-GID4-flag₃ DNA segment. In the second step, the LR reaction was carried out, between pCSJ177 and the pGADCg vector, yielding the pCSJ182 plasmid (Table S2). Similar cloning steps were used to construct many other, analogous plasmids of the present study (Table S2).

To assay for possible interactions of specific GID subunits with the (**M**)**P**-Fbp1 protein, *S. cerevisiae* AH109 (Table S1) was cotransformed with pCSJ182 (expressing NLS-Gid4 flag₃-Gal4^{AD}) and either pCSJ165 (expressing (**M**)**P**-Fbp1-Gal4^{DBD}) or pCSJ179 (expressing (**M**)**S**-Fbp1-Gal4^{DBD}). Other tested 2-hybrid fusions encoding specific GID subunits were pCSJ164 (expressing NLS-Gid1-flag₃-Gal4^{AD}), pCSJ181 (expressing NLS-Gid2-flag₃-Gal4^{AD}), pCSJ267(expressing NLS-Gid7-flag₃-Gal4^{AD}), pCSJ268 (expressing NLS-Gid8-flag₃-Gal4^{AD}), and pCSJ183 (expressing NLS-Gid9-flag₃-Gal4^{AD}) (Table S2). Analogous 2-hybrid assays, vis-à-vis specific GID subunits, involved other gluconeogenesis enzymes (as 2-hybrid fusions, specifically (**M**)**P**-Mdh2-Gal4^{DBD} (pCSJ197) vs. (**M**)**S**-Mdh2-Gal4^{DBD} (pCSJ198), (**M**)**P**-Icl1-Gal4^{DBD} (pCSJ227) vs. (**M**)**S**-Icl1-Gal4^{DBD} (pCSJ228), and (**M**)**SP**-Pck1-Gal4^{DBD} (pCSJ199) vs. (**M**)**SS**-Pck1-Gal4^{DBD} (pCSJ200) (Table S2).

Other 2-hybrid assays for mapping interactions between Gid4 and (**M**)**P**-Fbp1 included cotransformations of *S. cerevisiae* AH109 with pCSJ182 (expressing NLS-Gid4 flag₃-Gal4^{AD}) and plasmids that expressed N-terminal segments (e.g., the first 20 residues) of (**M**)**P**-Fbp1 fused to DHFR-Gal4^{DBD} (pCSJ327, pCSJ328, and pCSJ348-pCSJ357) (Table S2). Additional 2-hybrid assays examined, in similar ways, other gluconeogenesis and non-gluconeogenesis proteins fused to DHFR-Gal4^{DBD} (e.g., the plasmids pCSJ334, pCSJ335, pCSJ336 and pCSJ337) (Table S2). Positive 2-hybrid controls included plasmids that expressed the human WASP-Gal4^{DBD} fusion (pCSJ167) and its known protein ligand Cdc42- flag₃-Gal4^{AD} (pCSJ166) (Table S2), as described in the legends to specific figures.

Cotransformed cells were plated on SC plates lacking Trp and Leu. Single colonies of resulting cotransformants were grown in the otherwise identical liquid medium to a near-stationary phase, until A_{600} of ~2.0. The cultures were thereafter serially diluted by 3-fold, and 20 µl samples of cell

suspensions were spotted onto triple-dropout plates (SC lacking Trp, Leu, and His) (7). The plates were incubated at 30°C for 2-3 days. As can be seen in Fig. S5B (the panel on the right, shown as an example), all examined *S. cerevisiae* strains could grow on double-dropout plates (lacking only Trp and Leu), but only some strains could grow on triple-dropout plates (lacking Trp, Leu and His). Expression of His3, the reporter of 2-hybrid assays (8), in otherwise His⁻ cells, was a function of the binding affinity between test proteins.

Split-ubiquitin (Ub) binding assays

For the source plasmids and procedures of split-Ub assays see (9-13). The pCSJ408 and pCSJ409 plasmids were derived from the Ste14-C_{Ub}-**R**-Ura3-Met313 plasmid (Table S2) by replacing the Ste14-encoding DNA segment with PCR-produced, *ClaI/Sal*I-cut fragments encoding either (**M**)**P**-Fbp1 or (**M**)**S**-Fbp1. In addition, the P_{MET17} promoter of the Ste14-C_{UB}-**R**-Ura3-Met313 plasmid (Table S2) was replaced by the P_{CUP1} promoter, derived from pRS313, yielding the pCSJ473 and pCSJ474 plasmids (Table S2). They expressed, respectively, (**M**)**P**-Fbp1-C_{Ub}-**R**-Ura3 and (**M**)**S**-Fbp1-C_{Ub}-**R**-Ura3 from the P_{CUP1} promoter.

The pCSJ418 plasmid was derived from the N_{Ub}-Ubc6-Cup314 plasmid (Table S2) by replacing the Ubc6-coding DNA segment with the PCR-produced, *BamHI/XhoI*-cut, DNA fragment encoding Gid4-flag (*10*). A *XhoI/KpnI*-cut DNA fragment containing the *CYC1* transcription terminator was inserted after the fragment encoding Gid4-flag, yielding the plasmid pCSJ418 (Table S2). It expressed N_{Ub}-Gid4-flag from the P_{CUP1} promoter.

Split-Ub assays for mapping interactions between Gid4 and (**M**)**P**-Fbp1 vs. (**M**)**S**-Fbp1 involved cotransformations of *S. cerevisiae* JD52 (Table S1) with pCSJ418 (expressing N_{Ub}-Gid4-flag) and the plasmids pCSJ473 and pCSJ474 (Table S2), which expressed, respectively, (**M**)**P**-Fbp1 or (**M**)**S**-Fbp1 linked to the C_{Ub}-**R**-Ura3 moiety (see fig. S7 and the main text). Negative controls included otherwise identical split-Ub assays without either N_{Ub}-encoding or C_{Ub}-encoding plasmids.

Split-Ub assays were carried out by plating cotransformed cells on SC plates lacking Trp and His. Single colonies of resulting cotransformants were grown in the otherwise identical liquid medium to a near-stationary phase (A_{600} of ~2.0). The resulting cultures were thereafter serially diluted by 3-fold, and 20 µl samples of cell suspensions were spotted onto triple-dropout plates (lacking Trp, His, and Ura) and containing 0.1 mM CuSO4. The plates were incubated at 30°C for 1-2 days. All plated strains could grow on double-dropout plates (lacking only Trp and His), but only strains in which the C_{Ub} -**R**-Ura3 was <u>not</u> significantly cleaved (thereby releasing the short-lived **R**-Ura3) could grow on triple-dropout plates (lacking Trp, His and Ura), indicating little or no interaction between test protein moieties. The same dilutions of cell suspensions were also spotted onto plates lacking Trp and His but containing Ura as well as 5'-fluoroorotic acid (FOA; 2 mg/ml) and 0.1mM CuSO4. The plates were incubated at 30°C for 2-3 days. Cell growth patterns on FOA plates were opposite to those on FOA-lacking, Ura-lacking plates. See fig. S7, its legend, and the main text for additional descriptions of the logic of split-Ub assays and their results.

Fig. S1. Glycolysis and gluconeogenesis. Gluconeogenesis is, in effect, a reversal of glycolysis, in which glucose is converted to pyruvate, with production of ATP and NADH. Shown here are key enzymatic steps. The main gluconeogenesis-specific enzymes of *S. cerevisiae* are the Fbp1 fructose-1,6-bisphospatase, the Icl1 isocitrate lyase, the Mdh2 cytosolic malate dehydrogenase, and the Pck1 phosphoenolpyruvate carboxykinase. (There are also mitochondrial and peroxisomal counterparts of the cytosolic malate dehydrogenase.) The cited enzymes are highlighted in red in the diagram. The first three enzymes (**P**-Fbp1, **P**-Icl1, and **P**-Mdh2) bear N-terminal Pro, while **SP**-Pck1 contains Pro at position 2, in the N-terminal sequence Ser-Pro. Single two-headed arrows indicate substantially reversible steps, which gluconeogenesis and glycolysis have in common. Antiparallel double arrows, as well as the set of transitions between pyruvate, phosphoenolpyruvate, oxaloacetate and closely related compounds indicate steps whose net directions are determined by the relative activities of gluconeogenesis-specific and glycolysis-specific enzymes. **P**-Icl1 and **P**-Mdh2 are a part of the (also shown) glyoxalate cycle (*14-17*).

Fig. S2. Conditional degradation of P-Fbp1 and designs of 2-hybrid fusions.

(A) Lane 1, kDa markers. Tetracycline (Tc)-based chases were performed at 30°C with wild-type (lanes 2-4) and gid2 Δ S. cerevisiae (lanes 5-7) expressing wild-type **P**-Fbp1_{3f} in a glucose-lacking, ethanolcontaining medium. At the indicated times of a chase. cell extracts were prepared, proteins in extracts were fractionated by SDS-PAGE, followed by immunoblotting with anti-flag antibody. Note stability of **P**-Fbp1_{3f} in a medium containing ethanol as the sole carbon source (see Materials and methods). (B) Same as in A but Tcchases were initiated at the time of transfer of cells from ethanol to glucose. Note rapid degradation of **P**-Fbp1_{3f} in wild-type cells (but not in $gid2\Delta$ cells) in the presence of glucose.

(C) Design of X-Fbp1 (X=Pro or other residues) and Gid4 2-hybrid fusions. These are examples of many

2-hybrid constructs produced and examined in the present study (Table S2). NLS, nuclear localization signal. Gal4-AD, activation domain of the *S. cerevisiae* Gal4 transcriptional activator. Gal4-DBD, DNA-binding domain of the Gal4 transcriptional activator. Epitope tags (myc and triple flag) are indicated as well (see Materials and methods).

(**D**) Expression of 2-hybrid test proteins in *S. cerevisiae* from the P_{ADHI} promoter of 2-hybrid plasmids (8). Lanes 1-3, 2-hybrid fusions of **P**-Fbp1, **S**-Fbp1, and **S**-Fbp1 (the latter **S**-Fbp1 was from an independent yeast transformant). Lane 4, kDa markers (50, 75, and 100 kDa, respectively). Lanes 5 and 6, 2-hybrid fusions of Gid4 and Gid9, respectively. Proteins were detected by immunoblotting with anti-myc (lanes 1-3) and anti-flag antibodies (lanes 5, 6).

Fig. S3. **Degradation of P-**Fbp1 and SP-Pck1 in wild-type and mutant S. cerevisiae. (A) Tc-chases, using **PRT-based** plasmids expressing **P**-Fbp1_{3f} and the reference fDHFR_{ha} (see the main Fig. 2A, B), were performed at 30°C during transition from ethanol to glucose media with wildtype (lanes 1-4), gid1 Δ (lanes 5-8), $gid2\Delta$ (lanes 5-8), $gid3\Delta$ (lanes 9-12), and $gid4\Delta$ (lanes 17-20) S. cerevisiae (see Materials and methods). The bands of **P**-Fbp1_{3f} and fDHFR_{ha} are indicated on the left. (B) Quantification of data shown in the main Fig. 2G (Tcchases, in wild-type and $gid2\Delta$ *S. cerevisiae*, of wild-type **SP**-Pck1_{3f}

and its **SS**-Pck1_{3f} mutant). All Tc-chases in this study were performed at least twice, and yielded results that differed by less than 10%.

(C) Quantification of data in A.

(**D**) Lane 1, kDa markers. Tc-chases of wild-type **SP**-Pck1_{3f} (lanes 2-5) and its **SS**-Pck1_{3f} mutant (lanes 6-9) in wild-type *S. cerevisiae* during transition from ethanol to glucose media (see Materials and Methods). This is an example of independently performed Tc-chases of Pck1 that were otherwise the same as some of the Tc-chases in the main Fig. 2G.

(E) Quantification of data in **D**. All Tc-chases in this study were performed at least twice, and yielded results that differed by less than 10%.

8

Fig. S4. 2-hybrid assays of interactions among Gid4, P-Fbp1, derivatives of P-Fbp1, specific GID subunits, and other proteins. In this and other figures describing 2-hybrid results, Pro residues are in red. Mutant (non-wild-type) residues are in green. Wild-type residues (other than Pro) are in blue. Expression of His3, the reporter of 2-hybrid assays (8) in otherwise His⁻ cells, is a function of the binding affinity between test proteins. Histidine-lacking plates were incubated for 2 days at 30°C to detect the growth of His^+ cells. (A1-4) Gid4 binds to full-length **P**-Fbp1 but not to the otherwise identical S-Fbp1, A-Fbp1, or T-Fbp1. See also the main Fig. 2A1, 2 and Materials and Methods. (A5-7) Gid4 binds neither to full-length SP-Pck1, nor to SS-Pck1, nor to PS-Pck1. (**B**1) Human WASP vs. human Cdc42, a previously known protein interaction (18), used as a positive control. (**B**2-7) Assays with full-length **P**-Fbp1 vs. AD-containing vector alone (a

negative control), Ssa1 (one of *S. cerevisiae* Hsp70 proteins), Gid1, Gid2, Gid4 (note the binding of **P**-Fbp1 to Gid4), and Gid9, respectively. (C1, 2) Full-length **P**-Fbp1 binds to Gid4 but not to Gid9. (C3, 4) The **S**-Fbp1 mutant binds neither to Gid4 nor to Gid9. (**D**1, 2) Gid4 binds to full-length **P**-Fbp1 but not to the otherwise identical **S**-Fbp1 (see also A1, 2, and, e.g., the main Fig. 2A1, 2 for the same but independently produced results). (**D**3, 4) Gid4 binds to **PHSV**-Mdh2¹⁻²⁰-DHFR-DBD (derived from wild-type **PHSV**-Mdh2) but not to the otherwise identical **SHSV**-Mdh2¹⁻²⁰-DHFR-DBD. (**D**5, 6) Gid4 binds to **PIPV**-Icl1¹⁻²⁰-DHFR-DBD (derived from wild-type **PIPV**-Icl1¹⁻²⁰-DHFR-DBD (derived from wild-type **PIPV**-Icl1) but not to the otherwise identical **SIPV**-Icl1¹⁻²⁰-DHFR-DBD (see also the main text). Note that the binding of Gid4 to **PFVK**-Oye2¹⁻²⁰-DHFR-DBD is significantly weaker than the one to, e.g., **PHSV**-Mdh2¹⁻²⁰-DHFR-DBD or **PIPV**-Icl1¹⁻²⁰-DHFR-DBD. (**D**8) Gid4 does not bind to **PESR**-Pyk2¹⁻²⁰-DHFR-DBD (see also the main text). (**D**9, 10) Gid4 binds neither to full-length **PTLY**-Ald2 nor to its **STLY**-Ald2 mutant (see also the main text).

Fig. S5. 2-hybrid assays of interactions among Gid4 and N-terminal sequences of P-Fbp1 and other proteins. See the legend to fig. S4 for the residue color notations and related details.

(A1, 2) Gid4 binds to full-length **PTLV**-Fbp1 but not to **STLV**-Fbp1 (see, e.g., the main Fig. 2A1, 2 and fig. S4D1, 2 for the same but independently produced results).

(A3-7) Gid4 binds to \mathbf{PTLV} -G₅-DHFR-DBD (bearing the first four N-terminal residues of wild-type \mathbf{P} -Fbp1) but not to the otherwise identical 2-hybrid fusions bearing the indicated non-Pro N-terminal residues.

(**B**) The right panel (and the only control panel of this kind that is shown in the present study) displays the pattern of cellular growth on a histidine-containing plate, which supports the growth of all 2-hybrid-based strains, irrespective of expression levels of the His3 2-hybrid reporter. The left panel shows growth patterns of the identical set of strains on a histidine-lacking plate, used to detect the results of 2-hybrid assays (see Materials and Methods).

(**B**1, 2) Same as in **A**1, 2 but an independent 2-hybrid assay.

(**B**3, 4) Gid4 binds to full-length **PIPV**-Icl1 but not to the otherwise identical **SIPV**-Icl1 (see the main Fig. 2A3, 4 for the same but independently produced results).

(**B**5, 6) Gid4 binds to **PTLVNGPR-**DHFR-DBD (the first eight residues of wild-type **P**-Fbp1, in the context of a 2-hybrid fusion) but does not bind to the otherwise identical (N-terminal Ser-bearing) **STLVNGPR-**DHFR-DBD.

DBD AD S. cerevisiae	
wild-type, full-length PTLV-Fbp1 🗌 🥘 🕘 🌑 🕼 1	
mutant, full-length STLV-Fbp1 2	
(Mdh2) wild-type PHSVGGGGG-DHFR 0000 3	
(Mdh2) mutant SHSVGGGGG-DHFR 5 4	
(Ici1) wild-type PIPVGGGGGG-DHFR 0	
(Fbp1) wild-type PTI VGGGGG-DHFR 7	
(Fbp1) mutant STI VGGGGG-DHFR 8	
C DBD AD S. cerevisiae	
B DBD AD S. cerevisiae — 1	
P-Fbp1 😓	
S-Fbp1 😇 2 S-Fbp1 🔁 3	
SP-Pck1 4	
35	
P-Fbp1 4 SP-Pck1 Gid1 Gid1 6	
S-Fbp1 5 SP-Pck1 Gid2 7	
SP-Pck1 6 SP Pck1 Gide 8	
SS-Pck1 Side 7 SP-Pck1 Gids 9	
SS-Pck1 Gid5 10	

Fig. S6. 2-hybrid assays of interactions among Fbp1, Pck1, and GID subunits. See the legend to fig. S4 for the residue color notations and related details.

(A1, 2) Gid4 binds to full-length **PTLV**-Fbp1 but not to the **STLV**-Fbp1 mutant (see, e.g., the main Fig. 2A1, 2 and fig. S4D1, 2 for independently produced results).

(A3, 4) Gid4 binds to **PHSV**-G₅-DHFR-DBD (bearing the first four N-terminal residues of wild-type **PHSV**-Mdh2) but not to the otherwise identical **SHSV**-G₅-DHFR-DBD.

(A5) Gid4 does not bind to **PIPV**-G₅-DHFR-DBD (bearing the first four N-terminal residues of wild-type **PIPV**-Icl1), despite the presence of N-terminal Pro.

(A6) Same as in A5 but with SIPV-G₅-DHFR-DBD.

(A7, 8) **PTLV**-G₅-DHFR-DBD (but not **STLV**-G₅-DHFR-DBD) bind to Gid4 (see fig. 2D7, 8) for the same but independently produced results).

(B1, 2) Neither PTLV-Fbp1 nor its STLV-Fbp1 mutant bind to Gid5.

(B3) Gid7 vs. vector alone (a negative control).

(B4, 5) Neither PTLV-Fbp1 nor its STLV-Fbp1 mutant bind to Gid7.

(B6, 7) Neither SPSK-Pck1 nor its SSSK-Pck1 mutant bind to Gid7.

(C1) Gid8 vs. vector alone (a negative control).

(C2, 3) Neither PTLV-Fbp1 nor its STLV-Fbp1 mutant bind to Gid8.

(C4, 5) Neither SPSK-Pck1 nor its SSSK-Pck1 mutant bind to Gid8.

(C6) Wild-type SPSK-Pck1 does not bind to Gid1.

(C7) Wild-type SPSK-Pck1 does not bind to Gid2.

(C8) Wild-type SPSK-Pck1 does not bind to Gid9.

(C9, 10) Neither SPSK-Pck1 nor its SSSK-Pck1 mutant bind to Gid5.

specificity of Gid4 binding to P-Fbp1 through the use of splitubiquitin assav. (A) Split-Ub assay. In this method, test proteins are expressed as fusions to a C-terminal half of Ub (C_{ub}) and to its mutant N-terminal half (N_{ub}), respectively (9, 13). An in vivo interaction between test protein moieties would reconstitute a quasi-native Ub moiety from Nub and Cub. The readout of

this technique is the *in vivo* cleavage, by S. cerevisiae deubiquitylases (DUBs), of a Cub-containing fusion immediately after the reconstituted Ub moiety. In the version of the split-Ub assay employed in this study (see Materials and Methods), the C-terminal moiety of a split-Ub fusion that was released through the fusion's cleavage by DUBs was Arg-Ura3 (R-Ura3) (9, 13). This protein moiety, owing to its destabilizing N-terminal Arg residue, was a short-lived substrate of the Arg/N-end rule pathway (Fig. 5E). The Ura3 moiety was enzymatically active both in the initial (uncleaved) split-Ub fusion and in its cleavage-released R-Ura3 form, but the levels of DUB-released R-Ura3 were very low, owing to its degradation by the Arg/N-end rule pathway. Cells in which a Ura3-containing split-Ub fusion was largely uncleaved by DUBs (signifying little or no interaction between test protein moieties) contained relatively high levels of Ura3. Such cells were Ura+ (grew on Ura-lacking plates) and FOA⁻ (did not grow on plates containing both uracil and fluoroorotic acid (FOA), since the activity of Ura3 converted FOA into a toxic compound). By contrast, in cells in which the bulk of the initial Ura3-containing split-Ub fusion was cleaved by DUBs (signifying an interaction between test protein moieties), the levels of the (short-lived) R-Ura3 were very low. Such cells, therefore, were Ura⁻ and FOA⁺ (since FOA was largely not converted to a toxic compound in these cells).

(B) Split-Ub assay was carried out with split-Ub-based fusions containing Gid4 and either PTLV-Fbp1 or STLV-Fbp1, as illustrated in A. The relative Ura3 levels were assayed, in experiments of this panel, by plating cells on FOA-containing, uracil-containing cells. Cell growth on these plates required (sufficiently) low levels of Ura3 and signified interaction between test protein moieties. B1: Gid4 binds to PTLV-Fbp1 (low levels of Ura3, growth on FOA plates). B2: Gid4 does not bind to STLV-Fbp1 (relatively high levels of Ura3, virtually no growth on FOA plates). These data were in agreement with the results obtained through the use of 2-hybrid binding assays (e.g., Fig. 2 and fig. S4). **B**3, 4: negative controls. Specifically, the **PTLV**-Fbp1 and STLV-Fbp1 split-Ub fusions (which contained the C-terminal Ura3 moiety) were expressed alone, without the split-Ub Gid4 fusion. This resulted in the absence of DUB- mediated cleavage of these fusions and therefore in high levels of Ura3 in both cases, leading to the absence of growth on FOA plates, as expected. B5: a converse negative control. The Gid4 split-Ub fusion (which lacked the Ura3 moiety) was expressed together with vector alone, a plasmid that lacked a split-Ub-based X-Fbp1 fusion. The complete absence of Ura3, in this case, led to robust cell growth on FOA plates, as expected.

(C) In this panel, the same S. cerevisiae strains as in panel B were assayed by growing cells on uracillacking plates, yielding, as expected, cell growth patterns opposite to those in **B** (see Materials and methods).

Fig. S8. Allowed, suboptimal, and disallowed residues downstream of N-terminal proline in Fbp1: positions 2 and 3.

(A) *Row 1, 2*: Gid4 binds to the wild-type full-length **PTLV**-Fbp1 but not to the mutant fulllength **STLV**-Fbp1 (see, e.g., the main Fig. 2A1, 2 and fig. S4A1, 2 for the same but independently produced results). *Rows 3, 4*: the 2-hybrid-based Gid4 fusion and <u>X</u>-**T-L-V-G**₅-DHFR-DBD fusions (**X**=**P** or **S**). Gid4 binds to **P-T-L-V-G**₅-DHFR-DBD but not to **S-T-L-V-G**₅-DHFR-DBD. *Other rows*: otherwise identical 2-hybrid assays with the 2-hybrid-based Gid4 fusion vs. a set of **P-X-L-V-G**₅-DHFR-DBD fusions (**X**=**G**, **A**, **S**, **C**, **V**, **L**, **Y**, **W**, **D**, **E**, **N**, **Q**, **H**, **K**, **I**, **M**, **P**, **F**, **R**).

(B) *Row 1-4*: Same as *rows 1-4* in A but independent assays. *Other rows*: otherwise identical 2-hybrid assays with the 2-hybrid-based Gid4 fusion vs. a set of **P-T-X-V-G**₅-DHFR-DBD fusions (**X=G**, **A**, **S**, **C**, **V**, **I**, **Y**, **W**, **D**, **E**, **N**, **Q**, **H**, **K**, **T**, **M**, **P**, **F**, **R**). See the main Fig. 4 for a summary of the binding data in figs. S8-S10.

13

Fig. S9. Allowed and disallowed residues downstream of N-terminal proline in Fbp1: positions 4 and 5.

(A) *Row 1, 2*: Gid4 binds to the wild-type full-length **PTLV**-Fbp1 but not to the mutant fulllength **STLV**-Fbp1 (see, e.g., the main Fig. 2A1, 2 and fig. S4A1, 2 for the same but independently produced results). *Rows 3, 4*: the 2-hybrid-based Gid4 fusion and <u>X</u>-**T-L-V-G**₅-DHFR-DBD fusions (**X**=**P**, **S**). Gid4 binds to **P-T-L-V-G**₅-DHFR-DBD but not to **S-T-L-V-G**₅-DHFR-DBD. *Other rows*: otherwise identical 2-hybrid binding assays with the 2-hybrid-based Gid4 fusion vs. a set of **P-T-L-X-G**₅-DHFR-DBD fusions (**X**=**G**, **A**, **S**, **C**, **L**, **I**, **Y**, **W**, **D**, **E**, **N**, **Q**, **H**, **K**, **T**, **M**, **P**, **F**, **R**).

(B) Row 1-4: Same as rows 1-4 in A but independent assays. Other rows: otherwise identical 2-hybrid assays with the 2-hybrid-based Gid4 fusion vs. a set of P-T-L-V-X-G₅-DHFR-DBD fusions (X=G, A, S, T, C, V, L, Y, W, D, E, N, Q, H, K, T, M, P, F, R). In this set of fusions, the varying residue at position 5 (occupied by the Asn residue in wild-type PTLVN-Fbp1) was inserted between Val-4 and the first Gly residue of the Gly₅ repeat. See the main Fig. 4 for a summary of the binding data in figs. S8-S10.

14

Fig. S10. Allowed and disallowed residues downstream of N-terminal proline in Fbp1: position 6.

Row 1, 2: Gid4 binds to the wild-type full-length **PTLV**-Fbp1 but not to the mutant full-length **STLV**-Fbp1 (see, e.g., the main Fig. 2A1, 2 and fig. S4A1, 2 for the same but independently produced results). *Rows 3, 4*: the 2-hybrid-based Gid4 fusion and **X-T-L-V-N-G**₅-DHFR-DBD fusions (**X=P, S**). Gid4 binds to **P-T-L-V-G**₅-DHFR-DBD but not to **S-T-L-V-G**₅-DHFR-DBD. *Other rows*: otherwise identical 2-hybrid binding assays with the 2-hybrid-based Gid4 fusion vs. a set of **P-T-L-V-N-X**-**G**₅-DHFR-DBD fusions (**X=G, A, S, C, L, I, Y, W, D, E, N, Q, H, K, T, M, P, F, R**). In this set of fusions, the varying residue at position 6 (occupied by the Gly residue in wild-type **PTLVNG**-Fbp1) was inserted between Asn-5 and the first Gly residue of the Gly₅ repeat. See the main Fig. 4 for a summary of the binding data in figs. S8-S10.

Fig. S11. **Degradation of** wild-type SP-Pck1 and mutant SS-Pck1 in wild-type and mutant S. cerevisiae. (A) Lane 1, kDa markers. Lanes 2-4, tetracycline (Tc)based chase, using a PRT-based plasmid expressing wild-type **SPSK**-Pck1_{3f} and the reference _fDHFR_{ha} (see the main Fig. 2A, B), was carried out at 30°C during transition from ethanol to glucose media with wild-type S. cerevisiae. Lanes 5-7, same as lanes 2-4 but with the mutant **SSSK**-Pck1_{3f}. Lanes 8-10, same as lanes 2-4 but in *gid4* Δ cells. Lanes 11-13,

same lanes 8-10 but with the mutant **SSSK**-Pck1_{3f}. Lanes 14-16, same as lanes 8-10 but in *gid2* Δ cells. Lanes 17-19, same as lanes 14-16 but with the mutant **SSSK**-Pck1_{3f} (see Materials and methods). The bands of **SXSK**-Pck1_{3f} (**X=P** or **S**) and _fDHFR_{ha} are indicated on the left.

(**B**) Quantification of data in **A**. All Tc-chases in this study were performed at least twice, and yielded results that differed by less than 10%.

Fig. S12. 2-hybrid assays that addressed analogies between the substrate-binding groove of Gid4 and peptide-binding grooves of MHC I proteins. See the legend to fig. S4 for the residue color notations and related details. (A1, 2) Gid4 binds to fulllength **PTLV**-Fbp1 but not to the otherwise identical STLV-Fbp1 mutant (see, e.g., the main Fig. 2A1, 2 and fig. S4A1, 2 for the same but independently produced results). (A3, 4) Same as in A1, 2, but with AD-Gid4, in which the 2hybrid-specific AD domain was N-terminal, in contrast to Cterminal AD in other Gid4-based 2-hybrid assays of this study. (A5, 6) Same as in A3, 4, but with SPSK-Pck1 and its SSSK-Pck1 mutant, respectively. Note the absence of binding between Pck1 and either the AD-Gid4 fusion (this panel) or Gid4-AD (e.g., fig. S4A5-7). In contrast, PTLV-Fbp1 bound to Gid4 in either one of its configurations, Gid4-AD or AD-Gid4 (A1-4) (**B**1, 2) Same as in **A**1, 2, but an

(**B**1, 2) Same as in **A**1, 2, but an independent 2-hybrid assay. (**B**3-

8) 2-hybrid assays with Gid4 vs. XZSVMNA-G2-DHFR-DBD (X=S, P, A, T; Z=P, S). The expressed protein constructs, here, and throughout this study, contained, initially, the N-terminal Met residue, which was cotranslationally cleaved off by Met-aminopeptidases (19). Note the binding of Gid4 to **SPSVMNA-G**₂-DHFR-DBD. Its N-terminal (bolded) sequence is identical to that of wild-type SPSK-Pck1, save for the replacement of wild-type Lys-4 with Val-4 (see the main text). Note, too, that Gid4 bound to $SPSVMNA-G_2$ -DHFR-DBD (B3) but not to otherwise identical variants of this fusion that contained alterations at positions 1 or 2. (C1-4) 2-hybrid assays with Gid4 vs. XSPSVMNA-G2-DHFR-DBD (**X**=**G**, **A**, **S**, **T**). The N-terminal sequences of these 2-hybrid fusions were one residue longer than that of SPSVMNA-G₂-DHFR-DBD, which interacted with Gid4 (see B3). See the main text for the logic of the assays in C1- C4. (C5) Same as in C1- C4 but with Gid4 vs. SPLVMNA-G2-DHFR-DBD. Its N-terminal (bolded) sequence, derived from the SPSKMNA N-terminal sequence of wild-type SPSK-Pck1, contained the Lys-4 \rightarrow Val-4 mutation (present in all constructs of **B** and **C**) and also the Ser-3 \rightarrow Leu-3 mutation. (C6) Same as in C5 but with Gid4 vs. PSLVMNA-G₂-DHFR-DBD. Its (bolded) N-terminal sequence is identical to that of SPLVMNA-G₂-DHFR-DBD, save for inversion of N-terminal Ser-Pro, resulting in Pro-Ser. Gid4 interacted with both SPSVMNA-G₂-DHFR-DBD of B3 and SPLVMNA-G₂-DHFR-DBD of C6, but not with any other constructs in **B** and **C**. See the main text for the logic of assays in **C5-C**6.

Fig. S13. 2-hybrid assays of interactions among Gid4 and derivatives of SPSK-Pck1. See the legend to fig. S4 for the residue color notations and related details. (A1, 2) Gid4 binds to full-length PTLV-Fbp1 but not to the otherwise identical STLV-Fbp1 mutant (see, e.g., the main Fig. 2A1, 2 and fig. S4A1, 2 for the same but independently produced results). (A3, 4) Gid4 binds neither to SPSK-Pck1¹⁻²⁰-DHFR-DBD (derived from wild-type SPSK-Pck1; the first 20 residues of Pck1) nor the otherwise identical mutant SSSK-Pck1¹⁻²⁰-DHFR-DBD. (B1, 2) Gid4 binds to the full-length **PTLV**-Fbp1 but not to the otherwise identical STLV-Fbp1 mutant (see, e.g., the main Fig. 2A1, 2 and fig. S4A1, 2 for the same but independently produced results). (B3) Same as in A3 (the absence of Gid4 binding to SPSK-Pck1¹⁻²⁰-DHFR-DBD), but an independent assay. (B4) Same as in A5 (a vector-alone negative control with SPSK-Pck1¹⁻²⁰-DHFR-DBD), but an independent assay. (B5) Gid4 does not bind to PSSK-Pck1¹⁻²⁰-DHFR-DBD (a

mutant of the wild-type N-terminal sequence SPSK of Pck1; its first 20 residues). (B6) Gid4 binds to SPSV-Pck1¹⁻²⁰-DHFR-DBD (derived from wild-type SPSK-Pck1; its first 20 residues) which contains the Lys \rightarrow Val mutation at position 4 (see the main text). (**B**7, 8) Gid4 binds neither to **PSSV**-Pck1¹⁻²⁰-DHFR-DBD nor to **PSSV**-Pck1¹⁻²⁰-DHFR-DBD fusions (derived from wild-type **SPSK**-Pck1; its first 20 residues), which contain the Lys \rightarrow Val mutation at position 4. Compare with the result in B6. (C1, 2) Gid4 binds to full-length PTLV-Fbp1 but not to the otherwise identical STLV-Fbp1 mutant (see, e.g., the main Fig. 2A1, 2 and fig. S4A1, 2 for the same but independently produced results). (C3) Same as in A3 and B3 (the absence of Gid4 binding to "wild-type" SPSK-Pck1¹⁻²⁰-DHFR-DBD (derived from wild-type Pck1; its first 20 residues). (C4) Gid4 binds to **SPSV**-Pck1¹⁻²⁰-DHFR-DBD, which contains the Lys \rightarrow Val mutation at position 4. The same result as in B6. (C5) Gid4 binds to the full-length SPSV-Pck1 protein that contains the same single Lys \rightarrow Val mutation at position 4 as in the 2-hybrid fusion of C4. (C6, 7) Gid4 binds neither to **SPSK-G**₅-DHFR-DBD nor to **SPSV-G**₅-DHFR-DBD, although the latter fusion contains the Lys \rightarrow Val mutation at position 4. These results show that the Lys \rightarrow Val mutation at position 4 confers the binding of Gid4 in the context of the 20 N-terminal residues of Pck1 (see, e.g., B6) but not in the context of only four N-terminal residues.

Fig. S14. Degradation of P-Fbp1 in cells under glucosereplete conditions.

(A) Tetracycline (Tc)-based, reference-based chases were performed as described in the legend to the main Fig. 2, at 30°C with indicated S. cerevisiae strains expressing either **PTLV**-Fbp1_{3f} or **STLV**-Fbp1_{3f}, but with cells that did not undergo glucose deprivation. Lane 1, kDa markers. Lanes 2-4, wild-type cells expressing **PTLV**-Fbp1_{3f}. Lanes 5-7, same as lanes 2-4 but with gid4 Δ cells. Lanes 8-10, same as in lanes 2-4 but with STLV-Fbp1_{3f}. Lanes 11-13, same as lanes 8-10 but with gid4 Δ cells.

(B) Quantification of data in A. All chases in this study were performed at least twice, and yielded results that differed by less than 10%. The bands of X-Fbp1_{3f} and $_{f}$ DHFR_{ha} are indicated.

(C) The S. cerevisiae **PVSE**-Yhr020w prolyl-tRNA synthetase bears N-terminal Pro but is long-lived during ethanol \rightarrow glucose transitions. The 688residue, C-terminally tripleflagged, **PVSE**-Yhr020w_{3f} was assayed by a tetracycline (Tc)based, PRT-based chase during

transition from ethanol to glucose (see the main Fig. 2 and Materials and methods). The bands of PVSE-Yhr020w_{3f} and _fDHFR_{ha} are indicated. See also the main text.

IN-Leitti	mai seyu	sinces of	S. Cerevia	side prote	ents bearn	ig in-teri	ninai i iu
Fbp1:	PTLVN	Cdc20:	PESSR	Fox2:	PGNLS	lvy1:	PDNNT
Icl1:	PIPVG	Cef1:	PPVPI	Frs1:	PTVSV	Kin2:	PNPNT
Mdh2:	PHSVT	Cin8:	PAENQ	Ftr1:	PNKVF	Kog1:	PEIYG
Ade13:	PDYDN	Cka2:	PLPPS	Fui1:	PVSDS	Kpr3:	PTNSI
Adh5:	PSQVI	Cmk2:	PKESE	Fur4:	PDNLS	Kre6:	PLRNL
Aim21:	PSEVT	Cmr1:	PELTE	Fus3:	PKRIV	Kri1:	PRKKS
Alb1:	PSKNS	Crg1:	PKTSY	Gcy1:	PATLH	Kti12:	PLVLF
Ald2:	PTLYT	Crt10:	PPQIP	Gef1:	PTTYV	Ldb18:	PGLKL
Ald3:	PTLYT	Ctf8:	PSVDI	Gfd1:	PLESI	Lre1:	PNTHT
Aly2:	PMDQS	Ctf13:	PSFNP	Gga1:	PQRIE	Lsg1:	PPKEA
Ape2:	PIVRW	Ctk2:	PSTFE	Ggc1:	PHTDK	Mch1:	PLSKV
Apl2:	PPLDK	Ctr86:	PMNNF	Glt1:	PVLKS	Mdm1:	PKFPQ
Apn1:	PSTPS	Cwc23:	PGHEL	Glrx3:	PVIEI	Mds3:	PLLQP
Arb1:	PPVSA	Cyb5:	PKVYS	Gpb1:	PQAST	Met3:	PAPHG
Arc18:	PAYHS	Dal1:	PINAI	Gpi1:	PNYIF	Met10:	PVEFA
Arg5,6:	PSASL	Das1:	PFQDY	Gpi11:	PAKKR	Met17:	PSHFD
Asf2:	PKNRG	Dna2:	PGTPQ	Gpm1:	PKLVL	Mft1:	PLSQK
Asg1:	PEQAQ	Dog2:	PQFSV	Gpn2:	PFAQI	Mgr2:	PPLPQ
Atc7:	PNPPS	Dpb4:	PPKGW	Gpp1:	PLTTK	Mig2:	PKKQT
Atg26:	PITQI	Dse3:	PRKFL	Grs2:	PLMSN	Mip6:	PNSHG
Atp8:	PQLVP	Ecm15:	PKIFC	Gtt3:	PTKST	Mpc54:	PEDTS
Avt1:	PEQEP	Ecm21:	PFITS	Gus1:	PSTLT	Mrp20:	PRLTV
Avt5:	PSNVR	Egd1:	PIDQE	Gyp8:	PLRSL	Mrt4:	PRSKR
Azf1:	PPPTA	End3:	PKLEQ	Hem13:	PAPQD	Mrx7:	PPRSI
Bck1:	PFLRK	Ent4:	PLLDT	Her2:	PLKRS	Mtq1:	PRIST
Bck2:	PKNSH	Epl1:	PTPSN	Hip1:	PRNPL	Naa10:	PINIR
Bna6:	PVYEH	Esl2:	PETSV	His7:	PVVHV	Nam9:	PRKAN
Brf1:	PVCKN	Ess1:	PSDVA	Hmg1:	PPLFK	Ncp1:	PFGID
Bsd2:	PEQEL	Est3:	PKVIL	Hms1:	PNFQK	New1:	PPKKF
Btt1:	PVDQE	Exg2:	PLKSF	Hom3:	PMDFQ	Ngg1:	PRHGR
Bud16:	PRLLA	Exo70:	PAEID	Hri1:	PALLK	Nsa2:	PQNDY
Bud22:	PSESS	Fcy21:	PQTHE	Hrk1:	PNLLS	Nst1:	PPNSK
Bud31:	PRIKT	Fcy22:	PEKLA	les5:	PSKDP	Ntc20:	PSLRD
Cab1:	PRITQ	Flo10:	PVAAR	Iml3:	PYTWK	Nus1:	PTMIK
Cab2:	PPLPV	Flp1:	PQFGI	Isd11:	PGFTA	Ola1:	PPKKQ

Fig. S15. N-terminal sequences of *S. cerevisiae* DNA-encoded proteins that bear N-terminal Pro.

This is one of three consecutive figures (S15-S17) that show the first five residues of 295 *S. cerevisiae* proteins that bear N-terminal Pro (after the cotranslational removal of their initial N-terminal Met by Met-aminopeptidases). This set of proteins was defined using the ScanProsite (<u>http://prosite.expasy.org/scanprosite/</u>) database, searching for the motif "<M-P" (N-terminal Met-Pro) and confining the search to *S. cerevisiae*, the strain S288C. An essentially identical set of proteins could also be identified through a search in the SGD (<u>http://www.yeastgenome.org</u>) database. **PTLVN**-Fbp1, **PIPVG**-Icl1, and **PHSVT**-Mdh2, the three (out of four) main gluconeogenic enzymes and the identified substrates of Gid4 and the rest of the Pro/N-end rule pathway (the main Fig. 1B), are highlighted in bold red at the beginning of this diagram. All other N-terminal Pro-bearing proteins in figs. S15-S17 are cited alphabetically.

N-terminal sequences of S. cerevisiae proteins bearing N-terminal Pro

		1-			/		
Ole1:	PTSGT	Rps25a:	PPKQQ	Tfc1:	PVEEP	Ydr340w:	PNCFS
Oye2:	PFVKD	Rps25b:	PPKQQ	Thr4:	PNASQ	Ydr444w:	PYKIN
Oye3:	PFVKG	Rps26a:	PKKRA	Tma16:	PVTKS	Ydr526c:	PCLLP
Pdr5:	PEAKL	Rps26b:	PKKRA	Tma46:	PPKKG	Ydr545ca:	PAKLQ
Pex4:	PNFWI	Rpt1:	PPKED	Tpo4:	PSSLT	Ydl196w:	PSESR
Pex21:	PSVCH	Rsp5:	PSSIS	Tpo5:	PEYTL	Ye090:	PLEVL
Pex22:	PPPSR	Rtt103:	PFSSE	Trk2:	PTAKR	Yel043w:	PVSVI
Pfa4:	PVKLR	Sac7:	PNNTL	Trl1:	PSPYD	Yer079w:	PDSSH
Phsg:	PPAST	Sct1:	PAPKL	Trs20:	PQYFA	Yfl012w:	PKSRP
Pif1:	PKWIR	Sdh6:	PKRLS	Tsc13:	PITIK	Ygl041c:	PDFSN
Pig1:	PYSHG	Sdo1:	PINQP	Tum1:	PLFDL	Ygl114w:	PQSTP
Pmt3:	PYRVA	Sds23:	PQNTR	Uba2:	PRETS	Ygl118c:	PPEPV
Pns1:	PLNEK	Sec63:	PTNYE	Ubp2:	PNEDN	Ygl177w:	PIRIF
Prp3:	PPRNT	Sec65:	PRLEE	Ubx2:	PVVNH	Ygr126w:	PVPSV
Prp39:	PDETN	Sen34:	PPLVF	Ubx4:	PMVTV	Ygr210c:	PRDPL
Psk1:	PYIGA	Sgo1:	PKRKI	Ura5:	PIMLE	Yhr180cb:	PPARI
Pst2:	PRVAI	Sgt1:	PVEKD	Utp8:	PSLSQ	Yhm2:	PSTTN
Pyk2	PESRL	Shb17:	PSLTP	Wtm1:	PKKVW	Yhr020w:	PVSEA
Qcr7:	PQSFT	She4:	PLCEK	Yal067wa:	PIIGV	Yhr212wa:	PYHYL
Rad57:	PRALS	Shm2:	PYTLS	Yar068w:	PQVQS	Yhr214wa:	PQVQS
Raf1:	PYKTA	Sir4:	PNDNK	Yat1:	PNLKR	Yip5:	PSNNS
Ras2:	PLNKS	Snt2:	PKEED	Yb056:	PPAQL	Yil174w:	PIIGV
Reb1:	PSGHN	Snx3:	PREFK	Ybr056cb:	PPIQL	Yir007w:	PAKIH
Rfs1:	PKVAI	Sok2:	PIGNP	Ybl081w:	PGQII	Yir018ca:	PSDYT
Ria1:	PRVES	Sps2:	PIWKT	Ybl086c:	PFNHN	Yir020w:	PHSEK
Rim2:	PKKSI	Sps4:	PSNLN	Ybr113w:	PLRPC	Yj140:	PKQTL
Rir1:	PKETP	Srv2:	PDSKY	Ycr108c:	PYSPS	Yj77a:	PGIAF
Rpl12a:	PPKFD	Ssu72:	PSHRN	Ycr090c:	PLFLV	Yj77b:	PILVW
Rpl12b:	PPKFD	Stp1:	PSTTL	Yd269:	PSTCL	Yjr039w:	PAGRI
Rpl28:	PSRFT	Stp2:	PILSL	Ydl016c:	PPIML	Yjr140wa:	PKQTS
Rpn12:	PSLAE	Str3:	PIKRL	Ydr115w:	PLFAR	Yjl152w:	PHLAA
Rps9a:	PRAPR	Swc3:	PAVLR	Ydr149c:	PFFVN	Yjr107w:	PVVHC
Rps9b:	PRAPR	Swc5:	PEVET	Ydr179wa:	PTILY	Yk106:	PFPSI
Rps19a:	PGVSV	Swi4:	PFDVL	Ydl213wa:	PVRSL	YI016:	PITSS

N-terminal sequences of *S. cerevisiae* proteins bearing N-terminal Pro (continuation of fig. S15)

Fig. S16. N-terminal sequences of *S. cerevisiae* DNA-encoded proteins that bear N-terminal Pro.

This is the second of three figures (S15-S17) that show the first five residues of 295 *S. cerevisiae* proteins that bear N-terminal Pro (after the cotranslational removal of their initial N-terminal Met). See the legend to fig. S15 for additional details.

N-terminal sequences of *S. cerevisiae* proteins bearing N-terminal Pro (continuation of figs. S15 and S16)

YI299:	PFSPD	Ylr363wa:	PQKPL	Ynr075c-a: PIIVG
YIr031w:	PVLNT	Yml089c:	PHAWQ	Yor015w: PHFKR
Ylr101c:	PFLLH	Yml122c:	PRNDS	Yor292c: PLQLF
Ylr154we:	PPGIP	Ymr099c:	PIKET	Ypp1: PNSNV
Ylr202c:	PNFHL	Ymr111c:	PAREY	Ypr1: PATLK
Ylr345w:	PNVLS	Ynl040w:	PTPMT	
Ylr352w:	PDLKS	Ynl181w:	PLNII	

Fig. S17. N-terminal sequences of *S. cerevisiae* DNA-encoded proteins that bear N-terminal Pro.

This is the third and last of three figures (S15-S17) that show the first five residues of 295 *S. cerevisiae* proteins that bear N-terminal Pro (after the cotranslational removal of their initial N-terminal Met). See the legend to fig. S15 for additional details.

Strains	Relevant genotypes	Sources
E. coli strains:		
DH5a	F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1	Invitrogen
SUREII	endA1 glnV44 thi-1 gyrA96 relA1 lac recB recJ sbcC umuC::Tn5 uvrC e14- Δ (mcrCB-hsdSMR-mrr)171 F'[Stratagene
STBL2	proAB ⁻ lacF ⁺ lacZΔM15 In10 Amy Cm ⁻] F- endA1 glnV44 thi-1 recA1 gyrA96 relA1 Δ (lac-proAB) mcrA Δ (mcrBC-hsdRMS-mrr) λ ⁻	Invitrogen
S. cerevisiae strains:		
BY4741	MAT a his3-1 leu2-0 Met15-0 ura3-0	Open Biosystems
BY4594	<i>GID11::KanMX6</i> in BY4741	Open Biosystems
BY3614	<i>GID2A</i> :: <i>KanMX6</i> in BY4741	Open Biosystems
BY6577	<i>GID3Δ</i> :: <i>KanMX6</i> in BY4741	Open Biosystems
BY3244	GID4A::KanMX6 in BY4741	Open Biosystems
AH109	MAT a , trp1-901, leu2-3, 112, ura3-52, his3-200, gal4∆, gal80∆,	Clontech
	LYS2::GAL1 _{UAS} -GAL1 _{TATA} -HIS3, GAL2 _{UAS} -GAL2 _{TATA} -ADE2,	
	UKA3::MELI _{UAS} -MELI _{TATA} -IACZ	V
JD52	MAT a trp1-63 ura3-52 his3-200 leu2-3112. lys2-801	collection.

Table 2. Plasmids used in this study.

Plasmid	Description	Source or Reference
pGADCg	Y2H expression vector. Contains the P _{ADH1} promoter.	Addgene
	Used to produce Gal4-AD _{ha*} fusion by Gateway cloning.	
	*contains a partial ha epitope sequence.	
pGBKCg	Y2H expression vector. Contains the P_{ADH1} promoter.	Addgene
	Produces Gal4–DBD _{myc} fusion by Gateway cloning.	
pDONR/Zeo	Donor vector for Gateway cloning via BP reaction	Invitrogen

pRS313Cup1	pRS313 derivative containing the P_{CUPI} promoter	Varshavsky lab collection
Ste14-C _{Ub} -R- Ura3-Met313	Ste14-C _{Ub} -R-Ura3 in pRS313 with P_{MET17}	Varshavsky lab collection
N _{Ub} -Ubc6- Cup314	N_{Ub} -Ubc6 in pRS314 with P_{CUP1}	Varshavsky lab collection
pJO629	Yap 5_{3flag} and $_{flag}$ DHFR _{ha} in pRS313 with two identical (modified) P _{TDH3} promoters.	This study
pCSJ95	MP-Fbp1 _{3flag} in pJO629	This study
pCSJ98	MS-Fbp13flag in pJO629	This study
pCSJ120	Yap5-Pck1 (+382~1647bp) _{3flag} in pJO629	This study
pCSJ121	MSP-Pck1 _{3flag} in pJO629	This study
pCSJ122	MSS-Pck1 _{3flag} in pJO629	This study
pCSJ125	MP-Mdh2 _{3flag} in pJO629	This study
pCSJ126	MS-Mdh23flag in pJO629	This study
pCSJ160	attL-Gid1 _{3flag} in pDONR/Zeo	This study
pCSJ161	attL-MP-Fbp1 in pDONR/Zeo	This study
pCSJ162	attL-Cdc423flag in pDONR/Zeo	This study
pCSJ163	attL-WASP in pDONR/Zeo	This study
pCSJ164	SV40-NLS-Gid13flag-Gal4-AD in pGADCg	This study
pCSJ165	MP-Fbp1-Gal4-DBD in pGBKCg	This study
pCSJ166	SV40-NLS-Cdc423flag-Gal4-AD in pGADCg	This study
pCSJ167	WASP-Gal4-DBD in pGADCg	This study
pCSJ168	MP-Yhr020w3flag in pJO629	This study
pCSJ174	attL-MS-Fbp1 in pDONR/Zeo	This study
pCSJ175	attL-Ssa13flag in pDONR/Zeo	This study
pCSJ176	attL-Gid23flag in pDONR/Zeo	This study
pCSJ177	attL-Gid43flag in pDONR/Zeo	This study
pCSJ178	attL-Gid93flag in pDONR/Zeo	This study
pCSJ179	MS-Fbp1-Gal4-DBD in pGBKCg	This study
pCSJ180	SV40-NLS-Ssa13flag-Gal4-AD in pGADCg	This study
pCSJ181	SV40-NLS-Gid23flag-Gal4-AD in pGADCg	This study
pCSJ182	SV40-NLS-Gid4 $_{3 flag}$ -Gal4-AD in pGADCg	This study
pCSJ183	SV40-NLS-Gid93flag-Gal4-AD in pGADCg	This study
pCSJ193	attL-MP-Mdh2 in pDONR/Zeo	This study
pCSJ194	attL-MS-Mdh2 in pDONR/Zeo	This study
pCSJ195	attL-MSP-Pck1 in pDONR/Zeo	This study
pCSJ196	attL-MSS-Pck1 in pDONR/Zeo	This study

pCSJ197	MP-Mdh2-Gal4-DBD in pGBKCg	This study
pCSJ198	MS-Mdh2-Gal4-DBD in pGBKCg	This study
pCSJ199	MSP-Pck1-Gal4-DBD in pGBKCg	This study
pCSJ200	MSS-Pck1-Gal4-DBD in pGBKCg	This study
pCSJ201	attL-MP-Ald2 in pDONR/Zeo	This study
pCSJ202	attL-MS-Ald2 in pDONR/Zeo	This study
pCSJ205	MP-Ald2-Gal4-DBD in pGBKCg	This study
pCSJ206	MS-Ald2-Gal4-DBD in pGBKCg	This study
pCSJ210	attL-MP-Fbp1 ¹⁻¹⁷⁵ in pDONR/Zeo	This study
pCSJ211	attL-MS-Fbp1 ¹⁻¹⁷⁵ in pDONR/Zeo	This study
pCSJ216	MP-Fbp1 ¹⁻¹⁷⁵ -Gal4-DBD in pGBKCg	This study
pCSJ217	MS-Fbp1 ¹⁻¹⁷⁵ -Gal4-DBD in pGBKCg	This study
pCSJ222	attL-MP-Icl1 in pDONR/Zeo	This study
pCSJ223	attL-MS-Icl1 in pDONR/Zeo	This study
pCSJ224	attL-MPS-Pck1 in pDONR/Zeo	This study
pCSJ225	attL-MP-Pyk2 in pDONR/Zeo	This study
pCSJ226	attL-MS-Pyk2 in pDONR/Zeo	This study
pCSJ227	MP-Icl1-Gal4-DBD in pGBKCg	This study
pCSJ228	MS-Icl1-Gal4-DBD in pGBKCg	This study
pCSJ229	MPS-Pck1-Gal4-DBD in pGBKCg	This study
pCSJ230	MP-Pyk2-Gal4-DBD in pGBKCg	This study
pCSJ231	MS-Pyk2-Gal4-DBD in pGBKCg	This study
pCSJ232	attL-Gid53flag in pDONR/Zeo	This study
pCSJ234	SV40-NLS-Gid53flag-Gal4-AD in pGADCg	This study
pCSJ261	attL-Gid73flag in pDONR/Zeo	This study
pCSJ263	attL-Gid83flag in pDONR/Zeo	This study
pCSJ267	SV40-NLS-Gid73flag-Gal4-AD in pGADCg	This study
pCSJ268	SV40-NLS-Gid83flag-Gal4-AD in pGADCg	This study
pCSJ290	attL-MP-Fbp1 ¹⁻⁶² in pDONR/Zeo	This study
pCSJ291	attL-MS-Fbp1 ¹⁻⁶² in pDONR/Zeo	This study
pCSJ292	attL-MP-Fbp1 ¹⁻⁸⁷ in pDONR/Zeo	This study
pCSJ293	attL-MS-Fbp1 ¹⁻⁸⁷ in pDONR/Zeo	This study

This study

pCSJ294 MP-Fbp1¹⁻⁶²-Gal4-DBD in pGBKCg

pCSJ295	MS-Fbp1 ¹⁻⁶² -Gal4-DBD in pGBKCg	This study
pCSJ296	MP-Fbp1 ¹⁻⁸⁷ -Gal4-DBD in pGBKCg	This study
pCSJ297	MS-Fbp1 ¹⁻⁸⁷ -Gal4-DBD in pGBKCg	This study
pCSJ323	attL-MV-DHFR in pDONR/Zeo	This study
pCSJ324	attL-MP-Fbp1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ325	attL-MS-Fbp1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ326	MV-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ327	MP-Fbp1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ328	MS-Fbp1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ330	attL-MP-Mdh2 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ331	attL-MS-Mdh2 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ332	attL-MP-Icl1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ333	attL-MS-Icl1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ334	MP-Mdh2 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ335	MS-Mdh2 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ336	MP-Icl1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ337	MS-Icl1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ358	attL-MP-Oye2 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ359	attL-MP-Pyk2 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ360	MP-Oye ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ361	MP-Pyk2 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ362	attL-MA-Fbp1 in pDONR/Zeo	This study
pCSJ363	attL-MT-Fbp1 in pDONR/Zeo	This study
pCSJ364	MA-Fbp1-Gal4-DBD in pGBKCg	This study
pCSJ365	MT-Fbp1-Gal4-DBD in pGBKCg	This study
pCSJ370	attL-MP-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ371	attL-MS-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ372	attL-MP-Fbp1 ¹⁻³ -(Gly)7-DHFR in pDONR/Zeo	This study
pCSJ373	attL-MS-Fbp1 ¹⁻³ -(Gly)7-DHFR in pDONR/Zeo	This study
pCSJ374	attL-MP-(Gly)8-DHFR in pDONR/Zeo	This study
pCSJ375	attL-MS-(Gly)8-DHFR in pDONR/Zeo	This study
pCSJ376	MP-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ377	MS-Fbp1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study

pCSJ378	MP-Fbp1 ¹⁻³ -(Gly)7-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ379	MS-Fbp1 ¹⁻³ -(Gly)7-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ380	MP-(Gly) ₈ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ381	MS-(Gly) ₈ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ408	MP-Fbp1-C _{Ub} -R-Ura3 in pRS313 with P _{MET17}	This study
pCSJ409	MS-Fbp1-C _{Ub} -R-Ura3 in pRS313 with P_{MET17}	This study
pCSJ418	N_{Ub} -Gid4 _{flag} in pRS314 with P_{CUP1}	This study
pCSJ423	attL-MSP-Pck1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ424	attL-MSS-Pck1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ425	MSP-Pck1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ426	MSS-Pck1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ435	attL-MPSSK-Pck1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ436	attL-MSPSV-Pck1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ437	attL-MPSSV-Pck1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ438	MPSSK-Pck1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ439	MSPSV-Pck1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ440	MPSSV-Pck1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ445	attL-MPG-Fbp11-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ446	attL-MPA-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ447	attL-MPS-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ448	attL-MPC-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ449	attL-MPV-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ450	attL-MPL-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ451	attL-MPY-Fbp11-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ452	attL-MPW-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ453	attL-MPD-Fbp11-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ454	attL-MPE-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ455	attL-MPN-Fbp11-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ456	attL-MPQ-Fbp11-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ457	attL-MPH-Fbp11-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ458	attL-MPK-Fbp11-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ459	MPG-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ460	MPA-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study

pCSJ461	MPS-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ462	MPC-Fbp1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ463	MPV-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ464	MPL-Fbp1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ465	MPY-Fbp1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ466	MPW-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ467	MPD-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ468	MPE-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ469	MPN-Fbp1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ470	MPQ-Fbp1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ471	MPH-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ472	MPK-Fbp1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ473	MP-Fbp1-Cub-R-Ura3 in pRS313 with PCUP1	This study
pCSJ474	MS-Fbp1-Cub-R-Ura3 in pRS313 with PCUP1	This study
pCSJ475	attL-MPTG-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ476	attL-MPTA-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ477	attL-MPTS-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ478	attL-MPTC-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ479	attL-MPTV-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ480	attL-MPTI-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ481	attL-MPTY-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ482	attL-MPTW-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ483	attL-MPTD-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ484	attL-MPTE-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ485	attL-MPTN-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ486	attL-MPTQ-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ487	attL-MPTH-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ488	attL-MPTK-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ489	MPTG-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ490	IN pGBKCg MPTA-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ491	MPTS-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ492	MPTC-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study

pCSJ493	MPTV-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ494	MPTI-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ495	in pGBKCg MPTY-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
nCS1406	in pGBKCg	This study
pC3J490	in pGBKCg	This study
pCSJ497	MPTD-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ498	MPTE-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ499	MPTN-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ500	in pGBKCg MPTQ-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ501	MPTH-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ502	MPTK-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ503	attL-MSSSV-Pck1 ¹⁻²⁰ -DHFR in pDONR/Zeo	This study
pCSJ504	MSSSV-Pck1 ¹⁻²⁰ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ513	attL-MPTLG-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ514	attL-MPTLA-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ515	attL-MPTLS-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ516	attL-MPTLC-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ517	attL-MPTLL-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ518	attL-MPTLI-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ519	attL-MPTLY-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ520	attL-MPTLW-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ521	attL-MPTLD-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ522	attL-MPTLE-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ523	attL-MPTLN-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ524	attL-MPTLQ-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ525	attL-MPTLH-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ526	attL-MPTLK-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ527	MPTLG-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ528	in pGBKCg MPTLA-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ529	MPTLS-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ530	in pGBKCg MPTLC-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study

pCSJ531	MPTLL-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ532	MPTLI-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ533	in pGBKCg MPTLY-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ534	in pGBKCg MPTLW-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ535	in pGBKCg MPTLD-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ536	MPTLE-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ537	MPTLN-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ538	in pGBKCg MPTLQ-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ539	IN pGBKCg MPTLH-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ540	in pGBKCg MPTLK-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ541	attL-MSPSV-Pck1 in pDONR/Zeo	This study
pCSJ542	attL-MSPSK-Pck1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ543	attL-MSPSV-Pck1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ545	MSPSV-Pck1-Gal4-DBD in pGBKCg	This study
pCSJ546	MSPSK-Pck1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ547	MSPSV-Pck1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ549	attL-MPI-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ550	attL-MPM-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ551	attL-MPP-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ552	attL-MPF-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ553	attL-MPR-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ554	MPI-Fbp1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ555	MPM-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ556	MPP-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ557	MPF-Fbp1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ558	MPR-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ559	attL-MPTT-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ560	attL-MPTM-Fbp11-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ561	attL-MPTP-Fbp11-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ562	attL-MPTF-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study

pCSJ563	attL-MPTR-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ564	MPTT-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ565	in pGBKCg MPTM-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ566	MPTP-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ567	MPTF-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ568	MPTR-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ569	attL-MPTLT-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ570	attL-MPTLM-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ571	attL-MPTLP-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ572	attL-MPTLF-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ573	attL-MPTLR-Fbp1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ574	MPTLT-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ575	in pGBKCg MPTLM-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ576	MPTLP-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ577	MPTLF-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ578	MPTLR-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ579	attL-MPTLV-Fbp1 ¹⁻⁵ -G-(Gly) ₅ -DHFR	This study
pCSJ580	attL-MPTLV-Fbp1 ¹⁻⁵ -A-(Gly) ₅ -DHFR	This study
pCSJ581	attL-MPTLV-Fbp1 ¹⁻⁵ -S-(Gly) ₅ -DHFR	This study
pCSJ582	attL-MPTLV-Fbp1 ¹⁻⁵ -T-(Gly) ₅ -DHFR	This study
pCSJ583	attL-MPTLV-Fbp1 ¹⁻⁵ -C-(Gly) ₅ -DHFR	This study
pCSJ584	attL-MPTLV-Fbp1 ¹⁻⁵ -V-(Gly) ₅ -DHFR	This study
pCSJ585	attL-MPTLV-Fbp1 ¹⁻⁵ -L-(Gly) ₅ -DHFR	This study
pCSJ586	attL-MPTLV-Fbp1 ¹⁻⁵ -Y-(Gly) ₅ -DHFR	This study
pCSJ587	attL-MPTLV-Fbp1 ¹⁻⁵ -W-(Gly) ₅ -DHFR	This study
pCSJ588	attL-MPTLV-Fbp1 ¹⁻⁵ -D-(Gly) ₅ -DHFR	This study
pCSJ589	attL-MPTLE-Fbp1 ¹⁻⁵ -A-(Gly) ₅ -DHFR	This study
pCSJ590	attL-MPTLV-Fbp1 ¹⁻⁵ -N-(Gly) ₅ -DHFR in pDONR/Zeo	This study

pCSJ591	attL-MPTLV-Fbp1 ¹⁻⁵ -Q-(Gly) ₅ -DHFR	This study
pCSJ592	attL-MPTLV-Fbp1 ¹⁻⁵ -H-(Gly) ₅ -DHFR	This study
pCSJ593	attL-MPTLV-Fbp1 ¹⁻⁵ -K-(Gly) ₅ -DHFR	This study
pCSJ594	in pDONR/Zeo attL-MPTLV-Fbp1 ¹⁻⁵ -I-(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ595	attL-MPTLV-Fbp1 ¹⁻⁵ -M-(Gly) ₅ -DHFR	This study
pCSJ596	attL-MPTLV-Fbp1 ¹⁻⁵ -P-(Gly) ₅ -DHFR	This study
pCSJ597	attL-MPTLV-Fbp1 ¹⁻⁵ -F-(Gly) ₅ -DHFR	This study
pCSJ598	attL-MPTLV-Fbp1 ¹⁻⁵ -R-(Gly) ₅ -DHFR	This study
pCSJ599	MPTLV-Fbp1 ¹⁻⁵ -G-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ600	MPTLV-Fbp1 ¹⁻⁵ -A-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ601	MPTLV-Fbp1 ¹⁻⁵ -S-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ602	MPTLV-Fbp1 ¹⁻⁵ -T-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ603	MPTLV-Fbp1 ¹⁻⁵ -C-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ604	IN pGBKCg MPTLV-Fbp1 ¹⁻⁵ -V-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ605	IN pGBKCg MPTLV-Fbp1 ¹⁻⁵ -L-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ606	IN pGBKCg MPTLV-Fbp1 ¹⁻⁵ -Y-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ607	IN pGBKCg MPTLV-Fbp1 ¹⁻⁵ -W-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ608	MPTLV-Fbp1 ¹⁻⁵ -D-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ609	IN pGBKCg MPTLV-Fbp1 ¹⁻⁵ -E-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ610	MPTLV-Fbp1 ¹⁻⁵ -N-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ611	IN pGBKCg MPTLV-Fbp1 ¹⁻⁵ -Q-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ612	MPTLV-Fbp1 ¹⁻⁵ -H-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ613	MPTLV-Fbp1 ¹⁻⁵ -K-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ614	MPTLV-Fbp1 ¹⁻⁵ -I-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ615	IN POBKCg MPTLV-Fbp1 ¹⁻⁵ -M-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ616	IN pGBKCg MPTLV-Fbp1 ¹⁻⁵ -P-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ617	ın pGBKCg MPTLV-Fbp1 ¹⁻⁵ -F-(Gly) ₅ -DHFR-Gal4-DBD	This study

	in pGBKCg	
pCSJ618	MPTLV-Fbp1 ¹⁻⁵ -R-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ619	attL-MP-Mdh2 ¹⁻⁵ -(Gly) ₅ -DHFR in pDONR/Zeo	This study
pCSJ620	attL-MS-Mdh21-5-(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ621	attL-MP-Icl1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ622	attL-MS-Icl1 ¹⁻⁵ -(Gly)5-DHFR in pDONR/Zeo	This study
pCSJ623	MP-Mdh2 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ624	MS-Mdh2 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ625	MP-Icl1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ626	MS-Icl1 ¹⁻⁵ -(Gly)5-DHFR-Gal4-DBD in pGBKCg	This study
pCSJ629	attL-MSPSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR in pDONR/Zeo	This study
pCSJ632	MSPSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ643	in pGBKCg MSSSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD in pGPKCg	This study
pCSJ644	MPSSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ645	MAPSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ646	in pGBKCg MTPSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD in pGBKCg	This study
pCSJ647	MPPSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ648	MGSPSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ649	MASPSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ650	MSSPSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ651	mpGBKCg MTSPSSV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ652	MSPLV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ653	MPSLV-Pck1 ¹⁻⁸ -(Gly) ₂ -DHFR-Gal4-DBD	This study
pCSJ654	MGTLV-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ655	MVTLV-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ656	MCTLV-Fbp1 ¹⁻⁵ -(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ681	MPTLVN-Fbp1 ¹⁻⁶ -G-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ682	MPTLVN-Fbp1 ¹⁻⁶ -A-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ683	MPTLVN-Fbp1 ¹⁻⁶ -S-(Gly) ₅ -DHFR-Gal4-DBD	This study

	in pGBKCg	
pCSJ684	MPTLVN-Fbp1 ¹⁻⁶ -T-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ685	MPTLVN-Fbp1 ¹⁻⁶ -C-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ686	MPTLVN-Fbp1 ¹⁻⁶ -V-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ687	MPTLVN-Fbp1 ¹⁻⁶ -L-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ688	MPTLVN-Fbp1 ¹⁻⁶ -Y-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ689	MPTLVN-Fbp1 ¹⁻⁶ -W-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ690	MPTLVN-Fbp1 ¹⁻⁶ -D-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ691	IN pGBKCg MPTLVN-Fbp1 ¹⁻⁶ -E-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ692	IN pGBKCg MPTLVN-Fbp1 ¹⁻⁶ -N-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ693	IN pGBKCg MPTLVN-Fbp1 ¹⁻⁶ -Q-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ694	IN pGBKCg MPTLVN-Fbp1 ¹⁻⁶ -H-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ695	IN pGBKCg MPTLVN-Fbp1 ¹⁻⁶ -K-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ696	IN pGBKCg MPTLVN-Fbp1 ¹⁻⁶ -I-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ697	MPTLVN-Fbp1 ¹⁻⁶ -M-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ698	MPTLVN-Fbp1 ¹⁻⁶ -P-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ699	MPTLVN-Fbp1 ¹⁻⁶ -F-(Gly) ₅ -DHFR-Gal4-DBD	This study
pCSJ700	In pOBKCg MPTLVN-Fbp1 ¹⁻⁶ -R-(Gly)₅-DHFR-Gal4-DBD in pGBKCg	This study

Table S3. PCR primers used in this study.

Primer	Sequence (5' to 3')
XW50	GGGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCCATTTGTTAAGGACTTTAAGCCA
	C
CSJ117	ATATATGGCGCGCCATGCCAACTCTAGTAAATGGACC
CSJ120	ATATATGGCGCGCCATGTCTACTCTAGTAAATGGACC
CSJ121	ATATATAGATCTCTGTGACTTGCCAATATG
CSJ162	GCAGGATGGGATCCAAAATACAG
CSJ163	ATATATAGATCTCTCGAATTGAGGACCAGCGGC
CSJ164	ATATATGGCGCGCCATGTCCCCTTCTAAAATGAATGC
CSJ165	CTGTATTTTGGATCCCATCCTGC
CSJ166	ATATATGGCGCGCCATGTCCTCTTCTAAAATGAATGCTACAGTAG

CSJ170	ATATATGGCGCGCCATGCCTCACTCAGTTACACCATCCAT
CSJ171	ATATATGGATCCAGATGATGCAGATCTCGATGCAACGAATTC
CSJ172	ATATATGGCGCGCCATGTCTCACTCAGTTACACCATCCAT
CSJ225	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGTCTGAATATATGGATGACG
CSJ226	GGGGACCACTTTGTACAAGAAAGCTGGGTCTTTGTCATCATCATCCTTATAG
CSJ227	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTCTAGTAAATGGACC
CSJ228	GGGGACCACTTTGTACAAGAAAGCTGGGTCCTGTGACTTGCCAATATGGTCTA
CSJ229	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCAGACAATTAAGTGTGTTG
CSJ230	CTTGTCATCGTCATCCTTGTAATCGATATCATGATCTTTATAATCACCGTCATGGTCTTT ATAGTCCCCGGGTAGCAGCACACACCTGCGGCTCTTC
CSJ231	GGGGACCACTTTGTACAAGAAAGCTGGGTCCTTGTCATCGTCATCCTTGTAA
CSJ232	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGAATAGTGGCCCTGGCCCTG
CSJ233	GGGGACCACTTTGTACAAGAAAGCTGGGTCGTCATCCCATTCATCATCCTCT
CSJ237	ATATATGGCGCGCCATGCCTGTTTCGGAAGCGTTTGCC
CSJ238	CATGATCTTTATAATCACCGTCATGGTCTTTATAGTCGGATCCATAAGAACGACCGAAC
CSJ242	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTACTCTAGTAAATGGACC
CSJ243	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGTCAAAAGCTGTCGGTATTG
CSJ244	TTTGTCATCATCATCCTTATAGTCAATGTCATGATCCTTGTAATCACCATCATGATCCTT GTAATCCCCGGGATCAACTTCTTCAACGGTTGGACC
CSJ245	GGGGACCACTTTGTACAAGAAAGCTGGGTCTTTGTCATCATCATCCTTATAG
CSJ246	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTGAATTACTAGATAGCT
CSJ247	TTTGTCATCATCATCCTTATAGTCAATGTCATGATCCTTGTAATCACCATCATGATCCTT GTAATCCCCGGGAAGCATAACAAAACGAACCTTT
CSJ248	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGATCAATAATCCTAAGGTAG
CSJ249	TTTGTCATCATCCTTATAGTCAATGTCATGATCCTTGTAATCACCATCATGATCCTT GTAATCCCCGGGAGCAAACTCAAAAGAACAATCAC
CSJ250	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCAGAGAAATCAATATTTAATG
CSJ251	TTTGTCATCATCCTTATAGTCAATGTCATGATCCTTGTAATCACCATCATGATCCTT GTAATCCCCGGGGGTTGGGTACATTTTGATAGAATC
CSJ261	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCTCACTCA
CSJ262	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTCACTCA
CSJ263	GGGGACCACTTTGTACAAGAAAGCTGGGTCAGATGATGCAGATCTCGATGCAA
CSJ264	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCCCCTTCTAAAATGAATG
CSJ265	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGTCCTCTTCTAAAATGAATG
CSJ266	GGGGACCACTTTGTACAAGAAAGCTGGGTCCTCGAATTGAGGACCAGCGGCTA
CSJ267	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCTACCTTGTATACTGATAT
CSJ268	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTACCTTGTATACTGATAT
CSJ269	GGGGACCACTTTGTACAAGAAAGCTGGGTCGTTGTCCAAAGAGAGATTTATGT
CSJ273	GGGGACCACTTTGTACAAGAAAGCTGGGTCGGCATAGCAAGCGGCTACCATTT
CSJ277	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCTATCCCCGTTGGAAATAC
CSJ278	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTATCCCCGTTGGAAATAC
CSJ279	GGGGACCACTTTGTACAAGAAAGCTGGGTCTTTCTTTACGCCATTTTCTTTGA
CSJ280	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCTTCCTCTAAAATGAATG
CSJ281	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAGAGTCCAGATTGCAGAG
CSJ282	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTGAGTCCAGATTGCAGAGAC

CSJ283	GGGGACCACTTTGTACAAGAAAGCTGGGTCGAATTCTTGACCAACAGTAGAAA
CSJ284	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGACGGTGGCTTATTCCCTAGAG
CSJ285	TTTGTCATCATCCTTATAGTCAATGTCATGATCCTTGTAATCACCATCATGATCCTT GTAATCCCCGGGTTTAACTTTCAAAAGCAGGTCCA
CSJ321	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCACACACTAATAAGATCGC
CSJ322	TTTGTCATCATCCTTATAGTCAATGTCATGATCCTTGTAATCACCATCATGATCCTT GTAATCCCCGGGATTTCTTGAAATTTTCCAGATTT
CSJ323	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGACTATATCTACTCTTAGTAAC
CSJ324	TTTGTCATCATCCTTATAGTCAATGTCATGATCCTTGTAATCACCATCATGATCCTT GTAATCCCCGGGGTTTTCGACCCTAGGAACCCCTA
CSJ347	GGGGACCACTTTGTACAAGAAAGCTGGGTCAGCACGTCTGATGGTGTGAGATAC
CSJ348	GGGGACCACTTTGTACAAGAAAGCTGGGTCTAGAACGTCCAACTTCTTTTGCTG
CSJ361	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGGTTCGACCATTGAACTGCATC
CSJ362	GGGGACCACTTTGTACAAGAAAGCTGGGTCGTCTTTCTTCTCGTAGACTTC
CSJ363	ATGCCAACTCTAGTAAATGGACCAAGAAGAGACTCTACCGAAGGGTTTGATACCGATA TCGTTCGACCATTGAACTGC
CSJ364	ATGTCTACTCTAGTAAATGGACCAAGAAGAGACTCTACCGAAGGGTTTGATACCGATA TCGTTCGACCATTGAACTGC
CSJ375	ATGCCTCACTCAGTTACACCATCCATAGAACAAGATTCGTTAAAAATTGCCATTTAGG T GTTCGACCATTGAACTGC
CSJ376	ATGTCTCACTCAGTTACACCATCCATAGAACAAGATTCGTTAAAAATTGCCATTTAGG T GTTCGACCATTGAACTGC
CSJ377	ATGCCTATCCCCGTTGGAAATACGAAGAACGATTTTGCAGCTTTACAAGCAAAACTAG AT GTTCGACCATTGAACTGC
CSJ378	ATGTCTATCCCCGTTGGAAATACGAAGAACGATTTTGCAGCTTTACAAGCAAAACTAG AT GTTCGACCATTGAACTGC
CSJ379	ATGCCATTTGTTAAGGACTTTAAGCCACAAGCTTTGGGTGACACCAACTTATTCAAACC A GTTCGACCATTGAACTGC
CSJ380	ATGCCAGAGTCCAGATTGCAGAGACTAGCTAATTTGAAAATAGGAACTCCGCAGCAGC TC GTTCGACCATTGAACTGC
CSJ381	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCTACTCTAGTAAATGGACC
CSJ382	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGACTACTCTAGTAAATGGACC
CSJ386	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAGGAGGAGGGGG TGGAGTTCGACCATTGAACTGCATC
CSJ387	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTACTCTAGTAGGAGGAGGGGGG GGAGTTCGACCATTGAACTGCATC
CSJ388	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTGGAGGAGGGGGGGG
CSJ389	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTACTGGAGGAGGGGGGGG
CSJ390	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAGGAGGAGGGGGGGG
CSJ391	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTGGAGGAGGGGGGGG
CSJ418	ATATATATCGATATGCCAACTCTAGTAAATGG
CSJ419	ATATATGTCGACCCACTCTGTGACTTGCCAATATGG
CSJ420	ATATATATCGATATGTCTACTCTAGTAAATGG
CSJ440	ATGTCCCCTTCTAAAATGAATGCTACAGTAGGATCTACTTCCGAAGTTGAACAAAAAA TCGTTCGACCATTGAACTGC
CSJ441	ATGTCCTCTTCTAAAATGAATGCTACAGTAGGATCTACTTCCGAAGTTGAACAAAAAA TCGTTCGACCATTGAACTGC
CSJ453	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCTTCCTCTAAAATGAATG

CSJ454	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCCCCTTCTGTAATGAATG
	GIAG
CSJ455	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCTTCCTCTGTAATGAATG
CSJ460	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAGGTCTAGTAGGAGGAGGGGG T
CSJ461	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAGCTCTAGTAGGAGGAGGGGG T
CSJ462	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCATCTCTAGTAGGAGGAGGGGG T
CSJ463	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCATGTCTAGTAGGAGGAGGGGG T
CSJ464	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAGTTCTAGTAGGAGGAGGGGG T
CSJ465	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCATTGCTAGTAGGAGGAGGGGG T
CSJ466	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCATATCTAGTAGGAGGAGGGGG T
CSJ467	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCATGGCTAGTAGGAGGAGGGGG T
CSJ468	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAGATCTAGTAGGAGGAGGGGG T
CSJ469	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAGAACTAGTAGGAGGAGGGGG T
CSJ470	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAAATCTAGTAGGAGGAGGGGG T
CSJ471	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCACAACTAGTAGGAGGAGGGGG T
CSJ472	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCACATCTAGTAGGAGGAGGGGG T
CSJ473	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAAAACTAGTAGGAGGAGGGGG T
CSJ474	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTGGTGTAGGAGGAGGGGG T
CSJ475	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTGCTGTAGGAGGAGGGGG T
CSJ476	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTTCTGTAGGAGGAGGGGG T
CSJ477	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTTGTGTAGGAGGAGGGGG T
CSJ478	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTGTTGTAGGAGGAGGGGG T
CSJ479	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTATTGTAGGAGGAGGGGG T
CSJ480	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTTATGTAGGAGGAGGGGG T
CSJ481	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTTGGGTAGGAGGAGGGGG T
CSJ482	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTGATGTAGGAGGAGGGGG T
CSJ483	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTGAAGTAGGAGGAGGGGG T
CSJ484	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTAATGTAGGAGGAGGGGG T
CSJ485	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTCAAGTAGGAGGAGGGGG T

CSJ486	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCATGTAGGAGGAGGGGG T
CSJ487	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTAAAGTAGGAGGAGGGGG T
CSJ488	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCCTCCTCTGTAATGAATG
CSJ494	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTCTAGGTGGAGGAGGGGG TGG
CSJ495	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGCTGGAGGAGGGGG TGG
CSJ496	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTATCTGGAGGAGGGGGG GG
CSJ497	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTATGTGGAGGAGGGGG TGG
CSJ498	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTATTGGGAGGAGGGGG TGG
CSJ499	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAATTGGAGGAGGGGG TGG
CSJ500	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTATATGGAGGAGGGGG TGG
CSJ501	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTATGGGGAGGAGGGGGG TGG
CSJ502	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGATGGAGGAGGGGG TGG
CSJ503	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGAAGGAGGAGGGGG TGG
CSJ504	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAAATGGAGGAGGGGG TGG
CSJ505	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTACAAGGAGGAGGGGG TGG
CSJ506	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTACATGGAGGAGGGGG TGG
CSJ507	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAAAAGGAGGAGGGGG TGG
CSJ508	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCCCCTTCTGTTATGAATGCTACA GT
CSJ509	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCCCCTTCTAAAGGAGGAGGGGGG GG
CSJ510	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCCCCTTCTGTTGGAGGAGGGGGG GG
CSJ512	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAATTCTAGTAGGAGGAGGGGG T
CSJ513	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAATGCTAGTAGGAGGAGGGGG T
CSJ514	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCACCACTAGTAGGAGGAGGGGG T
CSJ515	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCATTTCTAGTAGGAGGAGGGGGGT
CSJ516	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAAGACTAGTAGGAGGAGGGGG T
CSJ517	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTACTGTAGGAGGAGGGGG T
CSJ518	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTATGGTAGGAGGAGGGGG T
CSJ519	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCCAGTAGGAGGAGGGGG T
CSJ520	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTTTTGTAGGAGGAGGGGGGT

CSJ521	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTAGAGTAGGAGGAGGGGG T
CSJ522	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTCTAACTGGAGGAGGGGG TGG
CSJ523	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTCTAATGGGAGGAGGGGG TGG
CSJ524	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTACCAGGAGGAGGGGG TGG
CSJ525	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTCTATTTGGAGGAGGGGGG GG
CSJ526	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAAGAGGAGGAGGGGG TGG
CSJ527	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAGGTGGAGGAGG GGGTGG
CSJ528	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAGCTGGAGGAGG GGGTGG
CSJ529	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTCTAGTATCTGGAGGAGGG GGTGG
CSJ530	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAACTGGAGGAGG GGGTGG
CSJ531	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTATGTGGAGGAGG GGGTGG
CSJ532	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAGTTGGAGGAGG GGGTGG
CSJ533	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTATTGGGAGGAGG GGGTGG
CSJ534	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTATATGGAGGAGG GGGTGG
CSJ535	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTATGGGGAGGAGG GGGTGG
CSJ536	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAGATGGAGGAGG GGGTGG
CSJ537	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAGAAGGAGGAGG GGGTGG
CSJ538	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAAATGGAGGAGG GGGTGG
CSJ539	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTACAAGGAGGAGG GGGTGG
CSJ540	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTACATGGAGGAGG GGGTGG
CSJ541	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAAAAGGAGGAGG GGGTGG
CSJ542	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAATTGGAGGAGG GGGTGG
CSJ543	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAATGGGAGGAGG GGGTGG
CSJ544	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTCTAGTACCAGGAGGAGG GGGTGG
CSJ545	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCAACTCTAGTATTTGGAGGAGGG GGTGG
CSJ546	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCCAACTCTAGTAAGAGGAGGAGG GGGTGG
CSJ547	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCTCACTCA
CSJ548	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTCACTCA
CSJ549	GGGGACAAGTTTGTACAAAAAGCAGGCTTCATGCCTATCCCCGTTGGAGGAGGGGGGT
CSJ550	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTATCCCCGTTGGAGGAGGGGGGT

CSJ553	ATGTCCCCTTCTGTTATGAATGCTGGAGGAGTTCGACCATTGAACTGC
CSJ554	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCCCCTTCTGTTATGAATG
CSJ564	GGTCTTCTCGAGGAAAAATCAGTAGAAATAG
CSJ595	ATATATACTAGTTTCATGTCCTCTTCTGTTATGAATGCTGGAGGA
CSJ596	ATATATACTAGTTTCATGCCATCTTCTGTTATGAATGCTGGAGGA
CSJ597	ATATATACTAGTTTCATGGCTCCTTCTGTTATGAATGCTGGAGGA
CSJ598	ATATATACTAGTTTCATGACTCCTTCTGTTATGAATGCTGGAGGA
CSJ599	ATATATACTAGTTTCATGCCACCTTCTGTTATGAATGCTGGAGGA
CSJ600	ATATATACTAGTTTCATGGGTTCCCCTTCTGTTATGAATGCTGGAGGA
CSJ601	ATATATACTAGTTTCATGGCTTCCCCTTCTGTTATGAATGCTGGAGGA
CSJ602	ATATATACTAGTTTCATGTCTTCCCCTTCTGTTATGAATGCTGGAGGA
CSJ603	ATATATACTAGTTTCATGACTTCCCCTTCTGTTATGAATGCTGGAGGA
CSJ604	ATATATACTAGTTTCATGTCCCCTTTGGTTATGAATGCTGGAGGAGTTC
CSJ605	ATATATACTAGTTTCATGCCATCTTTGGTTATGAATGCTGGAGGAGTTC
CSJ606	ATATATACTAGTTTCATGGGTACTCTAGTAGGAGGAGGGGGGGG
CSJ607	ATATATACTAGTTTCATGGTTACTCTAGTAGGAGGAGGGGGGGG
CSJ608	ATATATACTAGTTTCATGTGTACTCTAGTAGGAGGAGGGGGGGG
CSJ616	ATATATACTAGTTTCATGCCAACTCTAGTAAATGGTGGAGGAGGGGGGGG
CSJ617	ATATATACTAGTTTCATGCCAACTCTAGTAAATGCTGGAGGAGGGGGGGG
CSJ618	ATATATACTAGTTTCATGCCAACTCTAGTAAATTCTGGAGGAGGGGGGGG
CSJ619	ATATATACTAGTTTCATGCCAACTCTAGTAAATACTGGAGGAGGGGGGGG
CSJ620	ATATATACTAGTTTCATGCCAACTCTAGTAAATTGTGGAGGAGGGGGGGG
CSJ621	ATATATACTAGTTTCATGCCAACTCTAGTAAATGTTGGAGGAGGGGGGGG
CSJ622	ATATATACTAGTTTCATGCCAACTCTAGTAAATTTGGGAGGAGGGGGGGG
CSJ623	ATATATACTAGTTTCATGCCAACTCTAGTAAATTATGGAGGAGGGGGGGG
CSJ624	ATATATACTAGTTTCATGCCAACTCTAGTAAATTGGGGAGGAGGGGGGGG
CSJ625	ATATATACTAGTTTCATGCCAACTCTAGTAAATGATGGAGGAGGGGGGGG
CSJ626	ATATATACTAGTTTCATGCCAACTCTAGTAAATGAAGGAGGAGGGGGGGG
CSJ627	ATATATACTAGTTTCATGCCAACTCTAGTAAATAATGGAGGAGGGGGGGG
CSJ628	ATATATACTAGTTTCATGCCAACTCTAGTAAATCAAGGAGGAGGGGGGGG
CSJ629	ATATATACTAGTTTCATGCCAACTCTAGTAAATCATGGAGGAGGGGGGGG
CSJ630	ATATATACTAGTTTCATGCCAACTCTAGTAAATAAAGGAGGAGGGGGGGG
CSJ631	ATATATACTAGTTTCATGCCAACTCTAGTAAATATTGGAGGAGGGGGGGG
CSJ632	ATATATACTAGTTTCATGCCAACTCTAGTAAATATGGGAGGAGGGGGGGG
CSJ633	ATATATACTAGTTTCATGCCAACTCTAGTAAATCCAGGAGGAGGGGGGGG
CSJ634	ATATATACTAGTTTCATGCCAACTCTAGTAAATTTTGGAGGAGGGGGGGG
CSJ635	ATATATACTAGTTTCATGCCAACTCTAGTAAATAGAGGAGGAGGGGGGGG

References

- 1. F. M. Ausubel *et al.*, *Current Protocols in Molecular Biology.*, (Wiley-Interscience, New York, 2010).
- 2. F. Sherman, Getting started with yeast. *Meth. Enzymol.* **194**, 3-21 (1991).
- 3. C. S. Hwang, A. Shemorry, A. Varshavsky, N-terminal acetylation of cellular proteins creates specific degradation signals. *Science* **327**, 973-977 (2010).

- 4. A. Shemorry, C. S. Hwang, A. Varshavsky, Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. *Mol. Cell* **50**, 540-551 (2013).
- 5. S. E. Park *et al.*, Control of mammalian G protein signaling by N-terminal acetylation and the N-end rule pathway. *Science* **347**, 1249-1252 (2015).
- 6. T. Stellberger *et al.*, Improving the yeast two-hybrid system with permutated fusions proteins: the Varicella Zoster Virus interactome. *Proteome Sci.* **8**, 8 (2010).
- 7. S. J. Chen, G. Lin, K. J. Chang, L. S. Yeh, C. C. Wang, Translational efficiency of a non-AUG initiation codon is significantly affected by its sequence context in yeast. *J. Biol. Chem.* **283**, 3173-3180 (2008).
- 8. A. Bruckner, C. Polge, N. Lentze, D. Auerbach, U. Schlattner, Yeast two-hybrid, a powerful tool for systems biology. *Int. J. Mol. Sci.* **10**, 2763-2788 (2009).
- 9. N. Johnsson, A. Varshavsky, Split ubiquitin as a sensor of protein interactions in vivo. *Proc. Natl. Acad. Sci. USA* **91**, 10340-10344 (1994).
- 10. S. Wittke, N. Lewke, S. Müller, N. Johnsson, Probing the molecular environment of membrane proteins in vivo. *Mol. Biol. Cell* **10**, 2519-2530 (1999).
- 11. S. Wittke, M. Dunnwald, M. Albertsen, N. Johnsson, Recognition of a subset of signal sequences by Ssh1p, a Sec61p-related protein in the membrane of endoplasmic reticulum of yeast Saccharomyces cerevisiae. *Mol. Biol. Cell* **13**, 2223-2232 (2002).
- 12. J. Müller, N. Johnsson, Split-ubiquitin and the split-protein sensors: chessman for the endgame. *Chembiochem.* **9**, 2029-2038 (2008).
- 13. A. Dunkler, J. Muller, N. Johnsson, Detecting protein-protein interactions with the splitubiquitin sensor. *Methods Mol. Biol.* **786**, 115-130 (2012).
- 14. D. G. Fraenkel, *Yeast Intermediary Metabolism*. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2011).
- 15. B. K. Han, S. D. Emr, The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis. *J. Biol. Chem.* **288**, 20633-20645 (2013).
- 16. L. Rui, Energy metabolism in the liver. *Compr. Physiol.* 4, 177-197 (2014).
- 17. J. Wahren, K. Ekberg, Splanchnik regulation of glucose production. *Annu. Rev. Nutr.* **27**, 329-345 (2007).
- 18. L. Tian, D. L. Nelson, D. M. Stewart, Cdc42-interacting protein 4 mediates binding of the Wiskott-Aldrich syndrome protein to microtubules. *J. Biol. Chem.* **275**, 7854-7861 (2000).
- 19. Q. Xiao, F. Zhang, B. A. Nacev, J. O. Liu, D. Pei, Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. *Biochemistry* **49**, 5588-5599 (2010).